
6 
CENTRALIZED RECOVERY 

6.1 FAILURES 

Beginning with this chapter we turn to the question of how to process transac- 
tions in a fault-tolerant manner. In this chapter we will explore this issue for 
centralized DBSs. We treat failure handling for distributed DBSs in Chapter 7 
and 8. 

Our first task is to define the sorts of faults we are going to consider. 
Computer systems fail in many ways. It is not realistic to expect to build DBSs 
that can tolerate all possible faults. However, a good system must be capable 
of recovering from the most common types of failures automatically, that is, 
without human intervention. 

Many failures are due to incorrectly programmed transactions and data 
entry errors (supplying incorrect parameters to transactions). Unfortunately, 
these failures undermine the assumption that a transaction’s execution 
preserves the consistency of the database. They can be dealt with by applying 
software engineering techniques to the programming and testing of transac- 
tions, or by semantic integrity mechanisms built into the DBS. However 
they’re dealt with, they are intrinsically outside the range of problems our 
recovery mechanisms can automatically solve. Thus, we assume that transac- 
tions indeed satisfy their defining characteristic, namely, that they halt for all 
inputs and their execution preserves database consistency. 

Many failures are due to operator error. For example, an operator at the 
console may incorrectly type a command that damages portions of the data- 
base, or causes the computer to reboot. Similarly, a computer technician may 
damage a disk or tape during a computer maintenance procedure. The risk of 
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such errors can be reduced by better human engineering of the system’s inter- 
face to operators and by improved operator education. Preventing these errors 
is outside the scope of problems treated by DBS recovery, However, DBS recov- 
ery mechanisms are designed to deal with some of the consequences of these 
errors, namely, the loss of data due to such errors. 

Given these assumptions, there are three types of failures that are most 
important in centralized DBSs, known as transaction failures, system failures 
and Inedia failures. A transaction failure occurs when a trAnsaction aborts. 
A svstetn failure refers to the loss or corruption of the contents of volatile storage 
(i.e., main memory). For example, this can happen to semiconductor memory 
when the power fails. It also happens when the operating system fails. 
.4lthough an operating system failure may not corrupt all of main memory, it is 
usually too difficult to determine which parts were actually corrupted by the 
failure. So one generally assumes the worst and reinitializes all of main 
memory. Because of system failures, the database itself must be kept on a stable 
storage medium, such as disk. (Of course other considerations, such as size, 
may also force us to store the database on stable mass storage media.) By defi- 
nition, stable (or nonvolatile) storage withstands system failures. A media fail- 
tire occurs when any part of the stable storage is destroyed. For instance, this 
happens if some sectors of a disk become damaged. 

The techniques used to cope with media failures are conceptually similar 
to those used to cope with system faiIures. In each case, we consider a certain 
part of storage to be unreliable: volatile storage, in the case of system failures; 
a portion of srable storage, in the case of media failures. To safeguard against 
the loss of data in unreliable storage, we maintain another copy of the data, 
possibly in a different representation. This redundant copy is kept in another 
part of storage that we deem reliable: stable storage, in the case of system fail- 
ures, or another piece of stable storage, such as a second disk, in the case of 
media failures. Of course, the different physical characteristics of storage in 
the two cases may require the use of different strategies. But the principles are 
the same. 

For pedagogical simplicity, we will focus principally on the problem of 
system failures. We explain how to extend recovery techniques for system fail- 
ure to those for media failure in the last section of the chapter. 

We’ll assume that all failures are detected. This is not an issue with trans- 
action failures, because a transaction failure by definition results in the ex- 
ecution of an Abort operation. But it is conceivable that volatile or stable 
storage gets corrupted without this being detected. Usually, storage de- 
vices have error detecting codes, such as parity checks, to detect bit errors in 
hardware; sofrware can use redundant pointer structures and the like to detect 
data structure inconsistencies. While these techniques make an undetected 
failure highly unlikely, it is possible. In general, the techniques described 
here will not handle the occurrence of such an undetected system or media 
failure. 
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6.2 DATA MANAGER ARCHlTECTURE 

As in our discussion of schedulers, we’ll continue using the TM-scheduler-DM 
model of a DBS. Unlike Chapters 3-5, where we focused on the scheduler, our 
center of attention will now shift to the DM. It’s the DM that manipulates 
storage, and it’s storage that is corrupted by failures. We will principally be 
concerned with system failures that can destroy volatile but not stable storage. 
We must therefore incorporate the distinction between volatile and stable stor- 
age into the model, which we briefly discussed in Section 1.4. 

Let’s review our model of a DBS, focusing on the issues that will occupy us 
in this chapter (see Fig. 6-l). Transactions submit their operations to the TM, 
which passes them on to the scheduler. The scheduler receives Read, Write, 
Commit, and Abort operations from the TM. The scheduler can pass Aborts 
to the DM immediately, For Read, Write, or Commit operations, the scheduler 
must decide, possibly after some delay, whether to reject or accept the opera- 
tion. If it rejects the operation, the scheduler sends a negative acknowledgment 
to the TM, which sends an Abort back to the scheduler, which in turn 
promptly passes the Abort to the DM. If the scheduler accepts the operation, it 
sends it to the DM, which processes it by manipulating storage. The exact 
details of this storage manipulation depend on the DM algorithm, and are the 
main subject of this chapter. When the DM has finished processing the opera- 
tion, it acknowledges to the scheduler, which passes the acknowledgment to 
the TM. For a Read, the acknowledgment includes the value read. 

In addition to Read, Write, Commit and Abort, the DM may also receive a 
Restart operation. This is sent by an external module, such as the operating 
system, upon recovery from a system failure. The task of Restart is to bring the 
database to a consistent state, removing effects of uncommitted transactions 
and applying missing effects of committed ones. To be more precise, define the 
last committed value of a data item x in some execution to be the value last 
written into x in that execution by a committed transaction. Define the 
committed database state with respect to a given execution to be the state in 
which each data item contains its last committed value. The goal of Restart is 
to restore the database into its committed state with respect to the execution 
up to the system failure. 

To see why this is the right thing to do, let’s use the tools of Chapter 2. Let 
H be the history representing the partial order of operations processed by the 
DM up to the time of the system failure. The committed projection of Ii, 
C(H), is obtained by deleting from H all operations not belonging to the 
committed transactions. If H was produced by a correct scheduler, then it is 
recoverable. Consequently, the values read or written in C(H) are identical to 
the values read or written by the corresponding operations in H. Therefore, by 
restoring the last committed value of each data item, Restart makes the data- 
base reflect the execution represented by the history C(H), that is, the execu- 
tion of precisely the transactions that were committed at the time of the system 
failure. Moreover, C(H) is SR, because it was produced by a correct scheduler. 
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FIGURE 6-l 
Model of a Centralized Database System 

So when Restart terminates, the database is in a cons?stent srate. A major goal 
of this chapter is to explain what data structures must be maintained by the 
DM so that Restart can do this using only information saved in stable storage. 
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Stable Storage 

The DM is split into two components: a cache manager (CM), which manipu- 
lates storage, and a recovery manager (RM), which processes Read, Write, 
Commit, Abort, and Restart operations. The CM provides operations tofetch 
data from stable storage into volatile storage, and toflush data from volatile to 
stable storage. The RM partially controls the CM’s flush operations, to ensure 
that stable storage always has the data that the RM needs to process a Restart 
correctly, should the need arise. 

We assume that when the CM issues a Write operation to write a data item 
in stable storage, the Write either executes in its entirety or not at all and 
responds with a return code indicating which of the two outcomes occurred. 
This holds even if the system fails while the Write executes. Such Writes are 
called atomic. If a Write fails to be atomic (e.g., it modifies some but not all of 
a data item), then a media failure has occurred. For now, we assume that 
media failures do not occur. That is, all Writes are atomic. We treat media 
failures in Section 6.8. 

For disks, currently the most popular form of stable storage, the granular- 
ity of data item that can be written is usually a fixed-sized page (or block). 
When a page is written to disk, there are two possible results: the old value of 
the page is correctly overwritten, and remains in the new state until it is over- 
written again, or the new value of the page is corrupted somehow, in which 
case the error is detected when the page is subsequently read. That is, it either 
executes correctly or results in a media failure. Error detection is normally 
supported by the disk hardware. If asmall number of bit errors alters the 
contents of a page, the disk hardware will detect the error through a checksum 
that is calculated when it reads the page. The checksum may also be a function 
of the page’s disk address, da, thereby ensuring that the page that is read is one 
that was previously written to da (i.e., not one that was intended to be written 
to some other address but was incorrectly written to da). When these sorts of 
hardware error detection are unavailable, one can partially compensate for 
their absence using software error detection, with some degradation of perfor- 
mance (see Exercise 6.1). 

The granularity of data items that are parameters to Writes issued to the 
DM may be different from that which can be atomically written to stable stor- 
age. That is, if stable storage supports atomic Writes to pages, the DM may 
receive Writes to short records (where each page may contain many such 
records) or to long records (which can span more than one page). This 
mismatch of data item granularity requires special attention when designing 
recovery algorithms, since individual data items cannot be written one by one 
(for short records) or atomically (for long records). 

In this chapter, unless otherwise noted, we assume that the granularity of 
data items supported by the DM is identical to that supported by stable stor- 
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age. With today’s disk technology, this means a data item is a fixed-size page. 
We will also discuss some of the special problems that arise due to granularity 
mismatches. However, in these cases we will be careful to emphasize that we 
have abandoned the assumption of identical DIM and stable storage 
granularities of data items (see also Exercise 6.2). 

We distinguish between Dh4s that keep exactly one copy of each data item 
in stable storage and DMs that may keep more than one. If there is only one 
copy, then each time a data item is overwritten, the old value is destroyed. This 
is called in-place updating. If there is more than one copy, then the CM may 
write a data item to stable storage without destroying the older versions of that 
data item. The older versions are called shadoul copies, and this technique is 
called shadowing. 

With shadowing, the mapping of data items to stable storage locations 
changes over time. It is therefore convenient to implement this mapping using 
a directory, with one entry per data item, giving the name of the data item and 
its stable storage location. Such a directory defines a state of the database (see 
Fig. 6-2). With shadowing, there is usually more than one such directory, each 
directory identifying a different state of the database. 

We define the stable database to be the state of the database in stable 
storage. With in-place updating, there is exactly one copy of each data item in 
stable storage, so the concept is well defined. With shadowing, we assume that 
there is a particular directory, D, in stable storage that defines the current state 
of the stable database. The copies of data items in stable storage that are refer- 
enced by directories other than D are shadow copies. 

Directory 
COPY A 

Directory 
COPY B 

Stable storage 

FIGURE 6-2 
An Example of Shadowing 
Using shadowing, directory copies A and B each define a database state. 
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The Cache Manager 

To avoid accessing stable storage to process every Read and Write, we would 
like to keep a copy of the database in volatile storage. To read a data item we 
would simply obtain its value from the volatile storage copy. To write a data 
item we would record the new value in both the volatile and stable storage 
copies. The stable storage copy would be useful only for recovery from system 
failures. Since access to stable storage is slower than to volatile storage, this 
would improve performance in almost all cases. Unfortunately, keeping a copy 
of the entire database in volatile storage is usually too expensive due to the 
large size of databases and the relatively high cost of main memory, However, 
as main memory prices continue to drop, this approach may become more 
common in the future. 

