
REPLICATED DATA

8.1 lNTRODUCTlON

A replicated database is a distributed database in which multiple copies of
some data items are stored at multiple sites. The main reason for using repli-
cated data is to increase DBS availability. By storing critical data at multiple
sites, the DBS can operate even though some sites have failed. Another goal
is improved performance. Since there are many copies of each data item, a
transaction is more likely to find the data it needs close by, as compared to a
single copy database. This benefit is mitigated by the need to update all
copies of each data item. Thus, Reads may run faster at the expense of slower
Writes.

Our goal is to design a DBS that hides all aspects of data replication from
users’ transactions. That is, transactions issue Reads and Writes on data items,
and the DBS is responsible for translating those operations into Reads and
Writes on one or more copies of those data items. Before looking at the archi-
tecture of a DBS that performs these functions, let’s first determine what it
means for such a system to behave correctly,

Correctness

We assume that a DBS managing a replicated database should behave like a
DBS managing a one-copy (i.e., nonreplicated) database insofar as users can
tell. In a one-copy database, users expect the interleaved execution of their

265

266 CHAPTER 8 I REPLICATED DATA

transactions to be equivalent to a serial execution of those transactions. Since
replicated data should be transparent to them, they would like the interleaved
execution of their transactions on a replicated database to be equivalent to a
serial execution of those transactions on a one-copy database. Such executions
are called one-copy serializable (or ZSR). This is the goal of concurrency
control for replicated data.

This concept of one-copy serializability is essentially the same as the one
we used for multiversion data in Chapter 5. In both cases we are giving the
user a one-copy view of a database that may have multiple copies (replicated
copies or multiple versions) of each data item. The only difference is that here
we are abstracting replicated copies, rather than multiple versions, from the
users’ view.

The Write-All Approach

In an ideal world where sites never fail, a DBS can easily manage replicated
data. It translates each Read(x) into Read(xA), where XA is any copy of data
item x (x4 denotes the copy of x at site A). It translates each Write(x) into
{ Write(xA,), . . . , Write(xA,) > , where {x,4,, . . . , xA,) are all copies of x. And it
uses any serializable concurrency control algorithm to synchronize access to
copies. We call this the write-all approach to replicated data.

To see why the write-all approach works, consider any execution produced
by the DBS. Since the DBS is using a serializable concurrency control algo-
rithm, this execution is equivalent to some serial execution. In that serial
execution, each transaction that writes into a data item x writes into all copies
of X. From the viewpoint of the next transaction in the serial execution, all
copies of x were written simultaneously, So, no matter which copy of x the
next transaction reads, it reads the same value, namely, the one written by the
last transaction that wrote all copies of x. Thus, the execution behaves as
though it were operating on a single copy database.

Unfortunately, the world is less than ideal - sites can fail and recover.
This is a problem for the write-all approach, because it requires that the DBS
process each Write(x) by writing into all copies of X, even if some have failed.
Since there will be times when some copies of x are down, the DBS will not
always be able to write into all copies of x at the time it receives a Write(x)
operation. If the DBS were to adhere to the write-all approach in this situ-
ation, it would have to delay processing Write(x) until it could write into all
copies of x.

Such a delay is obviously bad for update transactions. If any copy of x
fails, then no transaction that writes into x can execute to completion. The
more copies of x that exist, the higher the probability that one of them is
down. In this case, more replication of data actually makes the system less

8.1 INTRODUCTION 267

available to update transactions! For this reason, the write-all approach is
unsatisfactory.

The Write-All-Available Approach

Suppose we adopt a more flexible approach. We still require the DBS to
produce a serializable execution, but no longer require a transaction to write
into all copies of each data item x in its writeset. It should write into all of the
copies that it can, but it may ignore any copies that are down or not yet
created. This is the write-all-available approach. It solves the availability prob-
lem, but may lead to problems of correctness.

Using the write-all-available approach, there will be times when some
copies of x do not reflect the most up-to-date value of X. A transaction that
reads an out-of-date copy of x can create an incorrect, i.e., non-lSR, execu-
tion. The following execution, H,, shows how this can happen:

HI = %[xA] wo[xB] %[yC] co r,[yC] W&A] CI yz[xBl dyC1 cz.

Notice that Tz read copy XB of x from TO, even though T, was the last transac-
tion before it that wrote into 3~. That is, T, read an out-of-date copy of x.

In a serial execution on a one-copy database, if a transaction reads a data
item X, then it reads x from the last transaction before it that wrote into X. But
this is not what happened in H,. T2 read XB from TO, which is not the last
transaction before it that wrote into X. Thus H, is not equivalent to the serial
execution TO T, T, on a one-copy database. We could still regard H, as correct
if it were equivalent to another serial execution on a one-copy database.
However, since w,[yc] < r,[yc] < w,[yc], there are no other serial executions
equivalent to H,. Therefore, H, is not equivalent to any serial execution on a
one-copy database. That is, H, is not 1SR.

T, seems to be the culprit here, because it did not write into all copies of x.
Unfortunately, it may have had no choice. For example, suppose site B failed
after T,, but before T,, and recovered after T, but before T2, as in Hi:

H,’ = wO[x~] W,[XB] w,[yc] co B-fails r,[yc] W,[XA] c, B-recovers Y~[XB] w,[yc] cZ.

Rather than waiting for B to recover so it could write xg, T, wrote into the
one copy that it could write, namely, XA. After B recovered, T, unwittingly read
xg, an out-of-date copy of x, and therefore produced an incorrect result. This
particular problem could be easily solved by preventing transactions from
reading copies from sites that have failed and recovered until these copies are
brought up-to-date. Unfortunately, this isn’t enough, as we’ll see later (cf.
Section 8.4.).

There are several algorithms, including some variations of the write-all-
available approach, that correctly handle failures and recoveries and thereby
avoid incorrect executions such as H,. These algorithms are the main subject

268 CHAPTER 8 I REPLICATED DATA

of this chapter. But before we delve deeply into this subject, let’s first define a
system architecture for DBSs that manage replicated data.

8.2 SYSTEM ARCHITECTURE

We will assume that the DBS is distributed. As usual, each site has a data
manager (DM) and transaction manager (TM) that manage data and transac-
tions at the site.

The Data Manager

The DM is a centralized DBS that processes Reads and Writes on local copies
of data items. It has an associated local scheduler for concurrency control,
based on one of the standard techniques (2PL, TO, or SGT). In addition, there
may be some interaction between local schedulers, for example, to detect
distributed deadlocks or SG cycles.

As in Chapter 7, we assume that the DM and scheduler at a site are able to
commit a transaction’s Writes that were executed at that site. By committing a
transaction T, the scheduler guarantees that the recoverability condition holds
for all of T’s Reads at that site, and the DM guarantees that all of T’s Writes at
that site are in stable storage (i.e., it satisfies the Redo Rule).

The scheduler at a site is only sensitive to conflicts between operations on
the same copy of a data item. For example, if the scheduler at site A receives an
operation r,[xA], it will synchronize r,[xA] relative to Writes it has received on
xA. However, since it doesn’t receive Writes on other copies of x, it cannot
synchronize ri[xA] relative to Writes on those other copies. The scheduler is
really treating operations on copies as if they were operations on independent
data items. In this sense, it is entirely oblivious to data replication.

The Transaction Manager

The TM is the interface between user transactions and the DBS. It translates
users’ Reads and Writes on data items into Reads and Writes on copies of those
data items. It sends those Reads and Writes on copies to the appropriate sites,
where they are processed by the local schedulers and DMs.

The TM also uses an atomic commitment protocol (AU), so that it can
consistently terminate a transaction that accessed data at more than one site.
We assume that the DM and scheduler at each site are designed to participate
in this ACP for any transaction that is active at that site.

To perform its functions, the TM must determine which sites have copies
of which data items. It uses directories for this purpose.’ There may be just one

‘Note that the term directory has a different meaning here than in Chapter 6. In this chapter, a
directory maps each data item x to the sites that have copies of x. In Chapter 6, it mapped each
data item to its stable storage location.

8.2 SYSTEM ARCHITECTURE 269

directory that tells where all copies of all data items are stored. The directory
can be stored at all sites or only at some of them. Alternatively, each directory
may only give the location of copies of some of the data items. In this case,
each directory is normally only stored at those sites that frequently access the
information that it contains. To find the remaining directories, the TM needs a
master directory that tells where copies of each directory are located.

To process a transaction, a TM must access the directories that tell it
where to find the copies of data items that the transaction needs. If communi-
cation is expensive, then the directories should be designed so that each TM
will usually be able to find a copy of those directories at its own site. Other-
wise, the TM will have to send messages to other sites to find the directories it
needs.

Failure Assumptions

We say that a copy XA of a data item or directory at site A is available to site B if
A correctly executes each Read and Write on XA issued by B and B receives A’s
acknowledgment of that execution. Thus copy XA may be unavailable to B for
one of three reasons:

1. A does not receive Reads and Writes on XA issued by B. In this case, by
definition, a communications failure has occurred (see Section 7.2).

2. The communication network correctly delivers to A Reads and Writes
on XA issued by B, but A is unable to execute them, either because
A is down or A has suffered a failure of the storage medium that
contains XA.

3. A receives and executes each Read and Write issued by B, but B does
not receive A’s acknowledgment of such executions (due to a communi-
cations failure).

We say a copy xA is available (or unavailable) if it is available (or not available)
to every site other than A.

As in Chapter 7, we assume that sites are fail-stop, and that site failures
are detected by timeout. Thus, in the absence of communications failures, each
site can determine whether any other site is failed simply by sending a message
and waiting for a reply. That is, site failures are detectable.

If communications failures may occur, then a site A that is not responding
to messages may still be functioning. This creates nasty problems for managing
replicated data, because A may try to read or write its copies without being
able to synchronize against Reads or Writes on copies of the same data item at
other sites.

Distributing Writes

When a transaction issues Write(x), the DBS is responsible for eventually
updating a set of copies of x (the exact set depends on the algorithm used for

270 CHAPTER 8 I REPLICATED DATA

managing replicated data). It can distribute these Writes immediately, at the
moment it receives Write(x) from the transaction. Or, it can defer the Writes on
replicated copies until the transaction terminates.

With deferred writing, the DBS uses a nonreplicated view of the database
while the transaction is executing. That is, for each data item that the transac-
tion reads or writes, the DBS accesses one and only one copy of that data item.
(Different transactions may use different copies.) The DBS delays the distribu-
tion of Writes to other copies until the transaction has terminated and is ready
to commit. The DBS must therefore maintain an intentions list of deferred
updates.’ After the transaction terminates, it sends the appropriate portion of
the intentions list to each site that contains replicated copies of the transac-
tion’s writeset, but that has not yet received those Writes. It can piggyback this
message with the VOTE-REQ message of the first phase of the ACl?

Except for the copies it uses while executing the transaction, a DBS that
uses deferred writing puts all replicated Writes destined for the same site in a
single message. This tends to minimize the number of messages required to
execute a transaction. By contrast, using immediate writing, the DBS sends
Writes to replicated copies while the transaction executes. Although some
piggybacking may be possible, it essentially uses one message for each Write.
Thus, immediate writing tends to use more messages than deferred writing.

Another advantage of deferred writing is that Aborts often cost less than
with immediate writing. In a DBS that uses immediate writing, when a transac-
tion T, aborts, the DBS is likely to have already distributed many of Tl’s Writes
to replicated copies. Not only are these Writes wasted, but they also must be
undone. With deferred writing, the DBS delays the distribution of those Writes
until after T, has terminated. If T, aborts before it terminates, then the abor-
tion is less costly than with immediate writing.

A disadvantage of deferred writing is that it may delay the commitment of
a transaction more than immediate writing. This is because the first phase of
the ACP at each receiving site must process a potentially large number of
Writes before it can respond to the VOTE-REQ message. With immediate writ-
ing, receiving sites can execute many of a transaction’s Writes while the trans-
action is still executing, thereby avoiding the delay of executing them at
commit time.

A second disadvantage of deferred writing is that it tends to delay the
detection of conflicts between operations. For example, suppose transactions
T, and T2 execute concurrently and both write into x. Furthermore, suppose
the DBS uses copy xA while executing T, and uses xg while executing T,. Until
the DBS distributes T,‘s replicated Write on xg or T,‘s replicated Write on x,~,
no scheduler will detect the conflicting Writes between T, and T,. With
deferred writing, this happens at the end of T,‘s and T2’s execution. This may
be less desirable than immediate writing, since it may cause a scheduler to

Tf. the no-undo/redo centralized recovery algorithm in Section 6.6.

8.3 SERIALIZABILITY THEORY FOR REPLICATED DATA 271

reject a Write later in a transaction’s execution. The DBS ends up aborting the
transaction after having paid for most of the transaction’s execution. (This is
similar to a disadvantage of 2PL certifiers described in Section 4.4.)

This disadvantage of deferred writing can be mitigated by requiring the
DBS to use the same copy of each data item, called the primary copy, to
execute every transaction. For example, the DBS would use the same (primary)
copy of X, XA, to execute both T, and T2. The scheduler for XA detects the
conflict between TI’s and T2’s writes, thereby detecting it earlier than if T, and
T, used different copies of X. In this case, deferred writing and immediate writ-
ing detect the conflict at about the same point in a transaction’s execution.

8.3 SERlALlZABlLlTY THEORY FOR REPLICATED DATA

We will extend basic serializability theory by using two types of histories: repli-
cated data (RD) histories and one-copy (1 C) histories. RD histories represent
the DBS’s view of executions of operations on a replicated database. 1C histo-
ries represent the interpretation of RD histories in the users’ single copy view of
the database. (1C histories are quite similar to the 1V histories we used in
Chapter 5.) As usual, we will characterize a concurrency control algorithm by
the RD histories it produces. To prove an algorithm correct, we prove that its
RD histories are equivalent to serial 1C histories, which are the histories that
the user regards as correct.

The formal development of serializability theory for replicated databases
is very similar to that for multiversion databases. The notations and the formal
notions of correctness are analogous. You may find it helpful to think about
these similarities while you’re reading this section.