In any case, currently, we must cope with keeping less than the whole data- 
base in volatile storage. This can be done by using a technique called caching 
or buffering, similar to that of hardware caching and operating system virtual 
memory A portion of volatile storage, called the cache, is reserved for holding 
portions of the database. The cache consists of a collection of slots, each of 
which can store the value of a data item (see Fig. 6-3). The granularity of data 
items stored in slots is that which can be atomically written to stable storage 
(i.e., a page). At any time a certain subset of data items occupies slots in the 
cache, in addition to occupying their more permanent locations in stable stor- 
age. A cache slot contains a value for the data item stored in that slot, and a 
dirty bit that is set if and only if the value of the data item stored in the cache 
slot is different from its value in stable storage (we’ll see how this can arise 
momentarily). If the dirty bit is set, we say the slot is dirty. There is also a 
cache directory that gives the name of each data item in the cache and the 
number of its associated slot. 

Cache Cache Directory 

Slot Dirty Data Item Data Slot 
Number Bit Value Item Name Number 

1 1 “Octoberl2” x 2 

2 0 3.1416 Y 1 

FIGURE 6-3 
Cache Structure 
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The traffic of data items into and out of the cache is controlled by the CM 
via two operations: Flush and Fetch. Flush takes a cache slot c as its parameter. 
If c is nor dirty, then Flush does nothing. If c is dirty, it copies c’s value into the 
stable storage location of the data item stored in c, and clears c’s dirty bit. 
Flush does not return to its caller until the update of c on stable storage has 
completed. 

Notice that Flush must map each data item to a stable storage location. If 
the CM uses shadowing, then the mapping is via a directory. The CM’s choice 
and manipulation of directories depends on the recovery algorithm. If the CM 
uses in-place updating, then the mapping is unique. In this case, the method 
for performing the mapping is unimportant to our study, 

Fetch takes a data item name x as its parameter. It causes the CM to 
perform the following actions: 

1. It selects an empty cache slot, say c. If all cache slots are occupied, it 
selects some slot c, flushes c, and uses that as its empty slot. 

2. It copies the value of x from its stable storage location into c. 

3. It clears the dirty bit of c. 

4. It updates the cache directory to indicate that x now occupies c. 

If slot c was occupied in step (l), we say that x replaces the data item that 
occupied c. The criterion according to which the CM chooses c is called the 
replacement strategy. Some well known replacement strategies are least re- 
cently used (LRU) and first-in-first-out (FIFO), specifying, respectively, that the 
slot least recently accessed or least recently fetched be used for replacement. 

To read a data item named X, the CM fetches the value of x if it is not 
already in the cache, and returns this value from the cache. To write x, the CM 
allocates a slot for x if it is not already in the cache, records the new value in 
the cache slot, and sets the dirty bit for the cache slot. Whether it flushes the 
new value of x to stable storage at this point or later on is a decision left to the 
RM. As we’ll see, different RM algorithms use different strategies with respect 
to this issue. 

There will be times when the RM must ensure that a cache slot is not 
flushed for some rime period, for example, while it is updating the contents of 
the slot. For this reason, the CM offers two additionai operations, Pin and 
Unpin. The operation Pin(c) tells the CM not to flush c, while Unpin(c) makes 
a previously pinned slot again available for flushing. Thus, the CM never 
flushes a slot while it is pinned. 

6.3 THE RECOVERY MANAGER 

The RM interface is defined by five procedures: 

I. RM-Read(T,, xl: read the value of x for transaction T,; 

2. RM-Write(T,, x, v): write v into x on behalf of transaction T,; 
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3. RM-CommitjTi): commit Ti; 

4. RM-AbortjTJ: abort T;; and 

5. Restart: bring the stable database to the committed state following a 
system failure. 

The RM should execute these operations atomically. That is, the RM’s 
execution should be equivalent to a serial execution of these operations. This 
requirement is easily enforced if a 2PL, TO, or SGT scheduler is used. These 
schedulers never send two conflicting operations to the RM concurrently, so 
the RM can safely process any of its pending Reads and Writes concurrently. 
However, the RM may also access local data structures that are shared by the 
execution of two operations. For example, an RM-Commit and RM-Abort of 
two different transactions may both update local lists of active and terminated 
transactions. To ensure that these operations are atomic with respect to each 
other, the RM must synchronize access to these shared structures, for example 
by using semaphores or locks. 

We assume that the scheduler invokes RM operations in an order that 
produces a serializable and strict execution. Since executions are strict, 
committed Writes will execute in the same order that their corresponding 
transactions commit. In particular, the last committed value of x will be writ- 
ten by the last committed transaction that wrote into x. 

The RM algorithms become considerably more complicated under the 
weaker assumption that the scheduler produces an execution that is 
serializable and recoverable, the weakest possible requirements on the sched- 
uler that will not compromise correctness. 

Recall from Sections 1.2 and 2.4 that strict executions avoid cascading 
aborts. Thus, to erase the effects of an aborted transaction from the database, 
we merely have to restore in the database the before images of its Writes. To 
establish the terminology that we’ll use later in the chapter, suppose Ti wrote 
into x: The before image ofx with respect to (wrt) Ti is the value of x just 
before T, wrote into it; the after image of x wrt Ti is the value written into 
x by Tj. 

Logging 

Suppose the RM uses in-place updating. Then, each data item has a unique 
location in stable storage. Ideally, the stable database would contain, for each 
x, the last value written into x by a committed transaction. Practically, two 
factors prevent this ideal state: the continual updating by transactions that 
take some time to terminate, and the buffering of data items in cache. There- 
fore, the stable database might contain values written by uncommitted trans- 
actions, or might not contain values written by committed ones. 

In the event of a system failure, the RM’s Restart operation must be able to 
transform the stable database state into the committed database state. In doing 
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this, it can only rely on data in stable storage. For this reason, the RM usually 
stores information in stable storage in addition to the stable database itself. A 
log is one such type of information. 

Conceptually, a log is a representation of the history of execution. A physi- 
cal log is a type of log that contains information about the values of data items 
written by transactions. Like the stable database, the structure and contents of 
the log are highly dependent on the RM algorithm. Abstractly, however, we 
can think of a (physical) log as consisting~of entries of the form [T1,, X, TV], 
identifying the value v that transaction T, wrote into data item X. 

The data structures used for the log must enable Restart to determine, for 
each x, which log entry contains x’s last committed value. Thus, they must 
encode the order in which Writes occurred. An easy way to record this infor- 
mation is to require that the log be a sequential file and that the entries in the 
log be consistent with the order of their corresponding Writes. Thus, we 
assume that [T,, x, ~1 precedes [T,, X, TV] in the log iff XJ~[X] executed before 
w,[x]. Since we assume a strict execution, if [T,, X, zl] precedes [T,, x, v] in the 
log and both T, and T, committed, then T, committed before T,. 

Instead of containing values that were written into the database, a log may 
contain descriptions of higher level operations. This is called logical logging. 
For example, a log entry may say that “record Y was inserted into file F, and F’s 
indices were updated to reflect this insertion.” Using logical logging, only this 
one log entry is recorded, instead of several log entries corresponding to the 
physical Writes of F and its indices. By recording higher level operations, fewer 
log entries are needed. Shortening the Iog in this way can improve the RM’s 
performance, but sometimes at the expense of added complexity in interpret- 
ing log entries by the Restart algorithm. We will deal with the complexity of 
logical logging Iater in the chapter. Unless otherwise noted, when we use the 
term “log,” wre mean a physical log. 

In addition to the stable database and the log, the RM may also keep in 
stable storage one or more of the active, commit and abort lists. These lists 
cont,Gn the identifiers of the set of transactions that are active, committed or 
aborted (respectively). These lists are often stored as part of the log. 

In most RM algorithms, it is the act of adding a transaction identifier to 
the commit list that causes the transaction to become committed. Thus, after a 
system failure, the RM regards a transaction as having been committed iff its 
transaction identifier is in the commit list. 

Undo and Redo 

Whatever replacement strategy the CM uses, there are times when the RM 
must insist that the C&l flush certain data items to stable storage. These flushes 
coordinate writing the stable database and the log, so that Restart will always 
find the information it needs in stable storage, be it in the stable database or 
the log. In this section we will investigate flushing requirements that all RMs 
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must satisfy. This will lead to a natural categorization of RM algorithms that 
will carry us through the rest of the chapter. 

We say that an RM requires undo if it allows an uncommitted transaction 
to record in the stable database values it wrote. Should a system failure occur 
at this point, on recovery the stable database will contain effects of the uncom- 
mitted transaction. These effects must be undone by Restart in order to restore 
the stable database to its committed state with respect to the execution up to 
the failure. 

We say that an RM requires redo if it allows a transaction to commit 
before all the values it wrote have been recorded in the stable database. If a 
system failure occurs at this point, on recovery the stable database will be miss- 
ing some of the effects of the committed transaction. These must be redone by 
Restart to restore the stable database to its committed state. 

Notice that we use the terms “requires undo” and “requires redo” only 
relative to system failures, not media failures. That is, when we say that “an 
RM requires redo,” we really mean that “the RM’s Restart procedure requires 
redo for handling system failures.” We treat the undo and redo requirements 
for media failures in Section 6.8.’ 

By regulating the order of a transaction’s commitment relative to writing 
its values in the stable database, an RM can control whether it requires undo 
or redo. Thus, we can classify RM algorithms into four categories: (1) those 
that require both undo and redo; (2) those that require undo but not redo; (3) 
those that require redo but not undo; and (4) those that require neither undo 
nor redo.2 Implementations of all four types have been proposed and we’ll 
examine them later in this chapter. 

The prospect that an RM may require undo or redo should raise some 
concern in view of our desire to be able to recover from system failures. In 
particular, since the stable database may contain inappropriate updates or be 
missing appropriate ones, the RM had better keep sufficient information in the 
log for Restart to undo the former and redo the latter. The requirements 
implied by this can be conveniently stated as two design rules that all RM 
implementations must observe. 

Undo Rule9 If x’s location in the stable database presently contains the last 
committed value of X, then that value must be saved in stable storage before 
being overwritten in tlie stable database by an uncommitted value. 

‘Recovery mechanisms for media failure generally require redo. Most such mechanisms keep a 
stable copy of the database, called the archive, which is almost surely out-of-date. So the RIM 
must redo committed updates that occurred after the archive was created. 
‘In the paradigm of [Haerder, Reuter 831, these categories correspond to (1) Steal/No-Force, 
(2) Steal/Force, (3) No-Steal/No-Force, and (4) No-Steal/Force. 
3This is often called the write ahead log protocol, because it requires that the before image of a 
Write be logged ahead of the Write being installed in the stable database. 
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Redo Rule: Before a transaction can commit, the value it wrote for each 
data item must be in stable storage (e.g., in the stable database or the log). 

The Undo and Redo Rules ensure that the last committed value of each 
data item is always available in stable storage. The Undo Rule ensures that the 
last committed value of x is saved in stable storage (e.g., in the log) before 
being overwritten by an uncommitted value. And the Redo Rule ensures that a 
value is in stable storage at the moment it becomes committed. Observe that an 
RM that does not require undo (or redo) necessarily satisfies the Undo (or 
Redo) Rule. 

Garbage Collectlon 

Even though stable storage is usually abundant, it has bounded capacity. It is 
therefore necessary to restrict the amount of information the RM keeps in 
stable storage. Clearly, the size of the stable database is bounded by the 
number of data items it stores. To satisfy the Undo and Redo Rules, the RM 
has to keep inserting information into the log. To bound the growth of the log, 
the RM must free up and recycle any space used to store information that it 
can be certain will never be needed by Restart. Recycling space occupied by 
unnecessary information is called garbage collection. 

Restart’s requirement for log information is: for each data item x, if the 
stable database copy of x does not contain the last committed value of x, then 
Restart must be able to find that value in the log. To restate this requirement in 
terms of log entries requires a knowledge of the detailed structure of log 
entries. In terms of our abstract log entries of the form [T,, x, v], the following 
rule tells precisely what information can be dispensed with at any given time, 
insofar as Restart is concerned. 

Garbage Collection Rule: The entry [T,, x, V] can be removed from the log 
iff (1) T, has aborted or (2) T, has committed but some other committed 
transaction wrote into x after T, did (hence v is not the last committed value 
of x). 

In case (I), once T, has aborted we no longer care about what it wrote, 
since all of its Writes will be undone. In case (2), once a newly committed value 
is written into x, older committed values can be disposed of, because only the 
last committed value is needed for recovery, In both cases, deleting [T,, x, V] 
never affects Restart’s ability to determine which Write on x is the last commit- 
ted one, as long as the order of committed Writes is recorded in the log. 

Notice that even if v is the last committed value of x and is stored in the 
stable database copy of x, [T,, x, v] cannot be deleted from the log. If a trans- 
action Tl subsequently wrote into x in the stable database and then aborted, 
then [T,, x, v] would be needed to undo T{s Write. However, if the RM does 
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not require undo, then Tj’s Write cannot be flushed to the stable database 
before Tj commits, so this scenario cannot occur. Therefore, we can augment 
the Garbage Collection Rule with a third case: (3) [Ti, x, LJ] can be removed 
from the log if the RM does not require undo, u is the last committed value of 
x, v is the value of x in the stable database, and [Ti, X, v] is the only log entry 
for X. The last condition ensures that Restart does not misinterpret some 
earlier log entry for x to be x’s last committed value, after [T,, X, v] is deleted. 

The Garbage Collection Rule defines the earliest time that a log entry can 
be deleted. Some Restart algorithms require keeping the log entries longer than 
required by the Garbage Collection Rule. This rule may also be overruled by 
the requirements of media recovery (see Section 6.S).+’ 

As we mentioned before, the RM may also keep in stable storage one or 
more of the active, abort, or commit lists. The size of the active list is bounded 
by the number of transactions that are in progress at any given time, presum- 
ably a manageable number. The RM somehow has to bound the size of the 
abort and commit lists, since it would be impractical to keep a record of all 
transactions that have committed or aborted since the genesis of the system. In 
practice, the RM only needs to know about recently committed or aborted 
transactions. Exactly what “recently” means depends on the details of the RM 
algorithm. 

Ddempotence of Restart 

Although Read, Write, Commit, and Abort execute atomically with respect to 
each other, Restart can interrupt any of them, because a system failure can 
happen at any time. Indeed, Restart can even interrupt its own execution, 
should a system failure occur while Restart is recovering from an earlier fail- 
ure. That Restart can interrupt itself leads to another important requirement: 
Restart must be idempotent. This means that if Restart stops executing at any 
moment and starts executing again from the beginning, it produces the same 
result in the stable database as if the first execution had run to completion. 
Said more abstractly, it means that any sequence of incomplete executions of 
Restart followed by a complete execution of Restart has the same effect as just 
one complete execution of Restart. 

If an execution of Restart is interrupted by a system failure, then a second 
execution of Restart will begin by reinitializing volatile storage, since it 
assumes that this storage was corrupted by the failure. However, it will accept 
the state of stable storage as is, including updates produced by the first execu- 
tion of Restart. Thus, the pragmatic implication of idempotence is that Restart 
should ensure that stable storage is always in a state that a new execution of 

“For media recovery, the Garbage Collection Rule applies, but with respect to the archive data- 
base. That is, case (2) applies iff some other transaction wrote into x in the archive database 
after Ti did. 
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Restart can properly interpret. This amounrs to being careful about the values 
Restart writes to stable storage and the order in which it writes them. In this 
sense, idempotence is similar to the Undo and Redo Rules, in that it also 
restricts the order of certain updates CO stable storage so that Restart can do 
its job. 

Preview 

In the following sections, we’ll describe the four different types of RMs 
mentioned previously: undo/redo, undo/no-redo, no-undo/redo, and no- 
undo/no-redo. For convenience of exposition, we present an RM as a collec- 
tion of five procedures representing the RM’s five operations: RM-Read, 
RM-Write, RM-Commit, RM-Abort, and Restart. In each of the four RM 
algorithms presented, we first describe the five procedures at a fairly abstract 
level. The purpose is to state what the RM has to do, rather than bow it does 
it. The “how” issues are taken up later, when we examine various implementa- 
tion strategies. 

6.4 THE UNDO/REDO ALGORITHM 

In this section we describe an RM algorithm that requires both undo and redo. 
This is the most complicated of the four types of RMs. However, it has the 
significant advantage of being very flexible about deciding when to flush dirty 
cache slots into the stable database. It leaves the decision to flush almost 
entirely to the CM. This is desirable for two reasons. First, an RM that uses 
undo/redo avoids forcing the Ch4 to flush unnecessarily, thereby minimizing 
I/O. By contrast, a no-redo algorithm generally flushes more frequently, since 
it must ensure that all of a transaction’s updated items are in the stable data- 
base before the transaction commits. Second, it allows a CM that uses in-place 
updating to replace a dirty slot last written by an uncommitted transaction. A 
no-undo algorithm cannot flush the slot in this case, since it wouId be writing 
an uncommitted update into the stable database. In general, the undo/redo 
algorithm is geared to maximize efficiency during normal operation, at the 
expense of less efficient processing of failures than is possible with other algo- 
rithms. 

Suppose transaction T, writes value LJ into data item X. In this algorithm, 
the RM fetches x if it isn’t already in cache, records v in the log and in x’s cache 
slot, c, but does not ask the CM to flush c. The Ch4 only flushes c when it 
needs to replace x to free up c for another fetch. Thus, recording an update in 
the stable database is in the hands of the CM, not the RM. If the CM replaces c 
and either T, aborts or the system fails before T, commits, then undo will be 
required. On the other hand, if T, commits and the system fails before the CM 
replaces c, then redo will be required. 
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We assume the granularity of data items on which RM procedures operate 
is the same as the unit of atomic transfer to stable storage. We assume a physi- 
cal log that is an ordered list of records of the form [ Ti, X, v], and that is recy- 
cled according to the Garbage Collection Rule. We assume that the initial value 
of each data item is written in the log before any transactions are processed. 
(Alternatively, the first Write to each data item can store the initial value of the 
data item in the log.) Each update of the log and the commit list goes directly 
to the stable storage device and must be acknowledged by that device before 
proceeding to the next step. 

We now outline the five RM procedures for this algorithm. 

RM-Write( T,, x, v) 

1. Add Ti to the active list, if it’s not already there. 

2. If x is not in the cache, fetch it. 

3. Append [Ti, X, V] to the log. 

4. Write v into the cache slot occupied by z.tAj5 

5. Acknowledge the processing of RM-Write( T,, X, v) to the scheduler. 

RM-Read( Ti, x) 

1. If x is not in the cache, fetch it. 

2. Return the value in x’s cache slot to the scheduler. 

RM-Commit( TJ 

1. Add Ti to the commit list.@) 

2. Acknowledge the commitment of Ti to the scheduler. 

3. Delete T, from the active list.‘Q 

RM-Abort( Ti) 

1. For each data item h: updated by T;: 

a if x is not in the cache, allocate a slot for it; 

H copy the before image of x wrt Tj into x’s cache slot.@) 

2. Add T, to the abort list. 

3. Acknowledge the abortion of Ti to the scheduler. 

4. Delete T; from the active list. 

Restart 

1. Discard all cache slots.(E) 

‘All comments are iisted after the descriptions of the operations and are cross-referenced with 
superscripted capital letters. 
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2. Let redone : = { j and undone : = { 1.“’ 

3. Start with the last entry in the log and scan backwards toward the 
beginning. Repeat the following steps until either redone U undone 
equals the set of all data irems in the database, or there are no more log 
entries to examine. For each log entry [T,, x, v], if x @ redone U 
undone, then 

m if x is not in the cache, allocate a slot for it; 

n if T, is in the commit list, copy L’ into X’S cache slot’;’ and set 
redone : = redone U {x} ; 

H otherwise (i.e., T, is in the abort list or in the active but not the 
commit list), copy the before image of x wrt TI:~ into x’s cache slot 
and set undone : = undone U {x>. 

4. For each T, in the commit list, if T, is in the active list, remove it from 
there. 

5. Acknowledge the completion of Restart to the scheduler.,” 

Comments 

A. [Step (4) of RM-Write] To avoid repetitive comments, we assume here, 
and through the rest of the chapter, that when a cache slot is written 
into (thus making its value different from the value of the corresponding 
location in the stable database), the RM sets the slot’s dirty bit. We also 
assume that the RM pins a cache slot before reading or writing it, and 
unpins it afterwards, thereby ensuring that RM-Reads and RM-Writes 
are atomic wrt flushes. 

B. [Step (1) of RM-Commit( T;)] It is the act of adding T, to the commit 
list (in stable storage) that declares T, committed. Should a system 
failure occur before this step completes, T, will be considered uncom- 
mitted. Otherwise it will be considered committed even if Step (2) of 
RM-Commit( T,) was not completed. 

C. [Step (3) of RM-Commit] The significance of the active and abort lists 
will be discussed in a later subsection, on checkpointing. 

D. [Step (1) of RM-Abort] At this point, the before image is only restored 
in the cache. The CM will restore it in the stable database when it 
replaces x’s cache slot. 

E. [Step (1) of Restart] A system failure destroys the contents of volatile 
storage, and hence the cache. Thus when Restart is invoked, the values 
in the cache cannot be trusted. 

F. [Step (2) of Restart] redone and undone are variables local to Restart 
that keep track of which data items have been restored to their last 
commirted value by a redo or undo action (respectively). 
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G. [Step (3) of Restart] At this point, x’s last committed value is only 
restored in the cache. The CM will restore it in the stable database 
when it replaces x’s cache slot. 