Replicated Data Histories

Let T = (TO,. . ., T,) be a set of transactions. To process operations from T, a
DBS translates T’s operations on data items into operations on the replicated
copies of those data items. We formalize this translation by a function h that
maps each T~[x] into ri[xA], where XA is a copy of x; each w;[x] into u/;[x~J, . . . ,
Wi[xA,] for some copies XA,, . . ., XA,, of x (m > 0); each ci into ci and each ai
into ai.

A complete replicated data (RD) history H over T = {TO, . . ., T,} is a
partial order with ordering relation < where

1. H = h (Ur=, Ti) for some translation function h;

2. for each Ti and all operations pi, qi in T;, if p; <i qi, then every opera-
tion in h(pJ is related by < to every operation in h(qi);

3. for every rj[xA], there is at least one W~[XA] < Yj[XA];

272 CHAPTER 8 / REPLICATED DATA

4. all pairs of conflicting operations are related by < , where two opera-
tions conflict if they operate on the same copy and at least one of them
is a Write; and

5. if u?,[x] <r I,[x] and h(u,[x]) = r,[x,.J then w,[xJ E h(w,[x]).

Condition (1) states that the DBS translates each operation submitted by a
transaction into appropriate operations on copies. Condition (2) stares that the
RD history preserves all orderings stipulated by transactions. Condition (3)
states that a transaction may not read a copy unless it has been previously
initialized. Condition (4) states that the history records the execution order of
noncommutative operations. Condition (5) states that if a transaction T, writes
into a data item x before it reads x, then it must write into the same copy xA of
I that it subsequently reads. (It may write into other copies of x as well.) By
Condition (2), this implies wi[x.+J < y,[x,J. We will revisit this issue in a
moment.

Given transactions (T,,, T,, TL, T3):

hl\
T, = r,[x] + w,[x] --f c, T, = r,[yl -+ c3

the following history, HL, is an RD history over { T,,, . . ., T,):

Let H be an RD history over T. Transaction T, reads-x-from T, in H if for
some copy x.4 7J reads-xA-from T,, that is, if w,[xJ < ~j[xA] and no UJ~[X,~]
(k + i) falls between these operations. Since reads-from relationships on copies
are unique by condition (4) of RD histories and since a transaction reads at
most one copy of any given data item,” reads-from relationships on data items
are unique as well.

In this chapter, we will only comider histories that are complete and that
only contain committed transactions (i.e., histories that are committed projec-
tions of themselves). These restrictions are justified by requiring that we only

‘This follows from the fact that h(r,[x]) = rJ~;i] (’ 1.e.. h(rt[x]) does not equal a set of Reads)
and from the assumption thdt a transaction reads a data item at most once. As we mentioned in
Chapter 2, the latter assumption is mainly a convenience that can be dispensed Lvith at some
cost in notational complexit):

8.3 SERIALIZABILITY THEORY FOR REPLICATED DATA 273

use schedulers that produce recoverable executions. Recoverability for RD
histories is defined as for 1C histories, but with respect to copies. That is, an
RD history H is recoverable if whenever T; reads (any copy) from T, in H and
ci E H, then c1 < c,. We assume that all RD histories are recoverable.

The serialization graph for an RD history is defined as for a 1C history
That is, the nodes correspond to committed transactions in the history and
there is an edge T, + Tj if there are conflicting operations pi in Ti and qI in Tj
such that pi < qj, Thus, the serialization graph for H, is

SG(H,) =

If SG(H) is acyclic, then conditions (2) and (5) in the definition of RD
history ensure that H preserves reflexive reads-from relationships. More
precisely, we have:

Lemma 8.1: Let H be an RD history involving transaction Ti. If SG(H) is
acyclic and for some x zu,[x] <) Y,[x], then T; reads-x-from T; in H.

Proof: From conditions (2) and (5) on RD histories, wi[x] <I T,[x]
implies that for some copy XA of x, Wi[XA] < T,[xA]. Suppose, by way of
contradiction, Ti didn’t read x from T, in H. Then there must exist some
wk[xA] (k # i) in H such that W;[XA] < W~[XA] < r;[x~]. But then SG(H)
contains edges Ti + Tk and Tk + T; which contradicts the assumed
acyclicity of SG(H). 0

We would like to define an RD history H to be 1SR if it is equivalent to a
serial 1C history Hlc. To determine if H is equivalent to HIc, it would be
unsatisfactory to use the notion of conflict equivalence, simply because H and
Hlc have different operations .4 However, reads-from relationships and final
writes do behave the same way in both types of histories. Therefore, view
equivalence provides a natural way to determine the equivalence of an RD
history and 1C history (see Section 2.6 for a discussion of view equivalence in
1 C histories).

Given RD history H, define w;[xA] to be a final write for XA in H if a, Q H
and for all W][XA] in H (j+i), either a, E H or wj[xA] < wi[xA].

Two RD histories over T are equivalent (denoted E) if they are view
equivalent, that is, if they have the same reads-from relationships and final
writes.

4That is, if we define H and H,c to be equivalent if conflicting operations appear in the same
order in both histories, then we must deal with the problem that some operations that conflict
in H,c may not have corresponding operations that conflict in H. For example, consider H =
4~1 W,[XAI and H,c = ~~1x1 ~~1x1.

274 CHAPTER 8 I REPLICATED DATA

An RD history H over T is equivalent to a 1C history Hrc over T if

1. H and Hrc have the same reads-from relationships on data items (i.e., Tj
reads-x-from T, in H iff the same holds in Hlc), and

2, for each final write tc,[x] in Hlc, tll,[x.A] is a final write in I-I for some
copy x.4 of XJ

An RD history is one-copy serializable (1SR) if it is equivalent to a serial
1C history. For example, H? is 1SR since it is equivalent to the following 1C
history:

H, = w,,[xl w,~[Y] c, wJx1 rJx1 wJu1 Cr y,[xl uJ,[xl cl rdxl rJy1 c3.
History H, in Section 8.1, reproduced below, is not 1 SR:

HI = w[xAI udxB] u’htd cu rhtl w[% ‘1 r:[xBl WhCI CL.

Notice that H, is a seriaI RD history. Thus, not every serial RD history is 1SR.

Ignoring Final Writes

All of the concurrency control algorithms for replicated databases that we will
study use conflict-based schedulers. That is, they use schedulers that produce
histories that have acyclic serialization graphs. We can use this fact to avoid
dealing with final writes in proving the equivalence of RD and 1C histories, as
described in the following lemma.

Lemma 8.2: Let H be an RD history over T, where SG(H) is acyclic. Let
N,c be a serial 1C history over T such that the order of transactions in E-l,c
is consistent with SG(H). (That is, if T, + TI is in SG(H), then T, precedes
Tj in Hlc.) If w,[x] is a final write for x in N,c, then every Write, w,[xJ, by
T, into some copy XA of x is a final write for x,4 in H.

Proof: Suppose w,[x] is a final write for x in Hrc. Let w,[x.~] be any Write
into x by T, in H. If w,[xJ is not a final write, then there is some ~+[xt\]
(j#i) such that aI @ H and u~,[xA] < u!,[x.~]. Thus, 7-, + T, is in SG(H), so
T, precedes T, in Hlc. But that implies a, @ Hlc and wJx] < w,[x] in H,c,
contradicting the choice of w,[x] as a final write. 0

To prove that an RD history H is equivalent to a serial 1C history Hrc, we
would ordinarily have to prove that H and Hrc have the same reads-from rela-
tionships and final writes. However, if transactions in Hlc are in an order

5Recall from Section 2.6 that wi[x] is a final write ior .x in H,, if ai e H,c and for all q[x] E
H,c b#i), either gj E H or y[x] < LO,[X]. Notice that final writes are defined for Writes on
data kerns in 1C histories and for Writes on copies of data items in RD histories. Hence the
need for the special wording of condition (2) in the definition of equivalence of H and Hit,
instead of simply saying they have the same reads-from relationships and finai writes.

8.4 A GRAPH CHARACTERIZATION OF 1.93 HISTORIES 275

consistent with SG(H) (which, since Hrc is serial, implies that SG(H) is
acyclic), then by Lemma 8.2 we only have to prove they have the same reads-
from relationships. That is, we have the following theorem.

Theorem 8.3: Let H be an RD history. If H has the same reads-from rela-
tionships as a serial 1C history Hit, where the order of transactions in Hro
is consistent with SG(H), then H is 1SR. cl

8.4 A GRAPH CHARACTERIZATION OF ISR HISTORIES

To prove the correctness of a concurrency control algorithm for replicated
data, we must prove that all of the histories it produces are 1SR. Following our
usual approach, we would like to do this with the help of a serialization graph
structure. Unfortunately, standard serialization graphs for RD histories are too
weak for this purpose, as illustrated by the following example.

Consider a database with data items x and y and copies XA, XB, yc, and yo.
Suppose we have the following three transactions:

To = T, = r,[xl + w,[yl + cl

T2 = rJy1 --) dxl -+ c2
If the DBS uses 2PL and ignores failed copies, the following history can occur.

where XAn denotes the failure of copy XA. We’ll find it more convenient to
speak of copies, rather than sites, failing. Transactions T, and T, begin by
reading XA and yD. After they complete their Reads, the copies that they read
fail. Then they perform their Writes. Since yD is down, yc is the only available
copy of y. So the DBS translates u/,[y] into w,[yc]. Similarly, since XA is down, it
translates w~[x] into w,[xB]. If the DBS uses 2PL by setting locks on copies that
it accesses, it has no trouble locking each copy that T, and T, access, because
no two operations of these transactions access the same copy of any data item.

H, is not 1SR. A serial execution of To, T,, and T, on a single copy data-
base would have either T, reading the value of x written by T,, or Tz reading
the va%ie of y written by T,. However, in H, neither transaction reads the data
written by the other. So, H4 is not equivalent to a serial history over {To, T,,
T,} on a one-copy database. But despite the fact that H, is incorrect, SG(H,) is
acyclic:

SG(H,) = ?o - T, T2.

276 CHAPTER 8 I REPLICATED DATA

This example illustrates the rather surprising fact that the write-all-
available approach may lead to an incorrect execution, even if only failures,
but no recoveries occur (i.e., failed copies never recover).

One explanation of the problem in H, relates to the fundamental technique
that all concurrency control algorithms use to obtain correct executions,
namely, controlling the order of conflicting operations on shared data. In H,,
even though T, and T2 have conflicting accesses to data items x and y, they
don’t have conflicting accesses to copies of x and y. The copy of x and y that
each of them read failed before the other transaction’s conflicting Write into
that copy could be issued. The copy that each of them wrote is a copy that the
other transaction didn’t read. Thus, the logical conflicts were never manifested
as physical conflicts on copies, which is the only place that the DBS can control
them.

In a sense, the problem is finding a way to ensure that any two transac-
tions that have conflicting accesses to the same data item also have conflicting
accesses to some copy of that data item. That way, the DBS will be able to
synchronize the transactions. If the DBS can do this in all cases, then by attain-
ing ordinary serializability it has also attained one-copy serializability.

*Replicated Data Serialization Graphs

To determine if an RD history is lSR, we will use a modified SG. This graph
models the observation that two transactions that have conflicting accesses to
the same data item must be synchronized, even if they don’t access the same
copy of that data item. To define this graph, we need a little terminology. We
say that node n, precedes node n,, denoted n, 4 n,, in a directed graph if there is
a path from n, to ni.

Given an RD history H, a replicated data serialization graph (RDSG) for
H is SG(H) with enough edges added (possibly none) such that the following
two conditions hold: For all data items X,

1. if T, and Tk write x, then either T, 4 Tk or Tk -% T,), and

2. if lJ reads-x-from T,, Tk writes some copy of x (k I, k +j)), and
T, e Tk, then T, Q Tk.

If a graph satisfies condition (l), we say it induces a write order for H. If it
satisfies condition (2), we say it induces a read order for H. Thus RDSG(H) is
an extension of SG(H) that induces a read order and a write order for H. Note
that an RDSG for H isn’t uniquely determined by H.

We explained that failures can lead to incorrect behavior because transac-
tions that have conflicting accesses to the same data item may not have
conflicting accesses to copies of that data item. An SG doesn’t have enough
edges (due to conflicting accesses to copies) to force an order on every pair of
transactions with conflicting accesses to the same data item. An RDSG for H
adds enough edges to SG(H) to make this so. The write order ensures that the

8.5 ATOMICITY OF FAILURES AND RECOVERIES 277

RDSG orders every pair of transactions that write into the same data item,
even if they don’t write into the same copy. If the RDSG induces a write order,
then the read order ensures that the RDSG orders every pair of transactions (Tj
and Tn) that (respectively) read and write the same data item.

SG(H,) is not an RDSG(H,). It induces a write order for H,, but not a read
order. We can make it into an RDSG(H,) by adding edges between T, and T,.

/
G=

L
To-T-T I*-- 2

Since T, reads-x-from To, T, writes x, and T,-+T,, we added T,-tT2. Since T,
reads-y-from To, T, writes y, and To-+ T,, we added T,-+ T,. Since these are the
only two reads-from relationships in H,, these two edges are enough to ensure
that G induces a read order for H. Notice that G has a cycle. Since every RDSG
for H, must contain the edges T, + T, and T2 + T,, every such RDSG has a
cycle.

The following theorem is an important tool for analyzing the correctness
of concurrency control algorithms for replicated data.

Theorem 8.4: Let H be an RD history. If H has an acyclic RDSG, then H
is 1SR.

Proof: Let H, = T,, Ti, . . . Ti, be a serial 1C history where T,,, T,,, . . .,
Ti,, is a topological sort of RDSG(H). Since RDSG(H) contains SG(H)j by
Theorem 8.3, we can prove that H is 1SR just by proving that H and H,
have the same reads-from relationships.