H. [Step (3) of Restart] The before image of x wrt T, can be found in 
the log. 

I. [Step (4) of Restart] Upon recovery from a system failure, the scheduler 
must wait for the acknowledgment that Restart has been completed by 
the RM. It may then start sending operations to the RM again. 

Undo and Redo Rules 

This algorithm satisfies the Undo Rule. Suppose the location of x in the stable 
database contains the last committed value of X, say V, written by transaction 
T,. When T, wrote into x, the RM inserted [T;, X, V] in the log (see step (2) of 
RM-Write). By the Garbage Collection Rule, since v is the last committed 
value of X, this record cannot have been removed. In particular, it will still be 
in the log when the CM overwrites v in the stable database, as desired for the 
Undo Rule. 

The Redo Rule is likewise satisfied. All of a transaction’s updates are 
recorded in the log before the transaction commits, whether or not they were 
also recorded in the stable database. By the Garbage Collection Rule they must 
still be there when the transaction commits. 

Since the algorithm satisfies the Undo and Redo Rules, Restart can always 
find in stable storage the information that it needs for restoring the last 
committed value of each data item in the stable database. In step (3), Restart 
redoes an update to x by a committed transaction, or undoes an update to x by 
an active or aborted transaction, only if no other committed transaction subse- 
quently updated x. Thus, when Restart terminates, each data item will contain 
its last committed value. Moreover, Restart is idempotent. If it is interrupted 
by a system failure and reexecutes from the beginning, the updates it redoes 
and undoes in step (3) are the same as those it would have done if its first 
execution had not been interrupted. 

Checkpointing 

The Restart procedure just sketched may have to examine every record ever 
written in the log - except, of course, those that have been garbage collected, 
This is still a very large number of records, since garbage collection is an 
expensive activity and is carried out fairly infrequently. Moreover, since most 
data items in the database probably contain their last committed values at the 
time of the failure, Restart is doing much more work than necessary This inef- 
ficiency of Restart is an important issue, because after a system failure, the 
DBS is unavailable to users until Restart has finished its job. 
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This problem is solved by the use of checkpointing methods. In general, 
checkpointing is an activity that writes information to stable storage during 
normal operation in order to reduce the amount of work Restart has to do 
after a failure. 

Checkpointing performs its work by a combination of two types of 
updates to stable storage: (1) marking the log, commit list, and abort list to 
indicate which updates are already written or undone in the stable database, 
and (2) writing the after images of committed updates or before images of 
aborted updates in the stable database. Technique (1) tells Restart which 
updates don’t have to be undone or redone again. Technique (2) reduces the 
amount of work that Restart has to do by doing that work during checkpoint- 
ing. Technique (1) is essential to any checkpointing activity. Technique (2) is 
optional. 

One simple checkpointing scheme is periodically to stop processing trans- 
actions, wait for all active transactions to commit or abort, flush all dirty 
cache slots, and then mark the end of the log to indicate that the checkpointing 
activity took place. This is caIled commit consistent checkpointing, because 
the stable database now contains the last committed value of each data item 
relative to the transactions whose activity is recorded in the log. With commit 
consistent checkpointing, Restart scans the log backward, beginning at the 
end, undoing and redoing updates corresponding to log records, until it 
reaches the last checkpoint marker. It may have to examine log records that 
precede the marker in order to find certain before images: namely, the before 
images of each data item that was updated after the last checkpoint marker, 
but not by any committed transaction. 

The activity of checkpointing and the stable database created by check- 
pointing are both sometimes called checkpoints; we will use the word Check- 
point (capital 77’) as the name of the procedure that performs the 
checkpointing activity, 

The main problem with this Checkpoint procedure is performance. Users 
may suffer a long delay waiting for active transactions to complete and the 
cache to be flushed. We can eliminate the first of these two delays by using the 
following Checkpoint procedure, called cache consistent checkpointing, which 
ensures that all Writes written to cache are also in the stable database. 

Periodically, Checkpoint causes the RM to stop processing other opera- 
tions (temporarily leaving active transactions in a blocked state), flushes all 
dirty cache slots, and places markers at the end of the log and abort list to 
indicate that the flushes took place. Consider now what Restart must do after 
a system failure assuming that this Checkpoint procedure is used. All updates 
of committed transactions that happened before the last Checkpoint were 
installed in the stable database during that Checkpoint and need not be 
redone. Similarly, all updates of transactions that aborted prior to the last 
Checkpoint were undone during that Checkpoint, and need not be undone 
again. Therefore Restart need only redo those updates of transactions in the 
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commit list that appear after the last checkpoint marker in the log. And it need 
only undo updates of those transactions that are in the active (but not the 
commit) list, or are in the abort list and appear after the last checkpoint 
marker in that list. 

This checkpointing scheme still delays transactions while the cache is 
being flushed. We can reduce this delay by using the following technique, 
calledJuzzy checkpointing. Instead of flushing all dirty cache slots, the Check- 
point procedure only flushes those dirty slots that have not been flushed since 
before the previous checkpoint. The hope is that the CM’s normal replacement 
activity will flush most cache slots that were dirty since before the previous 
checkpoint. Thus Checkpoint won’t have much flushing to do, and therefore 
won’t delay active transactions for very long. 

This Checkpoint procedure guarantees that, at any time, all updates of 
committed transactions that occurred before the penultimate (i.e., second to 
last) Checkpoint have been applied to the stable database - during the last 
Checkpoint, if not earlier. Similarly, all updates of transactions that had 
aborted before the penultimate Checkpoint have been undone. 

As in cache consistent checkpointing, after flushing the relevant cache 
slots, the fuzzy Checkpoint procedure appends markers to the log and to the 
abort list. Thus, after a system failure, Restart redoes just those updates of 
transactions in the commit list that come after the penultimate checkpoint 
marker in the log, and it undoes just the updates of those transactions that are 
either in the active (but not the commit) list, or are in the abort list and follow 
the penultimate checkpoint marker in that list. Checkpoint and Restart algo- 
rithms that use this strategy are described in detail in the next subsection. 

In reviewing the checkpointing schemes we have discussed, we see at work 
a fundamental parameter of checkpointing: the maximum length of time, t, 
that a cache slot can remain dirty before being flushed, Increasing t decreases 
the work of Checkpoint and increases the work of Restart. That is, it speeds 
up the system during normal operation at the expense of slowing down the 
recovery activity after a system failure. Hence t is a system parameter that 
should be tuned to optimize this trade-off. 

An implementation of Undo/Redo 

A problem with the undo/redo algorithm is that after images of data items can 
consume a lot of space. If data items are pages of a file, then each update to a 
page generates a little over a page of log information, consisting of the page’s 
address, its after image, and the identifier of the transaction that wrote the 
page. This produces a lot of disk I/O, which can seriously degrade perfor- 
mance. And it consumes a lot of log space, which makes garbage collection of 
the log a major factor. 

These problems are especially annoying if most updates only modify a 
small portion of a data item. If data items are pages, then an update might only 
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modify a few fields of one record stored on that page. In this case, it would be 
more efficient to log only partial data items, namely, the portion of each data 
item that was actually modified. A Iog record should now also include the 
offset and length of the portion of the data item that was modified. 

The algorithm described next logs partial data items and uses fuzzy check- 
pointing. We will call it the partial data item logging algorithm. 

The algorithm incorporates the active, commit, and abort lists into the 
log, which is stored as a sequential file. Each log entry may now be made 
smaller than a data item, which is the unit of transfer to stable storage. It is 
therefore inefficient to write each log entry to stable storage at the time it is 
created, as in step (2) of RM-Write. It is more efficient to write log entries into 
a log buffer in volatile storage. When the buffer fills up, the log buffer is 
appended to the stable copy of the log. This significantly reduces the number 
of Writes to the (stable) log, but jeopardizes the Undo and Redo Rules. 

It jeopardizes the Redo Rule because it is possible to commit a transaction 
before the after images of all of its updates are in the log. This problem is 
avoided almost automatically Recall that commit list entries are stored in the 
log. Therefore, to add T, to the commit list in step (1) of RM-Commit, we 
simply add T,‘s commit list entry to the log buffer and flush the Iog buffer to 
the (stable) log. Since Ti’s commit list entry follows all of the log entries 
describing its Writes, this ensures that the after images of all of its Writes are in 
the log before it commits, thereby satisfying the Redo Rule. Of course, the log 
buffer may not be full at the time a rransaction commits, thereby sending a 
partially full buffer to stable storage. This partially defeats the reason for using 
the log buffer in the first place. It may therefore be worthwhile to use the 
delayed commit (sometimes called group commit) heuristic, which deliberately 
delays a requested Commit operation if it arrives when the last log buffer is 
largely empty. This delay provides some extra time for other transactions to 
write log entries to the log buffer before the Commit flushes it. 

Buffering the log jeopardizes the Undo Rule because it is illegal to write an 
uncommitted update to the stable database before its before image is in the 
(stable) log. To solve this problem, it is helpful to identify each log entry by its 
log address or log sequence number (LSN), and to add to each cache slot 
another field containing an LSN. After RM-Write( T,, x, v) inserts a log entry 
for x in the log buffer and updates x’s cache slot, and before it unpins that slot, 
it writes the LSN of that entry into the slot’s LSN. Before the CM flushes a slot, 
it ensures that all log entries up to and including the one whose LSN equals the 
cache slot’s LSN have been appended to the log. Only then may it flush the 
slot. Since the slot is flushed only after its log entries are written to stable stor- 
age, the Undo Rule is satisfied. 

Notice that step (3) of RM-Write(T,, X, v) writes the log record to stable 
storage before x’s cache slot is updated. This is sooner than necessary. By using 
the LSN mechanism just described, or by simply keeping track of the order in 



6.4 THE UNDO/REDO ALGORITHM 187 

which certain pages must be written, we can avoid forcing this log record to be 
written to stable storage until x’s cache slot is flushed. 

We now describe the contents of each of the four types of log records in 
detail. 

1. Update: This type of record documents a Write operation of a trans- 
action. It contains the following information: 

m the name of the transaction that issued the Write; 

H the name or stable database location of the data item written; 

q the offset and length of the portion of the data item that was 
updated; 

q the old value of the portion of the data item that was updated (its 
before image)$ 

q the new value of the portion of the data item that was updated (its 
after image); and 

q a pointer to (i.e., the LSN of) the previous update record of the 
same transaction (Null if this is the first update of the transaction); 
this can be easily found by maintaining a pointer to the last update 
record of each active transaction. 

This record is inserted in the log by step (3) of RM-Write. 

2. Commit: This type of record says that a transaction has committed, 
and simply contains the name of the transaction. It is appended to the 
log by step (1) of RM-Commit. 

3. Abort: This record says that a transaction has aborted and contains the 
name of that transaction. It is appended to the log by step (2) of RM- 
Abort. 

4. Checkpoint: This type of record documents the completion of a check- 
point. It contains the following information: 

q a list of the active transactions at the time of the checkpoint; and 

m a list of the data items that were in dirty cache slots, along with the 
“stable-LSNs” of these slots, at the time the checkpoint was taken. 

The stable-LSN is an additional field of information that we associate with 
each cache slot. It is the LSN of the last record in the log buffer at the time the 
data item presently occupying the slot was last fetched or flushed. The stable- 
LSN of a cache slot storing x marks a point in the log where it is known that 
the value of the stable database copy of x reflects (at least) all of the log records 
up to that point. 

%I the previous abstract description of logs, update records did not contain the before image of 
the updated data item. It turns out that keeping such information in these records greatly facili- 
tates the processing of RM-Abort and Restart. 
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The checkpoint record is inserted in the log by the Checkpoint procedure, 
shown below. 

Checkpoint 

1. Stop the RM from processing any more Read, Write, Commit, and 
Abort operations, and wait until it finishes processing all such opera- 
tions that are in progress. 

2. Flush each dirty cache slot that has not been flushed since the previous 
checkpoint. To achieve this, scan the cache and flush any dirty slot 
whose stable-LSN is smaller than the LSN of the previous checkpoint 
record (which can be stored in a special location in main memory for 
convenience), and update the stable-LSN of the slot accordingly. 

3. Create a checkpoint record containing the relevant information (see the 
previous description of checkpoint records) and append this record to 
the log. 

4. Acknowledge the processing of Checkpoint, thereby allowing the RM to 
resume processing operations. 

The Checkpoint procedure is invoked periodically by the RM itself. For 
example, the RM may invoke it whenever the number of update records in- 
serted in the log since the previous checkpoint exceeds a certain amount. As we 
mentioned earlier, increasing the frequency of checkpoints decreases the work 
of Restart and therefore decreases the recovery time after a system failure. 

Given this structure for the log, the implementation of RM-Read, RM- 
Write, RM-Commit, and RM-Abort follows the outline given earlier in the 
section. Note how efficiently RM-Abort can be carried out. Since all of a trans- 
action’s update records are linked together, only the relevant log records need 
to be considered. Because such links may have to be followed, it is much better 
to keep the log on disk or another direct access device, rather than on tape. 
And since before images are included in the update records, no additional 
searching of the log is needed. 

Restart 

Restart processes the log in two scans: a backwards scan during which it 
undoes updates of uncommitted transactions, followed by a forward scan 
during which it redoes updates of committed transactions. We will first 
describe a simple version of the algorithm, after which we will look at poten- 
tial optimizations. 

The backwards scan begins at the end of the log (see Exercise 6.11). 
During this scan, Restart builds lists of committed and aborted transactions, 
denoted CL and AL (respectively). When it reads a commit or abort record, it 
adds the transaction to rhe appropriate list. When it reads an update record of 
some transaction T, for data item x, it performs the following steps: 
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1. If T, is in CL, it ignores the update record. 

2. If Ti is in neither CL nor AL, then T; was active at the time of failure, 
so it adds Ti to AL. 

3. If Tj is (now) in AL, then it fetches x if it is not already in cache, and 
restores the before image of the portion of x recorded in the update 
record. Moreover, if the update record has no predecessor (i.e., this is 
the first log record of Ti), then Ti is removed from AL (since there’s 
nothing more of T; to be undone). 

Restart ignores the last checkpoint record. When it reads the penultimate 
checkpoint record, Restart examines the list of active transactions stored in 
that record and adds to AL any of those transactions that are not in AL or CL. 
These are transactions that were active at the time of the penultimate Check- 
point and didn’t commit or abort (or perform any updates) ever since. Thus, 
they were active at the time of the failure and should be aborted. 

From the penultimate checkpoint record, Restart continues its backward 
scan of the log, ignoring all records except update records of transactions in 
AL. These are processed as in step (3) just given. The backward scan termi- 
nates when AL is left empty (recall that when the first update record of some 
transaction Ti in AL is processed, T, is removed from AL). 

To understand the effect of the backward scan, consider a single byte b of 
some data item. Let U be the last update record in the log that reflects an 
update to b, and whose transaction committed before the failure. By defini- 
tion, U’s after image defines b’s last committed value relative to the execution 
at the time of the failure. We claim that if U pr’ecedes the penultimate check- 
point record, then b’s value is contained in U’s after image at the conclusion of 
the backward scan. To see this, first observe that since U precedes the penulti- 
mate checkpoint record, its after image must have been written to the stable 
database before the failure. Let V be any update record that reflects an update 
to b and follows U in the log. Let Tv be the transaction corresponding to V# By 
definition of U, Tv did not commit before the failure. If its abort record 
precedes the penultimate checkpoint record, then V must have been undone in 
the stable database. If not, then Restart’s backward scan of the log undid V’s 
update. In either case, b contains its after image in U as claimed. 

By the preceding argument, all that remains after the backward scan is to 
install the correct value in those bytes whose last committed value is defined by 
an update record that follows the penultimate checkpoint record. This is done 
by a forward scan of the log beginning at the penultimate checkpoint record. 
For each update record U whose transaction is in CL, the corresponding data 
item is fetched if it is not already in cache, and U’s after image is written into 
the cache slot. Update records of transactions not in CL are ignored. The scan 
terminates when it reaches the end of the log, at which time the database (some 
of which is still dirty in cache) is in the committed state with respect to the log. 
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This Restart algorithm is idempotent. It makes no assumptions about the 
stable database state other than those implied by the checkpoint records. 
Thus, if it is interrupted by a system failure after having performed some of its 
undos and redos, it can still be reexecuted from the beginning after the failure. 

With its two scans of the log and updates of many data items, Restart can 
be a time consuming process. If the system were to fail after Restart terminates 
but before a Checkpoint was executed, all of that work would have to be 
repeated after the second failure. Restart can protect itself against such a fail- 
ure by performing two checkpoints after it terminates. In effect, this results in 
a commit consistent checkpoint. 

Using the information in the last checkpoint record that tells which data 
items were in dirty cache slots, we can improve this Restart procedure and 
avoid undoing or redoing certain update records. More specifically, suppose 
that during the backward scan of the log, Restart reads an update record of 
transaction T, for data item x, where T, is in AL. Such an update record need 
not be undone if: 

AZ: Ti’s abort record lies between the penultimate and last checkpoint 
records, but x is not among the data items occupying dirty slots at the time 
of the last checkpoint; or 

A2: T,‘s abort record lies between the penultimate and last checkpoint 
records, and x was in a dirty cache slot at the last checkpoint, but its 
stable-LSN (also stored in the checkpoint record) is greater than the LSN 
of T,‘s abort record. 

To see Al, observe that data item x’s absence from a dirty cache slot at the 
last checkpoint means that X’S cache slot was replaced after T, aborted. There- 
fore the before image of T,‘s update for x was restored in the stable database. 

To see A2, recall that before T,‘s abort record was written, RM-Abort 
restored in the cache the before image of T,‘s update of X. The cache slot for x 
must have been replaced between this time and the last checkpoint. Otherwise 
the stable-LSN for x’s cache slot at the last checkpoint would not have been 
greater than the LSN of T,‘s abort record. Thus, the before image of T,‘s 
update of x was restored in the stable database. 

Similarly, suppose that during the forward scan of the log, Restart reads an 
update record of some transaction T, in CL for data item X. Such a record need 
not be redone if: 

CZ: T{s update record lies between the last two checkpoint records, but 
x is not in the list of data items that were in dirty cache slots at the time of 
the last checkpoint; or 

C2: T,‘s update record lies between the last two checkpoint records, x is 
in the list of data items in dirty cache slots at the last checkpoint, but its 
stable-LSN is greater than the LSN of the update record at hand, 
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The reasons why these conditions make it unnecessary to redo Ti’s update 
of x are analogous to those of the corresponding conditions Al and A2. 
However, there is a subtle difference: conditions Cl and C2 describe the posi- 
tion of an update record relative to other records, but the corresponding condi- 
tions Al and A2 describe the position of an abort record relative to other 
records. The reason for the difference will become apparent if you attempt to 
carry out the arguments to justify Cl and C2. 

Logical Logging 

Even with partial data item logging, before and after images of data items may 
consume too much space. This will occur if each Write on a data item x 
modifies most of the contents of x. For example, suppose each data item is a 
page of a file. A user operation that inserts a new record, r, at the beginning of 
a page, p, may have to shift down the remaining contents of p to make room 
for r. From the RM’s viewpoint, all of p is being written, so p’s before and after 
image must be logged in an update record, even with partial data item logging. 

Using logical logging, one could reduce the size of this two page update 
record by replacing it with a log record that says “insert record Y on page p.” 
This log record would be much smaller than one containing a before and after 
image of p. To interpret this log record after a failure, Restart can redo it by 
inserting r on p, or can undo it by deleting r from p, depending on whether the 
corresponding transaction committed or aborted. 

To implement logical logging, we need to expand the RM’s repertoire of 
update operations beyond the simple Write operation. The larger repertoire 
may include operations such as insert record, delete record, shift records 
within page, etc. For each update operation o, the RM must have a procedure 
that creates a log record for o, a procedure that redoes o based on what the log 
record says, and a procedure that undoes o based on what the log record says. 

These procedures are then interpreted by Restart in much the same way 
that update records are interpreted. However, there is one important differ- 
ence. When interpreting an update record in physical logging, we can restore a 
before or after image without worrying about the current state of the data 
item. With logical log records we must be more careful. Some undos or redos 
corresponding to logical log records may only be applicable to a data item 
when it is in exactly the same (logical) state as when the log record was 
created. 

To see why this matters, consider the following example. Suppose that the 
logical log contains a record LR, “insert record r on page p.” Suppose that p’s 
cache slot that includes LR’s insertion was not flushed to the stable database 
before the system failed, and that the transaction that issued the insertion is 
aborted by Restart. When scanning back through the log, Restart will undo 
LR. However, the procedure undo(LR) is operating on a copy of p that does 
not have record r stored in it. Unfortunately, undo(LR) may not be able to tell 
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whether or not T is in p. If it tries to delete r anyway (i.e., undo the insertion), it 
may obliterate some other data in p, thereby corrupting p. Notice that this 
wouldn’t be a problem if it were simply restoring a before image, since 
correctly restoring a before image does not depend on the current state of the 
data item. 

One way to avoid this problem is to write undo and redo procedures that 
have no effect when applied to a data item that is already in the appropriate 
state. For example, undo(LR) should have no effect if p does not include LR’s 
update, and redo(LR) should have no effect if p already does include LR’s 
update. 

A second way to avoid the problem is to keep a copy of the stable database 
state as of the last checkpoint. After a system failure, Restart works from the 
“checkpoint” copy instead of the current stable database. It undoes update 
records that precede the last checkpoint record and that were produced by 
transactions that were active at the last checkpoint and did not subsequently 
commit. Then it redoes update records that follow the last checkpoint and 
were produced by committed transactions. Given that the execution is strict, 
each undo and redo of a log record will be applied to the same database state 
as when the log record was created. 