First, assume Tj reads-x-from Ti in H. Suppose, by way of contradic-
tion, that Tj reads-x-from Tk in H,, for some k # i. If k = j, Lemma 8.1
implies that T; reads-x-from Tk in H, a contradiction (note that since H
has an acyclic RDSG, SG(H) is surely acyclic and therefore Lemma 8.1
applies). So, assume k #i. Since Tj reads-x-from Ti in H, Ti + T; is in the
RDSG of H, so Ti precedes Tj in H,. Since the RDSG induces both a read
and a write order, we have that either Tk < T; or Tj 4 Tk. Thus either Tk
precedes Ti (which precedes Tj) or Tk follows Tj in H,, both contradicting
that Tj reads-x-from Tk in H,.

Now assume Tj reads-x-from T; in H,. By conditions (3) and (4) in the
definition of RD history and the definition of reads-from, Tj reads-x-from
some transaction in H, say Th. By the previous paragraph, Tj reads-x-from
TI, in H,. Since read-from relationships are unique, Tb = T,. q

8.5 ATOMICITY OF FAILURES AND RECOVERIES

Another characterization of 1 SR histories is that they are RD histories in which
failure and recovery events appear to be atomic. That is, in a 1SR history, all
transactions have a consistent view of when copies fail and recover. In the next

278 CHAPTER 8 I REPLICATED DATA

two subsections, we will explain this characterization by means of examples.
Then we will describe a graph structure that captures this characterization.

Atomicity of Failures

Loosely speaking, a transaction learns about a failure when it tries to read or
write a copy that turns out to be unavailable. SimilarIy, it knows that a copy
could not have failed yet if it successfully accesses that copy. Depending on
when each transaction learns about failures, different transactions might see
failures occurring in different orders.

For example, reconsider history H,.

Since T, decided not to write yo, it must have learned about yD’s failure before
it committed; this means that in an equivalent serial execution, yD failed before
T, executed. And since it read XA, it believes x.4 failed after it executed. Thus,
T, sees failures in the following order: y& + T, + x,n. By contrast, T2 sees
the failures in the opposite order. It didn’t write xA, so it must have learned that
XA failed before it ran. But it read ye, so it believes 1’~ failed after it ran. Thus,
it sees XAr -+ TL --t y&.

Suppose we think of failures as atomic events that must be recorded in a
serial execution. Given T,‘s and T?‘s view of these events, there is no serial
execution of T, and TL in which we can place the failure events x,n and y,?.
For example, if the given execution were equivalent to the serial execution
T,T,! then T, --t xAn -+ T2 is consistent with T,‘s and T?‘s view. But T1 thinks
yD failed before T,, and T, thinks yb failed after T2. Both views cannot be true
if y& is an atomic event. Instead, if the given execution were equivalent to
T2T,, then we have T2 -+ yb” + T,, but now we have inconsistent views of
xAn to contend with.

To ensure that failure events appear to be atomic, we need to synchronize
failures with Reads and Writes. Unfortunately, failures are not controllable
events. They happen whenever they want to. So, the best we can do is ensure
that transactions see failures in a consistent order. This, as it turns out, is all
we need.

Note that a transaction can see a failure by not issuing a Write on an
unavailable copy. Therefore, the DBS must not only control the order in which
transactions read andwrite copies, but must also control the transaction’s deci-
sion whether or not to issue a Write on a copy. Thus, the TM’s translation
activity has an effect on one-copy serializability,

8.5 ATOMICITY OF FAILURES AND RECOVERIES 279

Atomicity of Recoveries

To create a new copy of x, or to recover a formerly failed copy of x, say xs, the
DBS must store an initial value in xg. Any transaction that ordinarily writes
into x can initialize xs. Whenever it writes into other copies of X, it writes into
xg too. Rather than waiting for such a transaction to appear, the DBS can force
the initialization of XB by running a special transaction, called a copier. The
copier simply reads an existing copy of the data item that is up-to-date and
writes that value into the new copy. Whether the DBS uses an ordinary transac-
tion or a copier to initialize XB, it must ensure that no transaction reads xs until
it has been initialized.

The DBS must also make xs known to all transactions that update X, so that
they will write into XB whenever they write into other copies of X. This latter
activity requires some synchronization, as the following example illustrates.

Suppose the database has copies XA and yc at the time that the DBS is ready
to create copy XB. It runs a copier transaction, T,, to initialize xs at about the
same time that two other transactions T, and T, execute. The resulting execu-
tion is as follows.

WJYCI
\

WSYCI

HA is incorrect. The only serial RD history equivalent to Hs is

H; = wo[xA] w&k] co r,[XA)l w,[xBI cl r,[xA] w&A] %[yC] 6 r&B] ThkI c3

Hj’ is not equivalent to the serial 1C history TO T, T, T,. In a one-copy data-
base, T, would write x and y, and T3 would read the values that T, wrote. But
in this execution, T3 read the value of x that T, wrote and the value of y that T2
wrote. Hj is not equivalent to any other serial 1C history either, and so is
not 1SR.

The problem is that T, should have updated the new copy of X, XB, but
didn’t. Since T, knows that xs exists (it wrote x&?), and since T, effectively
executes before T2 (because T,[XA] < z+[xA]), T, should also know that xs
exists. Therefore, since T2 writes into x, it should write all copies of X, includ-
ing xs, If it did, then T~[xB] would have read the proper value.

We can also explain this in terms of the atomicity of recovery events. Let us
denote the recovery (or initialization) of XA as XAU. Since T, wrote Kg, it
believes xg recovered before it executed. That is, xsU + T,. Since T2 wrote XA
but not xs, it believes xs recovered after it executed. That is, T, --t x:BU, But
since T, + T2 is in SG(H,), these views of the recovery of xg are in,consistent.6

6An alternative analysis is xsu + T1 --) xBn --f T2 --f xBU --f T3. We have xBu --f T3
because T3 read ~a.-But now T3 reads the recovered copy xs before it has been initialized (with
the value of x written by T2), which is illegal.

280 CHAPTER 8 I REPLICATED DATA

*Failure-Recovery Serialization Graphs

As we have seen, another explanation why a serializable execution may not be
1SR is that different transactions observe failures and recoveries in different
orders. We can formalize this reasoning by augmenting SGs to include nodes
that represent the creation and failure of each copy. To keep the notation
simple, we will assume that each copy is created once and sometime later fails.
Once it has failed, a copy never recovers. This assumption is not a loss of
generality because we can regard the recovery of a copy as the creation of a
new copy, That is, a copy that fails and recovers several times is represented by
a sequence of uniquely named incarnations, each of which is created, fails at
most once, and never recovers. An alternative model for incarnations is
suggested in Exercise 8.9.

Given an RD history H over transactions { TO, . . ., T,) , a failwe-recovery
serialization graph (FRSG) for H is a directed graph with nodes N and edges E
where:

N = (T,,, . . ., T,} U {create[xA] 1 x is a data item and xA is a copy of x}
U { fail[x.A] 1 x is a data item and x.4 is a copy of x}

E = fT,-+T, 1 T,-+T, is an edge of SG(H)} U El U E2 U E3
where
El = (create[xJ-+ T, / T, reads or writes x.4)
E2 = { T,+fail[xJ j 7, reads x,~j
ES = { T,-+create[x.d] or fail[x.k]+ T, 1 T, writes some copy of x, but

not xi\}

The edges in El signify that if T, read or wrote xA, then XA was created
before T, executed (create[xA]-+ T,). E2 signifies that if T, read xA, then T,
executed before xA failed (T,-+fail[xA]). Notice that this need not hold if T;
wrote (but did not read) .x,~. E3 signifies that if T, wrote some copies of x but
did not write x.4, then it must have written those copies at a time when xA did
not exist, that is, either before it was created or after it failed. Thus, for each
such situation, E3 must contain either T,-+create[x,J or fail[xA]+ T,. As in
RDSGs, H does not uniquely,determine an FRSG.

For example, the following is an FRSG for H,.

creatdx.41C AT,
create[xB] --t Y-,
create[yc] A
create[yb]

/ ---T2~~i$J

Since T, wrote yc, but not yb, we must include either T,-+create[yD] or
fail[ybJ -+ T,; we chose the latter. Similarly, we added fail[xA] + TL, because T1
wrote xg but not x.4. Notice that this FRSG has a cycle: T,-+ fail[x.,J-+T2-+
fail[yb] -+ T,. I n ac , every FRSG for H, has a cycle. f t

8.6 AN AVAILABLE COPIES ALGORITHM 281

Given a history H, if there is an acyclic FRSG(H), then we can produce a
serial history that is equivalent to H and which includes the creation and fail-
ure of copies as atomic events. That is, all transactions observe the creation
and failure of each copy in the same order. This condition is enough to show
that H is 1SR.

Theorem 8.5: Let H be an RD history. If H has an acyclic FRSG, then H
is 1SR.

Proof: As in Theorem 8.4, let H, = T,, Ti, . . . Ti,, be a serial 1C history
where Tj,, Ti2, . . . , Tin is a topological sort of FRSG(H). Since FRSG(H)
contains SG(H), by Theorem 8.3 we can prove that H is 1SR just by prov-
ing that H and H, have the same reads-from relationships.

First assume Tj reads-XA-from Ti in H. Hence T;-+ Tj is in the FRSG and
Tj precedes Tj in H,. Let Tk be any other transaction that writes x. If Tk
writes xA, then since Tj reads-XA-from Ti, either Tk--+ Ti or T,-t Tk must be
in the FRSG. If Tk does not write xA, by definition of FRSG, either
Tk+create[xA] or fail[xA] + Tk. In the former case, since create[xA] + Ti, Tk
precedes T; in the FRSG. In the latter case, since Tj+fd[XA], Tj precedes
Tk in the FRSG. Hence, if Tk writes x, either Tk precedes T, or follows Tj
in the FRSG and in H,, too. Thus, Tj reads-x-from Ti in H,.

Now, suppose Tj reads-x-from Ti in H,. By the definition of RD history,
Tj reads-x-from some transaction in H, say Th. By the previous paragraph,
Tj reads-x-from Th in H,. Since reads-from relationships are unique,
Th = Ti. q

6.6 AN AVAILABLE COPES ALGORITHM

Available copies algorithms handle replicated data by using enhanced forms of
the write-all-available approach. That is, every Read(x) is translated into a
Read of any copy of x and every Write(x) is translated into Writes of all avail-
able copies of x. Simply doing this is not enough to guarantee one-copy
serializability, as history H, showed. Available copy algorithms enforce special
protocols that, in conjunction with this “read-any, write-all-available” disci-
pline, ensure correctness.

These algorithms handle site failures but not communications failures.
That is, they assume that every site is either operational or down, and that all
operational sites can communicate with each other. Therefore, each opera-
tional site can independently determine which sites are down, simply by
attempting to communicate with them. If a site doesn’t respond to a message
within the timeout period, then it must be down.

For available copies algorithms, we’ll assume that the scheduler uses strict
two phase locking. Thus, after transaction Ti has read or written a copy of xA,
no other transaction can access xA in a conflicting mode until after Ti has
committed or aborted.

282 CHAPTER 8 / REPLICATED DATA

In this section we’ll describe a simple available copies algorithm. We
assume that there is a fixed set of copies for each data item, known to every
site. This set does not change dynamically. Moreover, to keep the description
simple, we’ll initially assume that each copy is created and fails at most once.
Later we’ll discuss how to accommodate repeated failures and recoveries of
copies - no changes to the algorithm are needed for this extension! After a
copy has been initialized and before it has failed, it is said to be available;
otherwise, it is unavailable.

Processing Reads and Writes

When a transaction T, issues a Read(x), the TM at T,‘s home site’ (henceforth
simply “T,‘s TM”) will select some copy xA of x and submit Read(x,A) on behalf
of T, to site A. Typically the selected copy will be the one “closest” to Tl’s home
site (ideally the home site itself), to minimize the communication cost incurred
by the Read. The correctness of the algorithm, however, does not depend on
which copy is read - any one will do.

Site A regards x.4 as initialized if it has already processed a Write on x.4,
even if the transaction that issued the Write has not yet committed. If site A is
operational and xA is initialized, Read(x4) will be processed by the scheduler
and DM at A. If xA is initialized but the transaction T1 that initialized x4 has
not yet committed, then by Strict 2PL the scheduler must delay Read(x.4) unti1
Ti commits or aborts. If Read(x.4) is rejected, a negative acknowledgment will
be returned and T, wil1 be aborted.” If Redd(x_\) is accepted, the value read will
be returned to Tl’s TM and Read(x) will be done. However, if site A is down or
if x,+ hasn’t been initialized, then Ti’s TM will eventually time out while wait-
ing for a response. In that event the TM could abort T, or, better, it could
submit Read(xs) to another site B that contains a copy of x. As long as one of
the copies of x can be read, Read(x) will be successful. If no copy of x can be
read, Tz must abort.

When T, issues a Write(x) operation, its TM sends Write(x4) operations to
every site A where a copy of x is supposed to be stored. If A is down, Write(x,A)
will not be received and, of course, its processing will never be acknowledged.
7)‘s TM will eventually time out waiting for a response from A. If A is opera-
tional, the handling of Write(x.4) depends on whether or not x,~ was previously
initialized.

If x.4 has been initialized, then Write(x.4) must be processed by A’s sched-
uler and DM, and eventually a response is returned to T,‘s TM indicating
whether Write(x.4) was rejected or duly processed.

‘Recall from Section 7.1 that T,‘s “home site” is the site where it originated and whose Thl
supervises its execution.
‘It is pointless to submit a Read(x,) for a different copy xg of X, as the conflict that caused the
rejection of Read(x4) will also cause the rejection of Read(xB).

8.6 AN AVAILABLE COPIES ALGORITHM 283

On the other hand, if x,J has not been initialized, the DBS at ,A has two
options. It could use Write(xA) to initialize xA at this time (in which case the
operation is processed as just described), or it may ignore Write(xA), preferring
to not initialize xA yet. Ignoring the operation means that A doesn’t send an
acknowledgment to Ti’s TM, that is, A acts as if it were down as far as xA is
concerned.9

After sending Writes to all of x’s copies, T,‘s TM waits for responses. It
may receive rejections from some sites, positive responses from others (mean-
ing the Write has been accepted and performed), and no responses from others
(those that have failed or that have not initialized their copies of x). Writes for
which no responses are received are called missing writes. If any rejection is
received or if all Writes to x’s copies are missing, then Write(x) is rejected and
T; must abort. Otherwise, Write(x) is successful.

Validation

So far we’ve described, in some detail, the “read-one, write-all-available” disci-
pline. We know from history H, that this isn’t enough to guarantee one-copy
serializability. The available copies algorithm uses a validation protocol to
ensure correctness. Transaction T,‘s validation protocol starts after Ti’s Reads
and Writes on copies have been acknowledged or timed out. At that time Ti
knows all its missing writes as well as all the copies it has actually accessed
(read or written). The validation protocol consists of two steps:

I. missing writes validation, during which T; makes sure that all copies it
tried to, but couldn’t, write are still unavailable, and

2. access validation, during which Ti makes sure that all copies it read or
wrote are still available.

It is important that missing writes validation be performed before access vali-
dation (see Exercise 8.11).

To validate missing writes, Tj sends a message UNAVAILABLE(X~) to site A,
for each copy xA that Ti found unavailable. A will acknowledge such a message
only if it has, in the meanwhile, initialized xA (i.e., received and processed a
Write(xA), even if the Write has not yet been committed).

After sending the UNAVAILABLE messages, T; waits for responses. At the
end of the timeout period, if it has not received any acknowledgments to these
messages, it proceeds with access validation. Otherwise, some copy it hasn’t
updated has been initialized and Ti is aborted. At this point it is important to
recall the assumption that there are no communication failures. It implies that
if Ti has not received any acknowledgment to the UNAVAILABLE messages by

‘Alternatively, A might send a message expressly’indicating that xA has not been initialized yet.
This will prevent Tis TM from waiting for the full timeout period before concluding that xii is
not available.

284 CHAPTER 8 I REPLICATED DATA

the end of the timeout period, then it must be rhat no such acknowledgment
was senr and, therefore, that all copies T, couldn’t write are still unavailable.“’

If the missing writes validation step succeeds, then T, proceeds with access
validation. To that end, T, sends a message AVAILABLE to site A, for each
copy XA that T, read or wrote. A acknowledges this message if x.4 is still avail-
able at the time A receives the message. If all AVAILABLE messages are acknowl-
edged, then access validation succeeds and T, is allowed to commit. Otherwise
T, must abort.

The validation protocol requires a significant amount of communication
and is therefore expensive. We can reduce the number of messages sent by
combining all UNAVAILABLE messages from T, to some particular site into one
message. Similarly for AVAILABLE messages and acknowledgments. Even so,
we will have two steps (missing writes validation and access validation), each
requiring two rounds of message exchanges (one for the UNAVAILABLE/

AVAILABLE messages and one for acknowledgments). Fortunately, things aren’t
as bad as this may suggest.

First, if a transaction has no missing writes, there is no need for missing
writes validation! Thus, after all copies have been initialized and in the absence
of (site) failures, the first step of the validation protocol is avoided.

Second, access validation can be combined with atomic commitment.
Recall that when T, terminates, its TM sends VOTE-REQ messages to all sites
where T, accessed copies. The VOTE-REQ message sent to a site can be used as
an implicit AVAILABLE message. If a site responds YES, surely all copies accessed
by T, at that site are still available; thus a YES response can be used as an
implicit acknowledgment for AVAILABLE. Therefore, access validation can ride
for free on the coattails of atomic commitment.”

Some Examples

To develop some insight on how the validation protocol ensures one-copy
serializability, we consider some examples of non-1SR executions and show
how they are prevented from happening. In the next subsection we prove the
correctness of the algorithm.

Let’s start with history H,. We reproduce it next, embellished with certain
new symbols to represent events of interest. For transaction T,, t, represents the

“‘It is possible that a copy was initialized after T, attempted to write it and failed before T,
started its missing writes validation step. The proof of the algorithm’s correctness, which will
be presented shortly, should quell any concern that such behavior could compromise one-copy
serializability.
“Under certain circumstances the atomic commitment protocol needn’t involve sites where a
transaction only read but did not write (cf. Section 7.3). However, access validation requires
that messages be sent to such sites, to verify that copies read are still available. Thus, some
additional cost to atomic commitment may be incurred by access validation.

8.6 AN AVAILABLE COPIES ALGORITHM 285

moment when T; begins its access validation step. By the specification of the
algorithm, ti must follow all Read and Write operations of T, as well as the
missing writes validation step (if present), and must precede ci. As usual, the
symbol x~n stands for the failure of x,4.

H,’ =

Consider the precedences involving the failure and access validation events.
Since T, read XA, the failure of XA must have occurred after T, started its access
validation. Otherwise T, would have found XA to be unavailable and would
therefore abort. Therefore, t, < XAn and, similarly, tz < yen.

Since T, wrote yo but not yc, it must have carried out missing writes vali-
dation and found that yo is .still unavailable. Since at that time yc had already
been initialized, it must be that yc failed before the completion of T,‘s missing
writes ‘validation and thus before the beginning of access validation. Hence,
y& < t,. The precedence XAn < tz is justified on similar grounds.

Given these precedences we have a cycle in Hi: t, < xAn < tz < yen < tl.
This is impossible since H:, being a history, is supposed to be a partial order.
This means that Hi could not have happened.

In terms of the algorithm, the reason why Hi couldn’t have happened is
this: If T,‘s access validation succeeded we’d have t, < xAn < tz, so T;s access
validation started after TI’s. Since yen < t,, we get yen < t,. But then T>‘s
access validation would not have succeeded, so T2 would have aborted. Simi-
larly, if T;s validation succeeded, T1’s would fail. (Of course, both transac-
tions’ validations could have failed.)

Note the pivotal role of validation in the justification of why Hi couldn’t
occur. Without missing writes and access validation, we wouldn’t be able to
assert the existence of the precedences that yield the cycle in H.,‘.

Our next example illustrates the significance of the assumption that the
scheduler uses Strict 2PL. History H, is an execution of T,, T2 (the same trans-
actions as in H,) where there is only one copy of y, yc. For the moment ignore
the broken arrow from cl to w,[yc].

wo[xAl \ /’ ~~[~A~-@CI+t~ L >

H, = wo [XBI + to- co

WOLYCI /
/ “‘-------yJ-$ _____- ;:;,

L ~z[Yc1-‘%[%31

Like H,, H, is not 1SR; T, doesn’t read the value of x written by T2, and T,
doesn’t read the value of y written by T,, one of which would have to hold in
any serial one-copy execution over T,, T2. Unfortunately, the validation steps
don’t prevent either T, or T, from committing, as you can easily verify. What
stops H, from happening is the scheduler’s use of Strict 2PL. Since T, read yc

286 CHAPTER 8 / REPLICATED DATA

before T, wrote into it, T? must have locked yc before J-, did. But then T, won’t
lock yc until after T2 has committed; i.e., we have c1 < w,[yc] (a stronger pre-
cedence than just r?[yc] < w,[yc]). Now we get a cycle in H,, meaning that Ei,
couldn’t have occurred. Note that the precedence r2[yc] < w,[yc] isn’t enough
to give rise to a cycle. It’s important that TL keeps its locks until it commits.

*Proof of Correctness

We’ll state seven properties that are satisfied by histories representing execu-
tions of the available copies algorithm. We’ll justify why each property is satis-
fied and then show that any history satisfying them is lSR, thereby proving
that the available copies algorithm is correct.

In addition to the symbols we used in the previous examples, we’ll use the
symbol t: to denote the point at which T, begins its missing writes validation
step. Hence all Read and Write operations of T, must precede t: and t: < t,.
We’ll also use the symbol X,~U to denote the creation (initialization) of copy x.~.
x.4 is created when the first transaction that writes it, say r,,, begins its access
validation. Thus X,~U is a “synonym” for t,,.

The properties that must be satisfied by any history H produced by the
available copies algorithm are as follows

AC,: For every T,, t: < t, < c,. And for every Read or Write pI of
T,, Pi < t:.

ilc,: SG(H) is acyclic.

.4c,: If r, -+ 7J is in SG(H) then t, < t;,

AC, defines the execution and validation phases of a transaction. AC? is
satisfied because the scheduler that controls access to copies produces
serializable executions. AC, is satisfied because the scheduler uses Strict 2PL. If
T; -+ T, is an edge in SG(H), then there exist conflicting operations ~~[.u.~] <
q,[xJ in H. By Strict 2PL, c, < qj[xJ. Consequently, tj < t; (because, by AC,, t,
< c, and qJxA] < t17.‘2

AC,: For any r,[x‘,J in H, X,~C < YJx,~].

ilc,: For any w,[x.A] in H, either XAIJ = t, or X~L! < u~Jx.J.

AC, and AC5 say that a copy must be initialized before it may be read or
written. This is obviously satisfied by the available copies algorithm (cf. the
subsection on Processing Reads and Writes).

AC,: If T,[XA] or w,[x,~] is in H then t, < x;,n.

“At the beginning of this section we said that available copies algorithms require a Strict 2PL
scheduler. That’s not quite true. The correct statement is that these algorithms require a sched-
uler that will guarantee AC, through AC,.

8.6 AN AVAILABLE COPIES ALGORITHM 287

AC, says that T;s access validation begins before the failure of any copy
read or written by T,. This is satisfied because otherwise one of T/s AVAILABLE

messages would not be acknowledged and so Ti would be aborted.

AC,: If T; writes into some copy of x but not XA then either XAn < t, or,
for any wl[xA] in H, t: < wj[xA].

To understand AC,, consider the missing writes validation step, in which
Ti sent UNAVAILABLE to site A. If A had responded to the message, then T,
would have aborted. So assume not. Thus, either XA failed before A received
the message (in which case XAn < t;) or xj, had not yet been initialized (in
which case ti < Wj[XA] for all Tj that write XA.

AC, is where we use the fact that missing writes validation completes
before access validation begins. Without this handshake, the two validation

1 steps would execute concurrently, so ti and t: would not be distinguishable
events. If XA failed before A received UNAVAILABLE(XA), we could conclude that
XAfl < ci, but not that XAn < tj = ti, which is needed in the correctness proof.

We begin the proof with a preliminary lemma that strengthens AC,.

Lemma 8.6: Let H be a history produced by the available copies algo-
rithm. In H, if Ti writes some copy of x but not XA, then either x~n < t, or
tj < XAU.

Proof: Suppose T; writes into XB but not XA. By AC, either XAn < ti or ti

< wO[XA], where TO is the transaction that initialized XA. In the former
case, H obviously satisfies the lemma. Therefore let us assume the latter
and consider two cases, depending on whether or not TO wrote into xg.

CASE I: Suppose w,,[xB] is in H. We claim that ZU;[XB] < w,[xB]. For, other-
wise, we’d have wO[xB] < wi[xB] and, by AC,, to < t:. By assumption,
t/ < w,,[xA]. By AC,, W,[XA] < to, SO by transitivity to < to, a contradiction.
Therefore, Wi[xB] < w,[xB]. By AC,, ti < t:. Since tb < t,, by AC,, and t,, =
XAU by assumption, we have t; < XAU, as desired. 0

CASE 2: Suppose T,, doesn’t write xg. By AC, either (a) xBn < to or (b)
tb < wi[xB]. If (a), we have ti < XBn (by AC,), so ti < to = xAU, and we
get ti < XAu, as desired. If(b), we have t: < w,[xA] by assumption, w,[x~]
< tb by AC,, ti < WJXB] (this is (b)), and WJXB] < t: by AC,. All these
imply t! < ti, a contradiction. 0

Any history that satisfies AC, - AC, is an RD history. Conditions (l), (2),
and (4) in the definition of RD history are immediate. Condition (3), which
requires each Yj[xA] to be preceded by a wJxJ, follows AC,. Condition (5) says
that if WJX] <i YJX] and Yi[XA] E H, then wi[xA] E H. TO see this, suppose ZU~[XA]
g H. Then by Lemma 8.6, either (a) XAn < ti or (b) ti < XAu. AC, contradicts

288 CHAPTER 8 I REPLICATED DATA

(a). By AC, X~U < r,[x,J, and by AC, ri[x.J < tt; thus XAU < tt, which contra-
dicts (b). Hence, wJx.J E H as desired.

Theorem 8.7: The available copies algorithm produces only 1SR his-
tories.

Prooj: Let H be a history that satisfies AC, - AC-. We claim H is 1SR.
Since H is an RD history, by Theorem 8.5 it’s enough to show that H has
an acyclic FRSG. From H construct a graph G with nodes N and edges E,
where:

N = {T, 1 T; appears in H) U

{create[x,J, fail[x,A] j xA is a copy of some data item)
E = (T, -+ Tl / T, + T,, is an edge of SC(H)} U Fl U F2 U F3 U F4
Fl = {create[x..J + T, 1 .xAu < t, or xAU = ti}
F2 = (T, --t fail[x,A] j t, < x~n}
F3 = {fail[x,h] -+ T, 1 x~n < ti}
F4 = { T, + create[x,t] j t, < xAu >

To show that G is an FRSG, we must show that it contains the edges
El-E3 in the definition of FRSG.

El = {create[xA] -+ T,) T, reads or writes xA}
E2 = {T, + fail[xA] 1 T, reads xA}
E3 = (T, -+ create[xJ or fail[x,J + T, / T, writes some copy of x

but not xA}

By AC,, if T, reads x.4, then t, < xAn, so E2 E F2. By Lemma 8.6, if T,
writes x but not xA, then either x~n < t, or t, < x,hLI, so some E3 is
contained in F3 U F4.

To show G contains El, suppose T, reads x.4. By AC,, XAU < r;[x,.J, and
by AC,, I;[xJ < t,. Hence, XAU < t,. If T, writes xA, then by AC,, either
X,AU = t, or x,~Ll < w,[xJ. In the latter case, by AC, w,[x,k] < t,, so xAu
< t,. Thus El E Fl, and G contains an FRSG for H.