This technique is used in IBhl’s prototype database system, System R. In 
their algorithm, shadowing is used to define the stable database at each check- 
point. Two directories are maintained: D,,,, describing the current stable data- 
base state, and Dckpi, describing the stable database state just after the 
execution of the Checkpoint procedure. To checkpoint, the cache slots are 
flushed and a copy of D,,, is saved as the new Dckpr. Subsequent updates are 
written to new locations, pointed to by D,,,,. The shadow copies pointed to by 
Dikpr are not overwritten, and therefore are available to Restart in the event of 
a system failure. 

A third ivay to avoid the problem is to store LSNs in data items. Each data 
item contains rhe LSN of the log record that describes the last update applied 
to that data item by an active or committed transaction. In practice, many 
databases are structured with header information attached to each data item 
(e.g., a page header). In such databases, the LSN would be a field of the 
header. 

The LSN in a data item x is very helpful to Restart, because it tells exactly 
which updates in the log have been applied to X. All update records whose LSN 
is less than or equal to LSN(x) (i.e., the LSN stored in x) have been applied to 
.x. All those with larger LSN have not. This information enables Restart to 
undo or redo an update record on x only if x is in the same state as when the 
update record was generated. 

LSNs in data items also help Restart be more efficient. Since Restart can 
rell if an update has already been applied to the stable copy of a data item by 
examining that data item’s LSN, it can avoid unnecessary undos and redos to 
that data item. 
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To help it maintain the correct value for the LSN in each data item, the RM 
uses a new field for each update record U for data item X. The field contains 
the LSN of the previous active or committed update record for x before U. 
This information is easy to obtain at the time U is produced, because it is 
simply the LSN in x just before U’s update is performed. Thus, all of the 
updates to each data item are chained backward in the log through this field. 

We will explain how the RM uses LSNs in data items by describing a modi- 
fied version of the partial data item logging algorithm, presented earlier in the 
section. We call it the LSN-based logging algorithm. In this description, we 
assume logical logging where each update record describes an update to a 
single data item (where a data item is the unit of transfer to stable storage). We 
also assume that executions are strict and that fuzzy checkpointing is used, as 
described earlier in the Section. 

To process an RM-Write on X, the RM creates an update record U. It 
stores the current LSN(x) in U, updates x, and assigns LSN(x) to be LSN(U) 
(i.e., U’s address in the log). When undoing U in the event of an Abort, it 
reassigns LSN(x) to be the previous LSN(x) stored in U.’ 

Restart does two scans of the log: a backward scan for undo, and a 
forward scan for redo. During the backward scan, suppose Restart encounters 
a log record U reflecting an update to x by a transaction T, that subsequently 
aborted. It therefore fetches x and examines LSN(x). There are three cases: 

1. If LSN(x) = LSN( U), then Restart undoes U, assigning to LSN(x) the 
previous LSN, which is stored in U. Notice that LSN(x) = LSN( U) 
implies that x is in the same state as it was after U was first applied, so 
it is safe to undo the logical log record. 

2. If LSN(x) < LSN(U), then x does not contain U’s update. So Restart 
should not undo U. Notice that LSN(x) helps us avoid incorrectly undo- 
ing U in this case. 

3. If LSN(x) > LSN(U), then x contains an update described in an update 
record Vappearing after U in the log. Since V was already encountered 
in the backward scan and was not undone, the transaction that 
produced V must have committed. Since the execution is strict and U 
precedes V in the log, U was undone before Vupdated x. Thus, as in 
case (2), it would be incorrect for Restart to undo U, since x is not in 
the same state as when U was written. 

The backward scan terminates after Restart has reached the penultimate 
checkpoint and has processed all update records from transactions that were 
active at the penultimate checkpoint and did not subsequently commit. 

During the forward scan, Restart begins at the penultimate checkpoint 
and processes each update record U (on X, say) from a committed transaction. 

‘This requires that the execution is strict. See the later discussion on record level locking. 
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If LSN(x) < LSN( U), then it must be that LSN(x) is the LSN in of the previous 
update record for X, so Restart redoes U. If LSN(x) > LSN( U), then Restart 
ignores U, because x either has the state originally produced by U (i.e., LSN(x) 
= LSN( U)) or x contains an update “later” than u’s (i.e., LSN(x) > LSN( U)). 
The “later” update must have been done by a committed transaction, or else it 
would have been undone in the backward scan of the log. 

This Restart algorithm not only uses LSNs in data items to ensure a data 
item is in the appropriate state before applying a logical log record, but it also 
avoids unnecessary undos and redos. For example, during Restart’s undo scan 
of the log, in case (3) just given (LSN(x) > LSN(U)), x already contains a 
committed value that is “later” than the one that undo(U) would have restored 
(had it been correct to do so). The Restart algorithm for partial data item 
physical logging would have undone U anyway, and then would redo V (the 
update record that produced the current value of x) during the forward scan. 
Using LSNs, we save the unnecessary work of ~lndo( U) and redo(V). Thus, the 
use of LSNs in data items is valuable even with partial data item physical 
logging (see Exercise 6.24). 

Logical logging may be especially useful for logical operations that update 
more than one data item. For example, in a dynamic search structure, such as 
a B-tree or dynamic hash table, an insertion of a single record may cause a page 
(i.e., data item) to be split, resulting in updates to three or more pages. One 
can save considerable log space by only logging the insertion, and leaving it to 
the undo and redo procedures to update all of the relevant pages. 

However, a problem arises if the system fails when the database does not 
contain all of the updates performed by a single logical operation. For exam- 
ple, suppose operation o updates data items x, y, and z. (Operation o could be 
an insertion into a B-tree, which causes half of node x to be moved into a new 
node, z, and causes x’s parent, 3; to be updated to include a pointer to z.) After 
logging o in log record LR, the RM updates x and y, which are written to the 
stable database. But before the RM updates z, the system fails. Now, x and y 
contain LR's LSN, but z contains an earlier LSN. A straightforward implemen- 
tation of tlndo(LR) and redo(LR) may not be able to properly interpret this 
mixed stare of x, y, and z. To avoid this problem, a separate update record 
should be produced for each data item that is modified by the logical update. 

Record Level Locking 

Suppose we use a 2PL scheduler that locks records, where many records are 
stored on each page, and a page is the unit of atomic transfer to stable storage. 
To gain the benefit of record level locking, executions cannot be strict at the 
level of pages. If they were, then two active transactions could not concur- 
rently update two different records on the same page, in which case they might 
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as well lock pages instead of records. The next best alternative is to have 
executions be strict at the level of records. That is, a transaction can only write 
into a record 7 if all previous transactions that wrote into Y have either commit- 
ted or aborted. 

Since the execution is strict, we can use the undo/redo algorithm for phys- 
ical data item logging. Alternatively, we can use the logical logging algorithm, 
provided we make an adjustment for the way LSNs are handled during undo. 
To illustrate the problem, suppose records Y, and r, are stored on the same page 
p. Consider the following history, which represents an execution of transac- 
tions T;, Tj, and Tk: wi[r,] C; ZUj[r,] wk[T1] ck ctj. AS the RM processes this execu- 
tion, it produces a log. In fact, since there are no Reads in the execution, the 
log has exactly one record for each operation in the history. It will be conve- 
nient, for the moment, to use the history notation as representation for the log 
(e.g., the log record describing T/s update of database record rl will be denoted 
“Wi[T~],” etc.). 

Using the previous approach on this log, to process aj we would undo 
wj[r,] and install w&Y,]‘s LSN on p (which is the last update to p before wj[r,]). 
But this is the wrong LSN, because p contains Wk[i’z], which has a larger 
LSN. In fact, there is no LSN that one can install in p to represent the precise 
state of p. 

One good way around this problem is to write a log record for each undo 
that is performed. In the example, the log would now be wi[r,] ci wj[r,] wk[rz] ck 
undo(wJr,]), where “trtido(wj[r,])” is a log record that records the fact that 
wj[r,] was undone. When performing the undo, the RM can install the LSN of 
trndo(wj[r,]) in p, which correctly describes the state of p relative to the log. 
Since we can trust a data item’s LSN to tell us the exact state of the data item 
relative to the log, we can use the Restart procedure that we just described for 
LSN-based logging (Exercise 6.23). 

However, there are complications to consider. One is undoing and redoing 
log records that describe undos. For example, if the system fails after 
undo(w$r,]) in the execution being discussed, then during the backward log 
scan Restart should undo the log record for undo(wj[r,]) and then undo the log 
record for wj[rl]. Another issue is the logging done by Restart itself. Suppose 
Restart logs the undos it performs during the backward scan. Then an execu- 
tion of Restart that is interrupted by a system failure has lengthened the log, 
giving it more work to do when it is invoked again. In theory, it might never 
terminate, even if the intervals between successive failures grow monotonically 
(see Exercise 6.24). 

A second approach is to store LSNs in records rather than pages. To undo 
wj[r,] in the example under discussion now requires no special treatment; just 
assign to r,‘s LSN the LSN of the previous update record reflecting a Write on Y, 
(see Exercise 6.25). This method avoids the complications associated with 
logging undos, but incurs extra space overhead for an LSN per data item. 
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6.5 THE UNDO/NO-REDO ALGORITHM 

In this section we present a DM algorithm that never requires redo. To achieve 
this, the algorithm records all of a transaction’s updates in the stable database 
before that transaction commits. This can be achieved by a slight modification 
of the algorithm in Section 6.4. In fact, the RM-Write, RM-Read, and RM- 
Abort procedures are precisely the same. Rhii-Commit and Restart are 
outlined next. 

RM-Commit( T,) 

1. For each data item x updated by T,, if x is in the cache, flush the slot it 
occupies. 

2. Add T, to the commit list.,’ 

3. Acknowledge the commitment of T, to the scheduler. 

4. Delete T, from the active list. 

Restart 

I. Discard all cache slots. 

2. Let undone : = { }. 

3. Start with the last entry in the log and scan backwards to the beginning. 
Repeat the following steps until either undone equals the set of data 
items in the database, or there are no more log entries to examine. For 
each log entry [T,, x, u], if T, is not in the commit list and x @ undone, 
then: 

w allocate a slot for x in the cache; 

n copy the before image of x wrt T, into x’s cache slot; 

undone : = undone U Ix). 

4. For each T, in the commit list, if T, is in the active list, remove it from 
the active list. B 

5. Acknowledge the completion of Restart to the scheduler. 

Comments 

A. [Step (2) of RM-Commit( T,)] This is the action that declares a trans- 
action committed. If the system fails before T, is added to the commit 
list, Restart will consider 1, uncommitted and will abort it (see Restart). 

B. [Step (2) of Restart] The system failure may have occurred after step (2) 
but before step (4) of RM-Commit(T,). Thus it is possible for T, to be 
found both in the active and the commit list. In this case. the transac- 
tion must be considered committed (see comment (A)). 

This RM-Commit procedure is essentially the same as in the undo/redo 
algorithm of Section 6.4, with the addition of step (1) to ensure that all of a 
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transaction’s updates are in the stable database by the time the transaction 
commits. This means that redo is never required, resulting in a more efficient 
Restart procedure. 