We now show that G is acyclic. Define a mappingfby,f(create[xJ) =
XAU, f(fail[x..J) = x~n, and f(TJ = t,. If nt -+ flk is in G, then either ,f(n,)
< fink) in H or,f(n,) = f(nk) = xAu for some xA (i.e., ti, = create[xA] and
nk = t, = create[xA]; see Fl). Thus, for any cycle P = n,, . . . , IZ,,, n, in G
(m > l), there is a corresponding sequence P’ = An,) 5 , . . 5 f(~,~) 5
f(n,) in H. Clearly, P must contain at least one edge ni -+ #k not in Fl. For
each such edge, f(n,) < f(??k), by definition of F2 - F4. Therefore, f(n,) <
f(n,) in P, contradicting that H is a partial order. Thus, G is acyclic.

Since G contains an FRSG for H, that FRSG is acyclic too. Thus, by
Theorem 8.5, His 1SR. I7

8.7 DIRECTORY-ORIENTED AVAILABLE COPIES 289

Repeated Failures and Recoveries

So far we have assumed that each copy is initialized and fails at most once.
This assumption results in a notational simplification - that for each copy XA,
we have at most one XAu and one XAn symbol. The usual justification for this
assumption is that one can view a single copy that’s initialized and fails repeat-
edly as a sequence of copies, each of which is created and fails once.

This view might appear to contradict another basic assumption of the
available copies algorithm, namely, that the set of copies is fixed. Fortunately,
as long as all copies of a data item don’t fail, the “contradiction” is a red
herring (see Exercise 8.13). Though the set of copies is fixed, it does not have
to be finite!

In particular, for each site A where there is a copy of x we can imagine we
have an infinite supply of such copies, xft, ~2, xi, At any time at most one
of these copies is available. If copy xi is the one presently available, then

1 copres x~, . . . , x;;’ have failed and copies XL+‘, XA+~, . . . are uninitialized.
When (and if) h-i fails, x2 1 will be the next copy of x at site A to be initialized.
Since there is a finite number of sites and at most one copy of x is available at
any one of them, Write(x) results in the writing of a finite number of copies -
a relief! Read(x) involves just one copy, so there is no problem here. Access
validation involves the copies read or written - a finite number, as we just
argued.

Missing writes validation, however, must ensure that an infinite number of
copies is unavailable. Since these copies are stored at a finite number of sites,
we can do this with a finite number of messages. The only problem is that now
any transaction that writes some data item x will have missing writes (in fact
an infinite number of them!), even if it writes copies at all sites where x is
stored. Does this mean that every transaction must perform missing writes
validation? If this were so, it would negate our earlier assertion that in the
absence of failures the available copies algorithm incurs no validation cost at
all. Fortunately, it isn’t so. The reason is that access validation can now be used
implicitly for missing writes validation. That is, if 7” writes copy xi and during
access validation it finds XA is still available, it implicitly knows that copies

1 XA, . . . , XL’, Xi+‘, X,4+‘, . . . are still unavailable. Thus there is no need for sepa-
rate missing writes validation in this case. Of course, missing writes validation
is required, as before, if Tj couldn’t write any copy of x at site A.

8.7 DIRECTDRWDRIENTED AVAILABLE COPIES

The static assignment of copies to sites in the available copies algorithm of the
previous section is a serious disadvantage. It requires, among other things, that
transactions attempt to update copies at down sites. If site failures persist for

290 CHAPTER 0 I REPLICATED DATA

long periods, this is clearly inefficient. In addition, it is not possible to dynami-
cally create or destroy copies at new sites.

In this section we study the directory-oriented available copies algorithm,
which rectifies these problems. The algorithm uses directories to define the set
of sites that currently stores the copies of an item. More precisely, for each data
item x there is a directory d(x) listing the set of x’s copies. Like a data item, a
directory may be replicated, that is, it may be implemented as a set of directory
copies, stored at different sites.

The directory for x at site U, denoted dL,(x), contains a list of the copies of
x and a list of the directory copies for x that site U believes are available. For
notational clarity, we will typically use {U, V} for names of sites that store
directories, and {A, B, C, D} for those that store data item copies. These sets
of sires need not be disjoint. Usually, a site will store both directory and data
item copies. We assume that before we begin executing transactions, all copies
of directories exist, but that no copies of data items exist. That is, we assume
that new directory copies are never created. A method for creating directory
copies appears in a Iater subsection.

Directories are treated like ordinary data items by the DBS. In particular,
concurrent access to directory copies is controlled by the same scheduler that
controls concurrent access to data item copies.‘? The only difference is that
ordinary transactions can only read directories. Directories are updated by two
special transactions, Include (or IN) for creating new data item copies and
Exclude (or EX) for destroying data item copies.

Basic Algorithm

When a site A containing x recovers from failure, or when A wants to create a
new copy of x, the DBS runs a transaction IN(xA). IN(x.4) brings the value of
X~ up-to-date by:

1. finding a directory copy d”(x), for example, by using a local copy that it
knows exists, by reading a master directory that lists copies of d(x), or
by polling other sites;

2. reading d,;(x) to find an available copy of x, say x5;

3. reading x5; and

4. copying x~‘s value into x.4.

Thus, it performs the function of a copier. If d,Jx) says that there are no copies
of x and never were any, then A should provide an initial value for x,~, the first

13.4s for the simple available copies algorithm, we are assuming a Strict 2PL scheduler or, to be
somewhat more general, that transactions that access a data item copy in conflicting modes
start their validation protocols in the order in which the)- accessed that copy.

8.7 DIRECTORY-ORIENTED AVAILABLE COPIES 291

copy of x.14 In any case, it declares xA to be available by adding xA to each
available copy of d(x).

When a site fails, some DBS that tries to access data at that site observes
the failure. Based on directories it has read, the DBS believes that certain
copies are stored at the failed site. Therefore, for each such copy, it runs an EX
transaction for each copy stored there. EX(~A) declares XA to be unavailable by
removing xA from every available copy of d(x). That is, it

2. reads some directory copy du(x),

2. removes xA from the list of available copies it read from dU(x), and

3. writes that updated list into each directory copy listed in dU(x).

Notice that if a DBS incorrectly believes a copy xAwas at the failed site when in
fact it wasn’t, it does no harm by executing Ex(x~).

Let NX be any IN or EX transaction. NX(XA) begins by reading a direc-
tory, say dU(x). It expects to be able to update all of d(x)‘s copies listed in d,(x).
However, some of these directory copies may have recently failed and are
therefore unavailable. Not only is NX unable to update such directory copies,
but it now knows that the list of available directories in the (remaining) avail-
able copies of d(x) directories is wrong. NX corrects such errors as follows.

After reading du(x), NX attempts to access the directory copies listed in
&U(x). Let AD be the directory copies listed in d,(x) that it determines are
available (including dU(x)). NX then updates each directory copy in AD by
modifying its list of available data item copies and updating its list of available
directory copies to be AD. This distribution of directory updates can be over-
lapped with the first phase of its ACl?, by sending the directory update and
VOTE-REQ in the same message.

To process Read(x) on behalf of a user transaction, the DBS reads a copy
of d(x), say dU(x). If it tries to read a directory copy that is unavailable, then it
simply ignores the attempt and keeps trying other copies until it finds one that
is available. It then selects a copy xA of x that du(x) says is available and issues
Read(xA). Since a failure can happen at any time, it is possible that d,(x) says
that xA is available, but the DBS discovers that xA is unavailable when it tries to
read it. In this case, the DBS can take one of three actions: (1) it can select
another copy that d,(x) says is available and try to read that copy; (2) it can
read a different copy of d(x), d,(x), and try to read a copy that d”(x) says is
available; or (3) it can abort the transaction.

To process Write(x), the DBS reads a copy of d(x), dU(x), and issues
Write(xA) for every copy xA that d,(x) says is available. If the DBS discovers

141f dU(x) says that there are no copies of x but that there were some in the past, then x is
recovering from a total failure. In this case, A can initialize x using its last committed value for
x only if xA was among the last copies of x to have failed. It can determine this fact using the
technique of Section 7.5. For pedagogical clarity, we will not incorporate this complexity in the
remainder of this section. See Exercise 8.13).

292 CHAPTER 8 I REPLICATED DATA

that any copy that du(x) says is available is actually unavailable, it must abort
the transaction T; that issued the Write and run an EX(XA) transaction. When
that commits, it can try running T, again.li

After performing all its operations, transaction Tj must carry out its vali-
dation protocol. Since there are never missing writes, missing writes validation
is unnecessary The reason there are no missing writes is that the set of avail-
able copies for x is listed in d(x) and, as we just saw, unless all these copies are
actually written, T, will abort. Thus only access validation is needed in the
directory-oriented available copies algorithm (another advantage over the
simpler algorithm of the preceding section). As we have seen, access validation
can be done together with atomic commitment.

In fact, in the directory-oriented algorithm, access validation can be done
merely by checking that the directory copies that T, read still contain the data
item copies T, accessed (see Exercise 8.15). Thus, if directory copies are stored
at all sites, access validation requires no communication at all.16

This is especially important if the DBS uses deferred Writes. The DBS
cannot do Read validation until the transaction terminates, which doesn’t
occur until all Writes are distributed. If the DBS at site A can validate T, only
using directory copies stored at A, then it can do access validation locally, This
avoids another round of communication after the distribution of T:s Writes.

Correctness Argument

We can argue that this algorithm produces 1SR executions by using Theorem
8.5. The theorem says that if all transactions observe creations and failures in
the same order, then the execution is 1SR. We can see that every execution of
the algorithm satisfies this property by the following intuitive line of reason-
ing. We will show in a moment that user transactions behave as if the creation
or failure of a copy occurred at the moment its IN or EX executed. All transac-
tions, including INS and EXes, effectively execute in the serialization order.
Thus, all user transactions see the same order of INS and EXes, and hence see
the same order of creations and failures. This is the condition of Theorem 8.5,
so the execution is 1SR.

A transaction T, demonstrates its belief that a copy XA is available by oper-
ating on XA. If it operated on XA then it must have read some directory copy
d”(x) that said that XA was available. INK must have written xq into d,,(x)

li.A fancier (and better) way to do this is to have T, incorporate EX(xJs actions before
proceeding. More precisely, T, will execute EX(xJ as a subtransaction and will commit only if
EX(X,~) commits. Since this gets us into nested transactions, a topic not discussed in this book,
we’ll stick with the brute force method of aborting T,, running EX(XA), and then restarting T,
from scratch.
‘&Of course the atomic commitment protocol must still be carried out. However, now it need
not involvelites at which rhe transaction only read copies.

8.7 DIRECTORY-ORIENTED AVAILABLE COPIES 293

before Ti read d,(x). Thus, Ti executed after IN(xA). Furthermore, after T;
terminated it checked that xA was still available. Since EX(xA) doesn’t execute
until after xA fails, T, executed before EX(XA). So T; executed after IN and
before EX(XA). This is consistent with the view that XA was created when
IN(xA) executed and failed when EX(XA) executed.

A transaction Ti demonstrates its belief that a copy x24 is not available by
not operating on that copy when it should, namely when it writes into data
item x. When T; writes x, it decides which copies to write by reading one of x’s
directories, say d,(x), and writing into all of the copies listed there. If XAwasn’t
in dU(x) at the time the transaction read it, then Ti does not write xA, thereby
observing the failure of xA. One way this could occur is if Ti read du(x) before
IN(xA) wrote xA into dU(x). The other possibility is that EX(XA) wrote dU(x) to
delete XA before Ti read dU(x). In the former case, T; executed before IN(xA)
and in the latter case it executed after Ed. This too is consistent with the
view that the copy was created when IN executed and failed when EX
executed. Thus, transactions behave as if each IN (or EX) executes at the
moment the copy is created (or fails), so, by Theorem 8.5, the execution is
1 SR. This argument can be formalized along the lines of the proof given in the
pre+ious section for the simpler AC algorithm (see Exercise 8.16).

Creating Directories

To create a directory copy dU(x), we must store the current list of copies of x
and directory copies for x in d”(x). We must also add d,(x) to the list of direc-
tories in every other directory for x. Thus, a Directory Include (or DIN3 trans-
action for d,(x) begins by reading an existing directory copy for x, d”(x). Like
an IN or EX, it checks to see which directory copies, AD, in d”(x) are still
available. Then it updates the directory copies. It sets the list of data item
copies in dU(x) to be that of d”(x). And it writes AD into the list of directory
copies in each directory copy in AD (including du(x)).

How does a DIN know where to look for an existing copy of d(x)? If there
is a copy of d(x) at the site that is executing the DIN, then it can easily find the
copy, If not, then it could poll other sites, to find out which of them have a
copy.

If it can’t find a copy, then it should try to initialize the first copy of d(x).
Unfortunately, it can’t assume that it is the only DIN that is trying to initialize
d(x). The reason is that some other DIN may have been polling sites at the
same time and reached the same conclusion that d(x) was uninitialized. If both
DINS try to create the initial copy of d(x), neither copy will include a reference
to the other. This could ultimately lead to an inconsistent state of x. For exam-
ple, each subsequent IN would include copies of x that were only listed in one
directory copy or the other. Then a user transaction would update only some
copies of x, namely, those listed in the directory copy it read. It is therefore
essential that only one DIN initialize a first copy of d(x).

294 CHAPTER 8 I REPLICATED DATA

Another bad outcome will occur if d(x) doesn’t currently exist because it
has experienced a total failure. That is, there used to be copies of d(x), but they
have all failed. It would be incorrect to initialize a new copy of d(x), because
there may still be copies of x around that are listed in the last copies of d(x) to
have failed.

One way to ensure that a DIN can correctly initialize the first copy of a
directory is to have a master directory that contains a list of all directories for
which an initial directory has been created and initialized. A DIN that initial-
izes a directory d(x) must update the master directory. If two DINS try to
initialize d(x) concurrently, they will have conflicting accesses to the master
directory, so one DIN will have to wait until the other terminates. The second
DIN will therefore see that it is not really the initial DIN for d(x), and will act
accordingly. Moreover, a total failure of d(x) will be detectable, because the
master directory will say that d(x) exists, but no available site will have a copy,

Clearly, if the master directory is unavailable, then no directories can be
initialized. The master directory should therefore be replicated, and all copies
updated by each initial DIN. To avoid unbounded recursion, some additional
restrictions are needed, such as fixing the set of master directory copies for all
time. We leave the algorithms for including and excluding copies of the master
directory as an exercise (see Exercise 8.18).

8.8 COMMUNICATION FAILURES

The main problem with available copies algorithms is that they do not tolerate
communication failures. That is, if two or more operational sites cannot
communicate, they may produce executions that are not 1SR.

For example, suppose there are copies { xrl, xg, xc) of x and { yB, yc, yb) of
y, but a communication failure has partitioned the network into two indepen-
dent components, P, = {A,, B} and PL = {C, D>. That is, component P, has
copies { XA, xB, ys> and P, has copies {xc, yc, yb) . Suppose transactions T, and
T2 execute in components P, and P2 (respectively) using an available copies
algorithm, producing history H-.

In P,, T, reads the one and only available copy of y, namely yB, and writes
both available copies of x, x.4 and xB. Similarly for TL in P2. Since each transac-
tion can validate that the copies it accessed were still available at the time it

8.8 COMMUNICATION FAILURES 295

terminated, each can commit. Yet the execution is clearly not lSR, since
neither transaction reads the output of the other.

The general problem is that transactions in different components may
have conflicting accesses on different copies of the same data item, as in Hi just
shown. The serialization order of such transactions is essential to the one-copy
serializability of their execution (cf. Section 8.4 and Theorem 8.4). But since
DBSs executing in different components cannot communicate, they cannot
synchronize transactions that execute in different components, and thus
cannot ensure one-copy serializability. Therefore, nearly all techniques for
handling communications failures focus on preventing transactions that access
the same data item from executing in different components.”

Site Quorums

Surely one way to prevent conflicting transactions from executing in different
components is to insist that only one component be allowed to process any
transactions at all. Since the components can’t communicate, each component
must be able to independently decide whether it is the component that can
process transactions. One way to accomplish this is to use site quorums.

In site quorums, we assign a non-negative weight to each site. Every site
knows the weight of all sites in the network. A quorum is any set of sites with
more than half the total weight of all sites (cf. Section 7.5). Only the one
component that has a quorum of sites can process transactions.

Unfortunately, it is possible that ~0 component has a quorum. This can
occur if the network splits into more than two components, or if sites fail in the
component that would have contained a quorum. If this happens, then no
component can process transactions. The DBS fails totally.

One should assign weights to sites based on their relative importance to
the enterprise that is using the DBS. A site with higher weight is more likely to
be in the quorum component.

We can improve on the basic site quorum rule by allowing certain transac-
tions to execute in components that don’t have a quorum of sites. Since a
nonreplicated data item can only be accessed in the component that has its one
and only copy, there cannot be two transactions that access a nonreplicated
data item but execute in different components. Therefore, a transaction can
safely read and write nonreplicated data in any component. For the same
reason, a transaction can read and write any replicated data item x in a compo-
nent that has all of the replicated copies of X. Thus, the site quorum rule need
only apply to transactions that access a replicated data item x in a component
that is missing one or more copies of x.

“See Exercise 8.19 for an approach that allows certain conflicting transactions to execute in
different components.

296 CHAPTER 8 I REPLICATED DATA

The major problem with site quorums is that if transactions have inconsis-
tent views of the components, then they can produce incorrect results. For
example, given a database containing {x,L,, xs, xc}, suppose site A’s TM
executes T, believing that only A and B are accessible, while site C’s TM
executes T, believing that only B and C are accessible, thereby producing H,.

H, =
%bAl,

WdxBI

,/ Ti[XAl-‘W,[X.~l-,W,rXBl - CI

/”

u/o[xC] p “! 1 ?‘2[&-] + w,[xB] --) w [XC] 2 - c2

TMA and TMc both believed they had access to a majority of the sites. But
due to a communication anomaly, A and C were each able to communicate
with 3 without being able to communicate with each other. Alternatively, H,
might have occurred due to the following sequence of events.

1. A disconnects from B and C.

2. TMc executes T,.
3. B disconnects from C and connects to A.
4. TMA executes T,.

We’ll look at two solutions to this problem: the quorum consensus algo-
rithm, which requires each transaction to access a quorum of copies of data
items on which it operates (Section 8.9), and the virtual partition algorithm, in
which each site synchronizes its view of its component with other sites in its
component (Section 8.10). The quorum consensus algorithm has less overhead
to handle failures and recoveries than the virtual partition algorithm, but has
more overhead to process transactions during periods in which no failures or
recoveries take place. Thus, the former is more suitable for environments
where failures and recoveries are frequent, and the latter for those where they
are relatively rare.

Queries

Since queries (i.e., read-only transactions) do not modify the database, it
would seem to be safe to execute them in all components. After all, since each
component uses a correct concurrency control algorithm, each query will read
a database state produced by a serializable execution of the transactions in the
same component. Curiously, however, the execution across two partitions may
not be 1SR.

For example, consider the following history,

H, =

8.8 COMMUNICATION FAILURES 297

Sites A and B partition into different components after T, executes. In H,, we
allowed queries T, and T4 to read x and y in both partitions. H, produces a
consistent database state, in the sense that update transactions are 1SR. More-
over, each query reads a consistent database state. Yet there is no serial one-
copy history equivalent to H,, so H, is not 1SR.

Whether to allow queries to read all copies in all components is more of a
policy issue than a technical one. For most applications the level of data consis-
tency provided by this technique is probably satisfactory. Although anomalies
like H, are disturbing, the increased data availability to queries will often be
the overriding consideration.

Application-dependent Techniques

Site quorums, quorum consensus, and virtual partitions all have the disadvan-
tage of possibly restricting access to copies that are not down. While this
restriction is needed to attain one-copy serializability, it does have a cost in lost
opportunities. That is, the DBS user is unable to execute certain transactions,
and may thereby lose the opportunity to perform certain functions in the real
world, resulting in lost revenue, unhappy customers, higher inventory costs,
etc. One has to balance these opportunity costs against the value of database
integrity, If these costs are high enough, some loss of correctness may be tol-
erable.

It may therefore be advisable to allow transactions to operate on any avail-
able data, even at the risk of non-1SR execution during a communications fail-
ure. After the failure is repaired, a special recovery process is invoked to fix
database inconsistencies. To make this approach practical for even moderately
sized databases, the recovery process needs to be automated.

For example, the recovery process could analyze the logs from sites in
different components to find read-write conflicts between transactions in
different components. To produce a correct database state, the recovery
process could undo and reexecute those transactions as needed. This might
entail reexecuting a transaction that committed before the partition (e.g., T, or
T2 in H,), causing it to produce different results than its first execution, a viola-
tion of the definition of commitment. Alternatively, the recovery process might
only find database inconsistencies by performing validation checks on the data
items themselves. Once found, those inconsistencies could be repaired by
human intervention, perhaps with the help of a rule-based system.

These approaches may be essential for attaining any appropriately high
level of data availability, However, since they allow non-1SR executions to
occur, the solutions are necessarily application dependent, and therefore
require a highly trained application engineering staff. For users that lack such
expertise, general purpose solutions that ensure 1SR executions are usually
preferable.

298 CHAPTER 8 I REPLICATED DATA

8.9 THE QUORUM CONSENSUS ALGORITHM

In the quorum CO~SEMSUS (QC) algorithm, we assign a non-negative weight to
each copy xA of x. We then define a read threshold RTand write threshold WT
for x, such that both 2eWTand (RT + WT) are greater than the total weight
of all copies of x. A read (or ujrite) quorum of x is any set of copies of x with a
weight of at least RT (or WT). (Note that the quorums defined here are cop?~
quorums, as opposed to the site quorums of the previous section.) The key
observation is that each write quorum of x has at least one copy in common
with every read quorum and every write quorum of x.

In QC, the TM is responsible for translating Reads and Writes on data
items into Reads and Writes on copies. A TM translates each Write(x) into a
set of Writes on each copy of some write quorum of x. It translates each
Read(x) into a set of Reads on each copy of some read quorum of x, and it
returns to the transaction the most up-to-date copy that it read.

To help the TM figure out which copy is most up-to-date, we tag each
copy with a version number, which is initially 0. When the TM processes
Write(x), it determines the maximum version number of any copy it is about to
write, adds one to it, and tags all of the versions that it writes with that version
number, Clearly, this requires reading all of the copies in the write quorum
before writing any of them. This can be done by having Write(xA) return its
version number to the TM. The TM can send the new value and new version
number piggybacked on the first round of messages of the atomic commitment
protocol.

The version numbers measure how up-to-date each copy is. Each Read of
a copy returns its version number along with its data value. The TM always
selects a copy in the read quorum with the largest version number (there may
be more than one such copy but they will all have the same value).

The purpose of quorums is to ensure that Reads and Writes that access the
same data item also access at least one copy of that data item in common. This
avoids the problems we saw in histories H,, H-, and H,. Even if some copies
are down and are therefore unavailable to Reads and Writes, as long as there
are enough copies around to get a read quorum and write quorum, transac-
tions can still continue to execute. Every pair of conflicting operations will
always be synchronized by some scheduler, namely, one that controls access to
a copy in the intersection of their quorums.

QC works with any correct concurrency control algorithm. As long as the
algorithm produces serializable executions, QC will ensure that the effect is
just like an execution on a single copy database. To see why, consider any serial
execution equivalent to the actual interleaved execution. If a transaction ?;
reads a copy of data item x, it reads it from the last transaction before it, T,,
that wrote any copy of x. This is because T, wrote a write quorum of x, T, read
a read quorum of x, and every read and write quorum has a nonempty inter-
section. And since T, is the last transaction that wrote x before T, read it, T,

8.9 THE QUORUM CONSENSUS ALGORITHM 299

placed a bigger version number on all of the copies of x it wrote than the
version number written by any transaction that preceded it. This ensures that
Tj will read the value written by Ti, and not by some earlier transaction.

A nice feature of QC is that recoveries of copies require no special treat-
ment. A copy of x that was down and therefore missed some Writes will not
have the largest version number in any write quorum of which it is a member.
Thus, after it recovers, it will not be read until it has been written at least once.
That is, transactions will automatically ignore its value until it has been
brought up-to-date.

Unfortunately, QC has some not so nice features, too. Except in trivial
cases, a transaction must access multiple copies of each data item it wants to
read. Even if there is a copy of the data item in the DM at the site at which it is
executing, the transaction still has to look elsewhere for other copies so it can
build a read quorum. In many applications, transactions read more data items
than they write. Such applications may not perform well using QC.

One might counter this argument by recommending that each read
quorum of x contain only one copy of x. But then there can only be one write
quorum for x, one that contains all copies of x. This would lead us to the
write-all approach in Section 8.1, which we found was unsatisfactory.

A second problem with QC is that it needs a large number of copies to
tolerate a given number of site failures. For example, suppose quorums are all
majority sets. Then QC needs three copies to tolerate one failure, five copies to
tolerate two failures, and so forth. In particular, two copies are no help at all.
With two copies QC can’t even tolerate one failure.

A third problem with quorum consensus is that all copies of each data item
must be known in advance. A known copy of x can recover, but a new copy of
x cannot be created because it could alter the definition of x’s quorums. In
principle, one can change the weights of the sites (and thereby the definition of
quorums) while the DBS is running, but this requires special synchronization
(see Exercise 8.20).

We will see other approaches to replicated data concurrency control that
circumvent QC’s weaknesses. Before moving on, though, let’s define the histo-
ries that QC produces and prove that they are all 1SR.

*Correctness Proof for Quorum Consensus

A QC history is an RD history that models an execution of the QC algorithm.
Every QC history H has the following properties.

QC,: If T; writes x, then H contains wj[x~J, w;[xA,] for some write
quorum wq(x) = (xA~, x,4,) of x.

QC, is simply the rule for using write quorums.
Let last;(x) = { Tj 1 f or some xA E wq(x), W/.[XA] is the last Write on xA that

precedes wi[xA] in H}. Notice that lasti = { } if Ti is the first transaction in

300 CHAPTER 8 I REPLICATED DATA

H to write x. Define T,‘s version number for x to be VN,(x) = 1 +
max{VN,,(x) I T,, E last,(x)), where max{ } = 0. Intuitively, VN;(x) is the
version number that T, assigns to the copies of x that it writes.

We have to distinguish between the Reads that a transaction applies to the
database, and the real Read that is actually selected from among those Reads,
that is, the one with the largest version number. We will use YY,[x], for “real
Read,” to represent the Read that is selected.

QC,: If Tj reads x, then H contains Y,[xA,], r,[x~.] for some read
quorum rqjx) = {xA~, XA,) of x. For each xg in rq(x), let VN(xs) =
VN,(x) where W,[XB] is the last Write on xg that precedes f;JxB] in H. Then
H contains rq[x.h,] for some x& in rq(x) where VN(x.4,) = max{VN(xB) /
xg E rq(x)). Moreover, ~,[xA,] < rr,[x.kJ for each xA, in rq(x).

QCz says that each transaction that reads x reads a read quorum of x and
selects from that read quorum a copy with a maximal version number. Since
the TM cannot determine the real Read until it knows the version numbers of
all copies in t-q(x), all Reads of those copies must precede rr,[x.~,].

QC,: Every Y,[xA] follows at least one w,[xA], i # j.

QC,: SG(H) is acyclic.

QC, requires that each copy be initialized before it can be read. QC, says
that the schedulers use a correct concurrency control algorithm.