This algorithm satisfies the Undo Rule. The argument is the same as for 
the undo/redo algorithm. It also satisfies the Redo Rule for the trivial reason 
that it does not require redo, because all Writes are recorded in the stable data- 
base before the transaction that issued them can commit. Since the two rules 
are satisfied, Restart can always restore in the stable database the last commit- 
ted value of each data item, using only information in stable storage. Also, 
Restart is idempotent. Since Restart does not alter the set of transactions it acts 
on, if it were interrupted by a system failure it would repeat exactly the same 
work. 

implementation 

With minor modifications, the log structure that was described for partial data 
item logging can be used to implement the undo/no-redo algorithm. As 
before, the log is a sequential disk file consisting of update, commit, abort, and 
checkpoint records. The only difference is that update records need not include 
after images. Since this algorithm never requires redo, the information 
becomes useless. 

To reflect the change in the RM-Commit procedure, all cache slots written 
by a transaction must be flushed before the commit record is appended to the 
log. One can view this as a limited kind of checkpoint. However, we still need 
checkpointing to ensure that restored before images of aborted transactions 
are eventually recorded in the stable database. It is possible to eliminate check- 
points altogether from this algorithm by appropriately modifying RM-Abort 
(see Exercise 6.27). 

If transactions have random reference patterns, then few of the data items 
updated by a transaction are likely to be updated again before becoming candi- 
dates for replacement. Therefore, the work in flushing a data item at commit 
isn’t wasted, although forcing it at commit may increase response time. 
However, for a hot spot data item, the required flush for every committed 
Write may create a heavy I/ 0 load that would not be experienced using undo / 
redo. 

Another way of implementing RM-Commit in this algorithm is to take a 
cache consistent checkpoint just before adding a transaction to the commit list 
(i.e., instead of step (1) of RM-Commit). This means checkpointing (by flush- 
ing all dirty cache slots) each time a transaction commits. This is a viable 
method if the cache is not too large and the database system is not designed to 
handle a very high rate of transactions. 

The undo/no-redo algorithm can be integrated nicely with the multiver- 
sion concurrency control algorithm described in Section 5.4. All versions of a 
data item are chained together in a linked list in stable storage. The versions 
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appear in the list in the order in which they were produced, from youngest to 
oldest. The RM-Abort procedure can arrange to exclude versions produced by 
aborted transactions from the chain. The head of the list is the most recently 
created version (possibly written by an active transaction). Since the multiple 
copies themselves contain the data item’s before images, we do not need a log. 
Said differently, the multiple copies of all data items constitute the log, but they 
are not structured as a sequential file. To ensure no-redo, the RM must flush 
the cache slots containing versions produced by a transaction before that trans- 
action commits. To undo versions written by active or aborted transactions 
that were flushed to stable storage before a system failure, Restart must be able 
to distinguish versions written by committed transactions from those written 
by aborted or active ones. This is accomplished by tagging each version by the 
(unique) transaction that produced it, as in Section 5.4, and by maintaining 
commit, abort, and active lists (see Exercise 6.28). This implementation is 
used in DBS products of Prime Computer. 

An interesting variation of this scheme is to transfer the undo activity from 
Restart to RM-Read. That is, Restart does not perform any undos, leaving it 
with nothing to do at all. When RM-Read reads a data item, it checks whether 
the data item’s tag is in the commit list. If so, it processes it normally If not, 
then it discards (i.e., undoes) that version and tries reading the next older 
version instead. It continues reading older versions until it finds a committed 
one. This algorithm eliminates Restart activity at the cost of more expensive 
RM-Reads, a good trade-off if system failures are frequent. 

6.6 THE NO-UNDO/REDO ALGORITHM 

In this section we’ll present another RM algorithm, one that may require redo 
but never requires undo. To avoid undo, we must avoid recording updates of 
uncommitted transactions in the stable database. For this reason, when a data 
item is written, the new value is not recorded in the cache at that time; this 
happens onIy after a transaction commits. Consequently, when a new value is 
recorded in the stable database as a result of a cache slot’s being replaced or 
flushed, it is assuredly the value of a committed transaction and will never 
need to be undone. 

The five RM procedures are outlined next, 

RM-Write( T,, x, V) 

1. Append a [T,, X, V] record to the log. 

2. Acknowledge to the scheduler the processing of RM-Write( T,, x, v). 

RM-Read( T,, X) 

1. If T, has previously written into X, then return to the scheduler the after 
image of x wrt T,.cdJ 
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2. Otherwise, 

n if x is not in the cache, fetch it; 

a return to the scheduler the value in x’s cache slot. 

RM-Commit( Ti) 

1. Add Ti to the commit list.@) 

2. For each x updated by T,: 

q if x is not in the cache, fetch it; 

q copy the after image of x wrt Ti into x’s cache slot.(“) 

3. Acknowledge the processing of RM-Commit( Ti) to the scheduler. 

RM-Abort( T;) 

1. Add Ti to the abort list.cc) 

2. Acknowledge the processing of RM-Abort( Ti) to the scheduler. 

Restart 

1. Discard all cache slots. 

2. Let redone : = ( >. 

3. Start with the last entry in the log and scan backwards toward the 
beginning. Repeat the following steps until either redone equals the set 
of data items in the database, or there are no more log entries to exam- 
ine. For each log entry [T,, X, v], if T, is in the commit list and x @ 
redone, then 

q allocate a slot for x in the cache; 

n copy u into X’S cache slot; 

n redone : = redone U {x}. 

4. Acknowledge the processing of Restart to the scheduler. 

Comments 

A. [Step (1) of RM-Read(Ti, x), step (2) of RM-Commit(TJ] The after 
image of x wrt Ti can be found in the log. It is inserted there by RM- 
Write. 

B. [Step (1) of RM-Commit( Ti)] This is the action that declares a transac- 
tion committed. 

C. [Step (1) of RM-Abort(TJ] At the level we are describing things, the 
abort list is not needed (it is only mentioned in this step). In practice, 
information in that list might be used by the garbage collector to recycle 
log space that contains information pertaining to aborted transactions. 
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This algorithm satisfies the Redo Rule: Each value written by a transac- 
tion is recorded in the log by RM-Write and, by the Garbage Collection Rule, 
it cannot have been deleted by the time the transaction commits. The Undo 
Rule is also satisfied for the trivial reason that the algorithm does not require 
undo. Since both rules are satisfied, Restart will always find in stable storage 
all of the information it needs to restore the stable database to its committed 
state. Since Restart does not affect the set of committed transactions, if it were 
interrupted by a system failure it vrould repeat exactly the same work and 
hence is idempotent. 

Implementation 

We can implement this algorithm using a log structure similar to that employed 
for the previous two algorithms. The elimination of undo simplifies matters in 
several ways. First, there is no need to bother with abort records. Second, since 
undo is never required, the update records need not contain before images. 
Since finding the before images to be included in the update record may require 
an additional access to the stable database, this feature could be important. As 
usual, checkpointing must be used to limit the amount of time an update can 
stay in the cache before it is flushed. Any of the techniques described in Section 
6.4 can be used. 

Various other structures for the log have been proposed for the no-undo/ 
redo algorithm. A common one is intenfiotrs lists. In effect, the log is organized 
as a collection of lists, one per transaction, which are kept in stable storage. 
T,‘s list contains the after images (wrt 7-,) of all data items updated by T,. These 
updates are not applied to the stable database before the transaction commits. 
Thus, we can think of the list as containing the transaction’s “intentions.” If a 
transaction aborts, its intentions list is simply discarded. If a transaction 
commits, its list is marked accordingly and flushed to stable storage, and the 
updates contained therein are applied to the stable database one at a time. 
When this is completed, the intentions list is discarded. On Restart, all inten- 
tions lists are inspected. Those not marked as committed are simply discarded. 
The rest have their updates applied to the stable database and are then 
discarded as in the commit process. Note that a particular update could be 
redone more than once if Restart is interrupted by a system failure, but this 
causes no harm. 

AIthough Writes are not applied to the database until the transaction 
commits, they may need to be read sooner than that. If a transaction writes x 
and subsequently reads it? then the Read must return the previously written 
value.i Since the transaction is not yet committed, the value of x is not in the 

‘This is same problem \ve encountered in Section 5.5. v.rhere V.Y delayed rbe application of a 
transacnon’s Writes until it terminates. Since that multiversion concurrency control algorithm 
requires this mechanism for reading from the intentlons list, It fits especially neatly \rith no- 
undo/redo recovery. 



6.7 THE NO-UNDO/NO-REDO ALGORITHM 201 

database or cache. So the RM must find the value in the intentions list (i.e., 
step (1) of RM-Read). Doing this efficiently takes some care. One way is to 
index the intentions list by data item name. On each RM-Read( Ti, x), the RM 
checks the index for an entry for X. If there-is one, it returns the last intentions 
list value for x. Otherwise< it finds x in the database (i.e., step (2) of RM- 
Read). 

Another way to solve the problem is by using shadowing; see Exer- 
cise 6.30. 

6.7 THE NO-UNDO/NO-REDO ALGORITHM 

To avoid redo, all of a transaction 7’;s updates must be in the stable database 
by the time T, is committed. To avoid undo, none of T:s updates can be in the 
stable database before T; is committed. Hence, to eliminate both undo and 
redo, all of Tis updates must be recorded in the stable database in a single 
atomic operation, at the time T, commits. The RM-Commit(Ti) procedure 
would have to be something like the following: 

RM-Commit( Ti) 

1. In a single atomic action: 

q For each data item x updated by T,, write the after image of x wrt 
T, in the stable database. 

n Insert Ti into the commit list. 

2. Acknowledge to the scheduler the processing of RM-Commit( Ti). 

Incredible as it may sound, such a procedure is realizable! The difficulty, of 
course, is to organize the data structures so that an atomic action - a single 
atomic Write to stable storage - has the entire effect of step (1) in RM- 
Commit. That is, it must indivisibly install all of a transaction’s updates in the 
stable database and insert 7’j into the commit list. It should do this without 
placing an unreasonable upper bound on the number of updates each transac- 
tion may perform. 

We can attain these goals by using a form of shadowing. The location of 
each data item’s last committed value is recorded in a directory, stored in stable 
storage, and possibly cached for fast access. There are also working directories 
that point to uncommitted versions of some data items. Together, these direc- 
tories point to all of the before and after images that would ordinarily be 
stored in a log. We therefore do not maintain a log as a separate sequential file. 

When a transaction Ti writes a data item x, a new version of x is created in 
stable storage. The working directory that defines the database state used by Tj 
is updated to point to this version. Conceptually, this new version is part of the 
log until T; commits. When T; commits, the directory that defines the commit- 
ted database state is updated to point to the versions that T, wrote. This makes 
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the results of Tts Writes become part of the committed database state, thereby 
committing T,. 

With this structure, an Rh4-Commit procedure with the desired properties 
requires atomically changing the directory entries for all data items written by 
the transaction that is being committed. If the directory fits in a single data 
item, then the problem is solved. Otherwise, it seems we have simply moved 
our problem to a different structure. Instead of atomically installing updates in 
the stable database, we now have to atomically install updates in the directory. 

The critical difference is that since the directory is much smaller than the 
database, it is feasible to keep two copies of it in stable storage: a current direc- 
tory, pointing to the committed database, and a scrcztch copy. To commit a 
transaction T,, the RM updates the scratch directory to represent the stable 
database state that includes T,‘s updares. That is, for each data item x that T, 
updates, the RM makes the scratch directory’s entry for x point to Tts new 
version of x. For data items that T, did not update, it makes the scratch direc- 
tory’s entries identical to the current directory’s entries. Then it swaps the 
current and scratch directories in an atomic action. This atomic swap action is 
implemented through a master record in stable storage, which has a bit indi- 
cating which of the two directory copies is the current one. To swap the direc- 
tories, the RM simply complements the bit in the master record, which is 
surely an atomic action! Writing that bit is the operation that commits the 
transaction. Notice that the RM can only process one Commit at a time. That 
is, the activity of updating the scratch directory followed by complementing 
the master record bit is a critical section. 

Figure 6-4 illustrates the structures used in the algorithm to commit trans- 
action T, which updated data items x and >f. In Fig. 6-4(a) the transaction has 
created two new versions, leaving the old versions intact as shadows (appro- 
priately shaded). In Fig. 6-4(b) T, has set up the scratch directory to reflect the 
stable database as it should be after its commitment. In Fig. 6-4(c) the master 
record’s bit is flipped, thereby committing T; and installing its updates in the 
stable database. Note that there are two levels of indirection to obtain the 
current value of a data item. First the master record indicates the appropri- 
ate directory, and then the directory gives the data item’s address in the stable 
database. 

Before describing the five RM procedures, let us define some notation for 
the stable storage organization used in this algorithm. We have a master 
record, &l, that stores a single bit. We have two directories Do and D’. At any 
time Db is the current directory, where b is the present value of M. Db[x] 
denotes the entry for data item x in directory D6. It contains x’s address in the 
stable database. We use - 6 to denote the complement of b, so D-b is the 
scratch directory, There may be one or two versions of a data item at any given 
time: one in the stable database (pointed to by Db and possibly a new version. 
All this information - the stable database, the new versions, the two directo- 
ries, and the master record - must be kept in stable storage. The master 
record and the directories can also be cached for efficient access. 
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In addition, for each active transaction T, there is a directory D, with the 
addresses of the new versions of the data items written by T,. D,[x] denotes the 
entry of D, that corresponds to data item x (presumably T, wrote into x). These 
directories need not be stored in stable storage. Given this organization of 
data, the RM procedures are as follows. 

RM-Write( T,, x, V) 

1. Write zi into an unused location in stable storage and record this loca- 
tion’s address in D,[x].” 

2. Acknowledge to the scheduler the processing of RM-Write(T,, x, v). 

RM-Read( T,, x) 

2. If T, has previously written into x, return to the scheduler the value 
stored in the location pointed to by D,[x]. 

2. Otherwise, return to the scheduler the value stored in the location 
pointed to by @[xl, where 6 is the present value of the bit in the master 
record M? 

RM-Commit( T,) 

1. For each x updated by T,: D-b[~} : = D,[x 1, where b is the value of 
M.#L’ 

2. M := -b.“’ 

3. For each x updated by T,: D-“[xl : = D,[x], where b is the (new) value 
of MaE, 

4. Discard Dj (free any storage used by it). 

5. Acknowledge to the scheduler the processing of RM-Commit( Ti). 

RM-Abort( T,) 

1. Discard D,. 

2. Acknowledge to the scheduler the processing of RM-Abort(T,). 

Restart 

1. Copy Db into D-b. 

2. Free any storage reserved for active transactions’ directories and their 
new versions. 

3. Acknowledge to the scheduler the processing of Restart, 

Comments 

A. [Step (1) of RM-Write] This step creates the new version of x, leaving 
the shadow version in the stable database untouched. 
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B. [Step (2) of RM-Read] If Ti has written into x it reads the new version 
of x that it created when it wrote into x (see step (1) of RM-Write); 
otherwise it reads the version of x in the stable database. 

C. [Step (1) of RM-Commit] This step sets up the scratch directory to 
reflect the updates of Ti. 

D. [Step (2) of RM-Commit] This step complements the bit in the master 
record, thereby making the scratch directory into the current one (and 
what used to be the current into the scratch). It is the atomic action 
that makes T; committed. Failure before this step will result in T/s 
abortion. 

E. [Step (3) of RM-Commit] This step records Tis changes in D-b, which 
has now become the scratch directory. This ensures that when that 
directory again becomes the current one, T/s updates will be properly 
reflected in the stable database. 

The algorithm satisfies the Undo Rule since the stable database never has 
values written by uncommitted transactions. It also satisfies the Redo Rule 
because at the time of commitment all of a transaction’s updates are in the 
stable database. In fact, under this algorithm the stable database always 
contains the last committed database state. As a result, virtually no work is 
needed to abort a transaction or restart the system following a failure. 

While Restart is efficient, this algorithm does have three important costs 
during normal operation. First, accesses to stable storage are indirect and 
therefore more expensive. However, this cost may be small if the directory is 
small enough to be stored in cache. Second, finding uncommitted versions and 
reclaiming their space may be difficult to do efficiently, given the absence of a 
log. Third, and most importantly, the movement of data to new versions 
destroys the original layout of the stable database. That is, when a data item is 
updated, there may not be space for the new copy close to the original data 
item’s (i.e., its shadow’s) location. When the update is committed, the data 
item has changed location from the shadow to the new version. Thus, if the 
database is designed so that related data items are stored in nearby stable stor- 
age locations, that design will be compromised over time as some of those data 
items are updated. For example, if records of a file are originally stored contig- 
uously on disk for efficient sequential access, they will eventually be spread 
into other locations thereby slowing down sequential access. This problem is 
common to many implementations of shadowing. 

Because of the organization of the log, this algorithm is also known as the 
shadow version algorithm. And because of the way in which it commits a 
transaction, by atomically recording all of a transaction’s updates in the stable 
database, it has also been called the careful replacement algorithm. 
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6.8 MEDIA FAILURES 

As with recovery from system failures, the goal of recovery from media failures 
is to ensure the system’s ability to reconstruct the last committed value of each 
data item. The difference is in the availability of memory we can rely on. In a 
system failure, we could rely on the availability of all the information the DM 
had been wise enough to save in stable storage. In a media failure, recovery 
cannot proceed on this assumption, since by definition such failures destroy 
part of stable storage - perhaps exactly the part needed by Restart. 

Our only recourse is to maintain redundant copies of every data item’s last 
committed value. This provides protection to the extent it can be assured that 
one of the redundant copies will survive a media failure. Thus the recovery 
mechanism for media failures must be designed with a probabilistic goal in 
mind: minimize the probability that all copies of a data item’s last committed 
value are destroyed. By contrast, the recovery mechanism for system failures is 
designed with an absolute goal: guarantee the availability of the last commit- 
ted value of each data item in stable storage. Of course, this only provides 
absolute protection against system failures, in which stable storage survives by 
definition. 

Resiliency to media failure can be increased by increasing the number of 
copies kept. But at least as important as the number of copies is where these 
copies are stored. We want the copies to be kept on devices with independent 
failure modes. This means that no single failure event can destroy more than 
one copy. To achieve, or rather to approximate, independence of failures 
requires a detailed knowledge of the kinds of events that are likely to cause 
media failures in a particular system. Thus, keeping two copies on different 
disk drives is better than two copies on the same drive; since disk drives tend to 
fail independently, copies on two different drives may survive a single failure 
while copies on the same drive may not. Using disk drives with different 
controllers helps tolerate a controller’s failure. Keeping the disk drives in sepa- 
rate rooms enhances the probability of the drives’ surviving a fire. The 
perceived probability of such failures and the cost of minimizing their impact 
will determine how far the designer cares to go in protecting different media 
from common failure modes. 

In practice, keeping two copies of the last committed value of each data 
item on two different devices is deemed to be sufficient protection for most 
applications. One approach, called mirroring, is to keep a duplicate copy of 
each disk on-line, in the form of a second disk. That is, the contents of each 
disk have an identical copy on another disk, its mirror. Since every data item is 
now stored on two disks, every Write must now be applied to two disks. More- 
over, to ensure that the two disks are kept identical, Writes must be applied to 
both disks in the same order. To protect against the simultaneous failure of 
both disks, e.g., due to a power failure, it is safer to perform each pair of 
Writes in sequence: First write to one disk, wait for the acknowledgment, then 
write to the other disk. A Read can be sent to either disk that holds the desired 
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data. So, mirrored disks increase the disks’ capacity for Reads but not for 
Writes. 

If a disk fails, then its mirror automatically handles all of the Reads that 
were formerly split between them. When the failed disk recovers or is replaced, 
it must be brought up-to-date by copying the contents of its up-to-date mirror. 
This can be done efficiently using the techniques for initializing a replicated 
database described in Chapter 8.9 

Another approach to keeping duplicate copies is archiving. Periodically, 
the value of each data item is written (or dumped) to an archive database. The 
log contains (at least) all of the updates applied to the database since the last 
dump. Moreover, the log itself is mirrored. If a media failure destroys one of 
the log copies, the other one can be used. If a media failure destroys the 
contents of the stable database, then we execute a Restart algorithm using the 
log and archive database to bring the archive to the committed state with 
respect to the log. 

This approach to media failures surely requires redo to bring the archive 
database to the committed state. Therefore, after images of Writes must be in 
the log. These after images are needed for media failures, even if we are using a 
no-redo algorithm for system failures (which ordinarily doesn’t need after 
images). If the archive database contains uncommitted updates, then media 
failure recovery requires undo as well. 

Producing an archive database is essentially the same as checkpointing the 
stable database. To distinguish them, we call the former archive checkpointing 
and the latter stable checkpointing. In each case, we are trying to avoid too 
much redo activity by making a copy of the database more up-to-date: the 
archive database for media failures, and the stable copy for system failures. 
For stable checkpointing, we (1) update the log to indicate which logged 
updates are in the stable database, and possibly (2) update the stable database 
to include updates that are only in cache. For archive checkpointing, we (1) 
update the log to indicate which logged updates are in the archive database, 
and possibly (2) update the archive database to include updates that are only in 
the stable database and cache. Thus, to modify a stable Checkpoint procedure 
to become an archive Checkpoint procedure, we simply substitute “the archive 
database” for “the stable database” and substitute “the stable database and the 
cache” for “the cache” in the definition of the procedure. Let’s revisit the stable 
checkpointing algorithms of Section 6.4 with this correspondence in mind. 

In commit consistent stable checkpointing, we complete the execution of 
all active transactions, flush the cache, and mark the log to indicate that the 
checkpoint has occurred. To modify this for archive checkpointing, we replace 

‘Briefly speaking, we can bring the mirror up-to-date by running “copier transactions.” Copiers 
are synchronized like any user transaction (e.g., using 2PL). As soon as the recovering mirror is 
operational (i.e., before it is up-to-