For example, consider a database with data items x and y, with copies xA,
x5, xc, yb, YE, and yF. Let the read and write quorums be all majority sets.
Consider transactions { T,, T, , T2 > :

T,l = wo[xl
\

T = T,[Xl + WrYI + Cl T, = r,[y] -+ z.uJx] -+ c2

W”bl 2”

A possible QC history over these transactions is

H,” = zk+ pkF-J

%[yDI

W~obEI
i:;

WlI[YFI

& c~&y2[yE,~:

rL[YFI

In H,,, last,(x) = last,(y) = { }, h ence VN,(x) = VN,(y) = 0; last,(y) =
last?(x) = CT,,), h ence VN,(y) = VNJx) = 1. The copies of x that T, reads
were both written by To, hence have identical VNs, and T, may use the value
of either. The copies of y that T, reads were written by different transactions,
hence have different VNs; TL uses the value of copy YE, which has the larger

8.9 THE QUORUM CONSENSUS ALGORITHM 301

VN, as required. The inclusion of both rl[xA] and TT,[XA] does not signify that
T, reads xA twice; it merely means that XA is determined to be the copy to be
used by T, as the value of x.

We will prove that every QC history H is 1SR by proving that SG(H) is an
RDSG of H. Since SG(H) is acyclic by QC,, H is 1SR by Theorem 8.4.

Lemma 8.8: Let H be a QC history SG(H) induces a write order for H.

Proof: Let T, and Tb write x. Since all write quorums of a data item inter-
sect, there exists a copy xA that T; and Tk both write. These Writes on xA
conflict, so SG(H) must have an edge connecting T; and Tk. Thus, T;+ Tk
or Tk--+Ti, so SG(H) induces a write order. 0

Lemma 8.9: Let H be a QC history, SG(H) induces a read order for H.

Proof: Suppose Tj reads-x-from Ti, Tk writes x (i f k and j # k), and
Ti --+ Tk. We need to prove Tj-t Th. By QC,, Tj reads a read quorum of x;
by QC,, Tk writes a write quorum of x. Since any two such quorums
must intersect, there is a copy of x, say xB, such that rj[xs] and wk[xs] are
in H., Since these are conflicting operations, either rj[x~] < W~[XS] or
wk[xB] < yj[xB]. In the former case, Tj + Tk is in SG(H) and we are
done. We now prove that the latter case leads to contradiction.

Let wh[xB] be the last Write on x5 preceding Y,[XB] (possibly h = k). Since
Tj reads-x-from Ti, by QC, VNh(x) I VN;(x).

We claim that VNk(X) 4 VNh(x). If h = k, VNk(X) = VNh(x). If h # k,
let wk[xB] < wb,,[x~] < . . . < whi[xg] < wh[xs] be the sequence of Writes
on xg between wk[xS] and wh[xB]. For each pair of adjacent Writes in the
sequence, say wr[x~] < w,[xs], by the definition of VN we have VNf(x) <
VN,(x). So in this case VNk(X) < VNh(x). Therefore, VNk(x) 5 VNh(x)
as claimed. Since VNh(x) I VNi(x), we also have VNk(x) I VN,(x).

Since T, and Tk write x, by QC, they write some copy xc in common.
Since Tj -+ Tk and SG(H) is acyclic (by QC,), it must be that wi[xc] <
wk[xc]. Applying the argument of the previous paragraph, we get VN,(x)
< VNk(x). But this contradicts VNk(X) I VNi(x). 0

Theorem 8.10: The quorum consensus algorithm is correct.

Proof: It is enough to show that any history H that satisfies QC, - QC, is
1SR. By Lemmas 8.8 and 8.9, SG(H) is an RDSG of H. By QC,, SG(H) is
acyclic. By Theorem 8.4, then, H is 1SR. 0

The Missing Writes Algorithm

Quorum consensus pays for its resiliency to communications failures by in-
creasing the cost of Reads and by increasing the required degree of replica-

302 CHAPTER 8 I REPLICATED DATA

tion. These costs are high if communications failures are infrequent. It would
be preferable if the cost could be reduced during reliable periods of operation,
possibly at the expense of higher overhead during unreliable periods.

The missing writes algorithm is one approach that exploits this trade-off.
During a reliable period, the DBS processes Read(x) by reading any copy of x
and Write(x) by writing all copies of x. When a failure occurs, the DBS resorts
to QC. After the failure is repaired, it returns to reading any copy and writing
all copies. Thus, it only pays the cost of QC during periods in which there is a
site or communications failure.

Each transaction executes in one of two modes: normal mode, in which it
reads any copy and writes all copies, or failure mode, in which it uses QC. A
transaction must use failure mode if it is “aware of missing writes.” Otherwise,
it can use normal mode.

A transaction is aware of missing writes (MWs) if it knows that a copy x.4
does not contain updates that have been applied to other copies of x. For
example, if a transaction sends a Write to xA but receives no acknowledgment,
then it becomes aware of MWs. More precisely, transaction T, is UWUY~ of an
M Wjor copy xA in some execution if either T, writes x but is unable to write
x.4, or some transaction T? is aware of an MW for x4 and there is a path from
Ti to T, in the SG of that execution.

Suppose 7; is aware of an MW for x.4. Then the failure of x.4 must precede
7,. But if T, reads x.4, then T, precedes the failure of xA, Since T, has an incon-
sistent view of the failure of x.1, it risks producing a non-1SR execution.
Consequently, if T, ever becomes aware of an MW for a copy it read, it must
abort.

If T, is aware of an MW for x.4, it still can read x. But by the preceding
argument, it must read a copy of x that isn’t missing any Writes. To ensure this,
the DBS uses QC. That is, if a transaction that reads (or writes) x is aware of
MWs, then it must read (or write) a read (or write) quorum of x.

If 7, begins running in normal mode and becomes aware of an MW as it
runs, the DBS can abort T, and reexecute it in failure mode. Alternatively, it
can try to upgrade to failure mode on the fly That is, for each x that T, read,
the DBS accesses a read quorum R and checks that the value that T, read is at
least as up-to-date as all copies in R. For each x that T, wrote, the DBS checks
that T, wrote a write quorum of x (see Exercise 8.21).

To implement the algorithm, we need a mechanism whereby a transaction
becomes aware of MWs. If a transaction T, times out on an acknowledgment
to one of its Writes, then it immediately becomes aware of an MW. But what if
T1 is aware of an MW and T, + T,? The definition of MW awareness requires
that Ti become aware of the MWs that T, is aware of. To do this, T1 should
attach a list L of the MWs it is aware of to each copy yB that it accesses. It tags
L to indicate whether it read or (possibly read and) wrote ~‘5. When T, accesses
ye in a mode that conflicts with L’s tag, it becomes aware of those MWs. The

8.9 THE QUORUM CONSENSUS ALGORITHM 303

DM should acknowledge Tfs access to yB by returning a copy of L. Ti can now
propagate L, along with other such lists it received, to all of the copies that it
accesses. This way a transaction Tj propagates MWs that it’s aware of to all
transactions that follow Tj in the SG, as required by the definition of MW
awareness.

After recovering from failure, the DBS at site A has two jobs to do. First, it
must bring each newly recovered copy XA up-to-date. This is easy to do with a
copier transaction. The copier simply reads a quorum of copies of X, and
writes into all of those copies the most up-to-date value that it read. Version
numbers can be used to determine this value, as before.

Second, after a copy XA has been brought up-to-date, the DBS should
delete x,J from the lists of MWs on all copies, so that eventually transactions
that access those copies no longer incur the overhead of QC. This entails send-
ing a message to all sites, invalidating entries for XA on their lists of MWs. The
problem is that while these messages are being processed, XA may fail again
and some Write wi[xA] may not be applied. Since this MW occurred after the
recovery of XA that caused MW entries for X,L, to be invalidated, this MW
should not itself be invalidated. However, if the new MW is added to an MW
list before the old XA entry in that list was removed, it risks being removed too.
To avoid this error, entries in MW lists should contain version numbers. We
leave the algorithm for properly interpreting these version numbers as an exer-
cise (see Exercise 8.22).

We can prove the correctness of the MW algorithm using RDSGs, much as
we did for QC. As in QC, the SG in MW induces a write order. However, it
does not necessarily induce a read order, which makes the proof more complex
than for QC.

For example, suppose we have three copies {yA, XA, xg}, with weight(yA)
= 1, weight(xA) = 2, and weight(3cB) = 1. The read and write thresholds are:
RT(x) = WT(X) = 2, RT(yl) = WT(y) = 1. C onsider the following history.

In H,,, To and T, are not aware of MWs and therefore run in normal mode. T,
is aware of its MW on %J, and so runs in failure mode. Although XB recovers
before T3 begins, T3 is still aware of the MW on xs and therefore runs in failure
mode.

T, reads-x-from To, T2 writes X, and To + T, is in SG(H,,). To induce a
read order, we need T, + T2 in RDSG(H,,). But T, + T2 is not in SG(H,,), so

304 CHAPTER 8 I REPLICATED DATA

we need to add it to the SG to make it an RDSG. It turns out that in all such
cases where the SG of a history generated by the MW algorithm is missing
an edge that is needed to create a read order, we can simply add the necessary
edge to the RDSG without creating a cycle. This is the main step in proving
every such history has an acyclic RDSG and therefore is 1SR (see Exer-
cise 8.23).

8.10 THE VIRTUAL PARTITION ALGORITHM

As we have seen, the major drawback of the quorum consensus algorithm is
that it requires access to multiple, remote copies of x in order to process a
Read(x), even when a copy of x is available at the site where the Read is issued.
This defeats one of the motivations for data replication, namely, to make data
available “near” the place where it is needed. The missing writes algorithm
mitigates this problem by using quorum consensus only when site or communi-
cation failures exist. The virtual partition (VP) algorithm, studied in this
section, is designed so that a transaction never has to access more than one
copy to read a data item. Thus, the closest copy available to a transaction can
always be used for reading.

As in quorum consensus, each copy of x has a non-negative weight, and
each data item has read and write thresholds (RTand WT, respectively) with
the properties described at the beginning of Section 8.9. Read and write
quorums are defined as before. However, these serve a different purpose in VP
than in QC, as we’ll see presently,

The basic idea of VP is for each site A to maintain a view, consisting of the
sites with which A “believes” it can communicate. We denote this set by v(A).
As usual, each transaction T has a home site, home(T), where it was initiated.
The view of a transaction, v(T), is the view of its home site, v(home(T)), at the
time T starts. As we will see shortly, if v(horne(T)) changes before T commits,
then Twill be aborted.

A transaction T executes as if the network consisted just of the sites in its
view. However, for the DBS to process a Read(x) (or Write(x)) of T, v(r) must
contain a read (or write) quorum for x. If that is not the case, the DBS must
abort T. Note that the DBS can determine if it can process Read(x) or Write(x)
from information available at home(T). It need not actually try to access a read
or write quorum of x’s copies.

Within the view in which T executes, the DBS uses the write-all approach.
That is, it translates Write(x) into Writes on all copies of x in v(T); it translates
Read(x) into a Read of any copy of x in v(T).

A good illustration of how this idea works is provided if we examine how
VP avoids H- - our archetype of a problematic history in the presence of
communication failures.

8.10 THE VIRTUAL PARTITION ALGORITHM 305

y,[yB] --, w,[xAI + WdxBI + c~

El7 =

rz[xc] + w&Cl + %h’Dl -+ 6

Recall that in this example, the network is partitioned into two compo-
nents, {A, B} and {C, D> . Suppose home(T,) = A and home(TJ = C. If each
site has a correct view of the sites with which it can communicate, v(A) = {A, B 3
and v(C) = {C, D}. If the DBS allows T, to commit in Iii , v(A) must have a
read quorum of y (and a write quorum of x), and therefore v(C) can’t have a
write quorum of y (or a read quorum of x). Hence the VP algorithm will not
allow T, to commit.

Views of sites change, as site and communication failures cause the
network to be reconfigured. Hence, a transaction T may attempt to communi-
cate with a site whose view is different from T’s. Or, T may attempt but fail to
communicate with a site in its view. (A transaction communicates with a site to
access a copy stored there or send a VOTE-REC during its commitment). These
situations indicate that home(T view is not accurate. T must abort and
home(T view must be adjusted, as explained next. Moreover, whenever a
site A’s view changes, all active transactions whose home is A must abort. They
can all then be restarted and try to run within A’s new view.

Maintaining the views in a consistent manner is not a simple matter,
because site and communication failures occur spontaneously VP surmounts
this difficulty by using a special View Update transaction. This is issued by the
DBS itself, rather than by users. In spirit it is analogous to the Include and
Exclude transactions used by the directory-oriented available copies algorithm
to maintain a consistent view among all sites of the copies and directories that
are available (cf. Section 8.7).

When a site detects a difference between its present view and the set of sites
it can actually communicate with, it initiates a View Update transaction whose
purpose is:

1. to adjust the views of all the sites in the new view, and

2. to bring up-to-date all copies of all data items for which there is a read
quorum in the new view.

In adjusting the views of the sites in a new view, View Updates must be
coordinated to avoid problems like the one exemplified by the following
scenario. Consider a network with four sites A, B, C, D such that at some
point v(B) = {B); v(D) = {D}, and v(A) = v(C) = {A, C}. Later, B discovers
that it can communicate with A and C (but not with D) and, at the same time,

306 CHAPTER a I ~~EPL~CATED DATA

D discovers that it can communicate with A and C (but not with B).‘” Thus B
will initiate a View Update to create view {A, B, C) and D a similar one to
create view {A, C, D}. Unless these two activities are properly coordinated, it
is possible that A joins the first view and C the second, creating a situation
where v(A) = v(B) = {A, B, C} and v(C) = v(D) = {A, C, D}. If such incon-
sistent views -were allowed to form, Hi tc~ould be allowed since the views of A
and C (home sites of T, and Tz, respectively) would both contain read and
write quorums for x and)J!

To avoid such inconsistencies, VP uses a view formation protocol. Associ-
ated with each view is a unique view identifier (VID). When a site A wishes to
form a new view, say v, it generates a VID, newVID, greater than its present
VID. A then initiates a two phase protocol to establish the new view:

o A sends a JOIN-VIEW message to each site in u and waits for acknowledg-
ments. This message contains newVID.

o Receipt of JOIN-VIEW by site B constitutes an invitation for B to join the
new view being created by A. B accepts the invitation provided its
present VID is less than the newVID contained in JOIN-IQEW; otherwise,
it rejects the invitation. Accepting the invitation means sending a posi-
tive acknowledgment; rejecting it means sending a negative acknowledg-
ment (or nothing at all).

o After receiving acknowledgments, A can proceed in one of two ways.
It may abort the creation of the new view (either by sending explicit
messages to that effect or by not sending any messages at all). In this
event, A may attempt to restart the protocol using a greater newVID,
hoping it will convince more sites to accept the invitation. Alternatively,
A may ignore any rejected invitations and proceed to form a new view
consisting only of the set of sires LJ’ (t” E v) that accepted the invitation.
It does this by sending a VIEW-FORMED message to each site in 2~’ and
attaching the set v’ to that message. Any site that receives that message
adopts u’ as its view and newVID (which it had received in the JOIN-

vIEW message) as its present VID. It need not acknowledge the receipt
Of vIEW-FORMED.

Returning to our example, if this protocol is followed, A and C will make
a consistent choice: Both will join either the view initiated by B ((A, B, C)) or
the view initiated by D ((A, C, D)} , depending on which of the two had a
greater VID. A third possibility, namely, that neither A nor C joins either new
view, would obtain if the present VID of A and C is greater than the VIDs of
the views B and D are attempting to create.

To ensure network-wide uniqueness, VIDs are pairs (c, S) where s is a site
identifier and c is a counter stored at s and incremented each time s tries to

‘XRecall that timeout fdures can give rise to such anomalous situations (cf. Section 7.2).

8.10 THE VIRTUAL PARTITION ALGORITHM 307

create a new view Thus VIDs created by different sites differ in the second com-
ponent, while VIDs created by the same site differ in the first component. Pairs
are compared in the usual way: (c, s) < (c’, s’) if c < c’, or c = c’ and s < s’.

When a new view is created, all copies of data items for which there is a
read quorum in the view must be brought up-to-date. This is because, in the
new view, any such copy might be read. The task of updating such copies is
also carried out by the View Update transaction. It is done as follows. When a
site A creates a new view v, it reads a read quorum of each data item x (for
which there is a read quorum in v). It then writes all copies of x in v, using the
most recent value it read. Version numbers can be used to determine the most
recent value, as in QC. This procedure need not be carried out for copies that
A can tell are up-to-date (see Exercise 8.24). The entire process of updating
copies can be combined with the view formation protocol (see Exercise 8.25).
This whole activity comprises what we called before a View Update transac-
tion. It should be emphasized that the activity of a View Update is carried out
like that of an ordinary (distributed) transaction. In particular, Reads and
Writes issued in the process of bringing copies of the new view up-to-date are
synchronized using the DBS’s standard concurrency control mechanism. In the
VP algorithm we described, the set of copies of each data item is fixed. Adding
new copies of a data item x alters the quorum of X. Therefore, as in QC, it
requires special synchronization (see Exercise 8.26).

VP guarantees that an execution is 1SR by ensuring that all transactions
see failures and recoveries in the same order. Informally, we can argue this
as follows.

1. Each transaction executes entirely within a single view.

2. For any two transactions Ti and Tj, if Ti + Tj, then T; executed in a
view whose VID is less than or equal to 7”s.

3. From (2), there is a serial history H, that is equivalent to the one that
actually occurred in which transactions in the same view are grouped
into contiguous subsequences, ordered by their VIDs.

Within a VP, all transactions have the same view of which copies are function-
ing and which are down. So if we imagine site failures and recoveries to occur
at the beginning of each segment in H,, then all transactions have a consistent
view of those failures and recoveries. And this, as we know, implies that the
execution is 1SR (see Exercise 8.27).

BlBLlOGRAPHllC NOTES

Since the earliest work on distributed databases, replication has been regarded as an
important feature [Rothnie, Goodman 771 and [Shapiro, Millstein 77b]. Some early
algorithms include primary site [Alsberg, Day 761 [Alsberg et al. 761, majority
consensus [Thomas 791, primary copy [Stonebraker 79b], and a TO-based write-all-
available algorithm in SDD-1 [Bernstein, Shipman, Rothnie 801 and [Rothnie et al. 801.

308 CHAPTER 8 I REPLICATED DATA

The concept of one copy serializability was introduced in [Attar, Bernstein, Goodman
841. The theory of 1SR histories was developed in [Bernstein, Goodman 86a] and
[Bernstein, Goodman 86b].

‘4vailable copies algorithms are described in [Bernstein, Goodman 841, [Chan, Skeen
861, and [Goodman et al. 831. Weak consistency for queries is discussed in [Garcia-
Molina. Wiederhold 821. Majority consensus was generalized to quorum consensus in
[Gifford 791. Other majority and quorum based algorithms are presented in [Breit-
wieser, Leszak 821, [Herlihy 861, and [Sequin, Sargeant, Wilnes 791. The missing writes
algorithm was introduced in [Eager 811 and [Eager, Sevcik 831. The virtual parti-
tion algorithm was introduced in [El Abbadi, Skeen, Cristian 851 and [El Abbadi,
Toueg 861.

[Davidson, Garcia-Molina, Skeen 8.51 gives a survey of approaches to replication, in-
cluding some methods not described in this chapter: [Skeen, Wright 841, which
describes a method for analyzing transaction conflicts to determine when a partition
cannot lead to a non-1SR execution (see Exercise 8.19); [Davidson 841, which shows
how to analyze logs to determine which transactions must be undone after a network
partition is repaired; and [Blaustein et al. 831 and [Garcia-Molina et al. 83b], which
describe methods for recovering an inconsistent database after a partition is repaired by
exploiting semantics of transactions.

EXERCISES

8.1 The primary copy approach to the distribution of replicated Writes is
useful for avoiding deadlocks in 2PL. Explain why it eliminates deadlocks
resulting from write-write conflicts. Is it helpful in reducing other types of
deadlock, too?

8.2 Suppose we use 2PL with the primary copy and write-all approaches
to the distribution of Writes. Assume there are no failures or recoveries.
h4ust updaters set write locks on non-primary copies? How would you
change your answer if queries are allowed to read non-primary copies?

8.3 Consider an algorithm for creating new copies that satisfies the
following three conditions:

a. it produces serializable executions (its RD histories have acyclic SGs),
b. no transaction can read a copy until it has been written into at least

once, and
c. once a transaction T, has written into a new copy x.4, al1 transactions

that write into x and come afterT, in the SG also write into xrl,

Prove or disprove that such an algorithm produces only 1SR executions.

8.4 Consider the following algorithm for creating a new copy x.4 of x. The
DBS uses primary copy for distributing Writes. The DBS produces
serializable executions (its RD histories have acyclic SGs). The scheduler
that controls XA does not allow XA to be read until it has been written into

EXERCISES 309

at least once. Once the primary copy’s DBS has sent a Write on x to xA, it
will send to XA all subsequent Writes on x that it receives. Assuming that
copies never fail, prove that this algorithm produces 1SR histories.

8.5 Suppose a site A fails for a short period. Most data items at A that are
replicated elsewhere were probably not updated by any other site while A
was down. If other sites can determine the earliest time r that A might have
failed, then using r they can examine their logs to produce a list of data
items that were updated while A was down. These are the only data items
at A that must be reinitialized when A recovers. Propose a protocol that
sites can use to calculate 7.

8.6 One way to avoid copiers on all data items is for a site B to step in as
A’s spooler after A fails. B spools to a log the Writes destined for A (which
A can’t process, since it’s down). When A recovers, it uses a Restart proce-
dure based on logging to process the log at B (cf. Section 6.4). What prop-
erties must B’s spooler and A’s Restart procedure satisfy for this approach
to work correctly? Given those properties, how should A respond to
Reads while it is processing B’s log?

8.7 A serial RD history H is called l-serial if, for all i,i, and x, if T; reads-
x-from Ti (i # i), then T, is the last transaction preceding Tj that writes
into any copy of X. Prove that if an RD history is l-serial, then it is 1SR.

8.8’) Let H be an RD history over T. Let G(H) be a directed graph whose
nodes are in one-to-one correspondence with the transactions in T. G(H)
contains a reads-from order if, whenever Tj reads-x-from T,,
a. if (i + j), then Ti 4 Tj, and
b. if for some copy XA, w;[x~] < r,[xA], w&[xA] E H and Tk 4 T; then

G(H) is a weak replicated data serialization graph (weak RDSG) for H if it
contains a write order, a reads-from order, and a read order. Prove that H
has the same reads-from relationships as a serial 1C history over T if and
only if H has an acyclic weak RDSG. Give an example of an RD history
that does not have an acyclic RDSG but does have an acyclic weak RDSG.

Since a weak RDSG need not contain SG(H), Theorem 8.3 does not
apply. Thus, we are not justified in dropping final writes from a proof that
H is equivalent to a serial 1C history. Prove or disprove that II is 1SR iff it
has an acyclic weak RDSG.

8.9” In the definition of FRSGs, we assumed that each copy is created once,
fails once, and then never recovers. Suppose we drop the assumption that
failed copies never recover. To cope with multiple failures and recoveries of
a copy, we extend an FRSG to be allowed to include more than one pair of
nodes { createi[xA], fail,[xA]) for each copy XA, where the subscripts on
create and fail are used to relate matching create/fail pairs. Redefine the
edge set of an FRSG to make use of these multiple create/fail pairs. Prove
Theorem 8.5 for this new definition of FRSG.

310 CHAPTER 8 I REPLICATED DATA

8.10* Suppose we add the following set of edges to an FRSG:

E2’ = (T, -+ fail[xA] j T, writes xA}.

An augmented FRSG is an FRSG that includes the edges defined by E2’.

a. Give an example history that has an acyclic FRSG, but has no acyclic
augmented FRSG.

b. Suppose a concurrency control algorithm only produces histories that
have acyclic augmented FRSGs. Explain intuitively what effect this
has on the state of a copy after it recovers from a failure.

c. Does the available copies algorithm of Section 8.6 produce histories
that have acyclic augmented FRSGs? If not, modify the algorithm so
that it does.

8.11 Give an example of a non-1SR execution that would be allowed by the
simple available copies algorithm of Section 8.6, if the missing writes vali-
dation and the access validation steps were done at the same time (i.e., the
validation protocol sent the AVAILABLE and UNAVAILABLE messages at the
same rime).

8.12” Give a proof of correctness for the simple available copies algorithm
(Section 8.6) based on Theorem 8.4. That is, list conditions satisfied by
histories produced by that algorithm, justify why they must be satisfied,
and prove that any history that satisfies them must have an acyclic RDSG.

8.13 When all copies of a data item fail, we say the item has suffered a total
failure. In available copies algorithms special care must be taken in recov-
ering from a total failure of a data item: The copier transaction that brings
copies up-to-date must read the value of the copy that failed last. Describe
methods for recovering from such total failures, for available copies algo-
rithms.

8.14 How do the quorum consensus, missing writes, and virtual partition
algorithms handle total failures of data items?

8.15 In the directory-oriented available copies algorithm, a transaction can
perform access validation by checking that all directories from which it
read contain the copies it accessed. Why is this so? That is, why is it not
necessary to access the copies themselves? Also, if the scheduler uses Strict
2PL, show that access validation requires merely to check that the directo-
ries read by the transaction are still available (their contents need not be
considered).

8.16” Formalize the correctness argument given in Section 8.7 to derive a
proof that the directory-oriented available copies algorithm produces only
1SR executions.

8.17* Give a correctness proof for the directory-oriented available copies
algorithm, based on Theorem 8.4. That is, prove that any history repre-
senting an execution produced by that algorithm must have an acyclic
RDSG.

EXERCISES 311

8.18 Describe, in some detail, an algorithm that allows the creation and
destruction of directory copies, using a (replicated) master directory.

8.19" Suppose each site is assigned a set of classes and can only execute
transactions that are in its classes. (See Section 4.2 for a description of
classes.) Assume that the readset of each class contains its writeset.

Suppose the network has partitioned. Define a directed graph G each
of whose nodes represents the occurrence of a given class in a given parti-
tion. For each pair of nodes C;, Cj where readset(CJ fl writeset(Cj) z (} ,
G contains the edge C; + Cj and, if Ci and Cj are in the same partition,
Cj -+ Ci. A m&partition cycle in G is a cycle that contains two or more
nodes whose sites are in different partitions.

Assume that the partitioned network experiences no site or communi-
cation failures or recoveries. Suppose the DBS in each partition uses the
write-all approach with respect to the copies in its partition. Prove that if
G has no multipartition cycles, and SG(H) is acyclic for RD history H,
then H is 1SR.

8.20 Describe a method whereby the weights of copies can be changed
dynamically in the quorum consensus algorithm.

8.21 In the missing writes algorithm a transaction begins by using the write-
all approach. If it should ever become aware of missing writes, it can abort
and rerun using quorum consensus. Alternatively, it can try to switch to
quorum consensus “on the fly.” Describe, in some detail, the latter option.
(Hint: Consider. doing some extra work during the atomic commitment
protocol.)

8.22 Describe, in some detail, a technique whereby missing writes to a copy
are “forgotten” when all such Writes have actually been applied to the
copy. Make sure your algorithm can handle correctly the situation where a
copy misses (again) some updates while (old) missing updates to that copy
are being “forgotten.”

8.23* Give a precise proof of correctness for the missing writes algorithm by
giving a list of properties satisfied by histories that represent executions of
that algorithm and then proving that any history that satisfies these condi-
tions must have an acyclic RDSG.

8.24 Consider the formation of a new view in the virtual partition algo-
rithm. Which copies of items for which there is a read quorum in the new
view are guaranteed to be up-to-date?

8.25 Describe, in some detail, a View Update transaction, by integrating
the view formation protocol and the copy update process. Take into
account your answer to the previous exercise to optimize the latter.
Explore the round and message complexity of a View Update transaction.

8.26 Describe a method whereby the weights of copies can be changed
dynamically in the virtual partition algorithm.

8.27* Give a formal proof of correctness for the virtual partition algorithm.

	Contents:
	Index:

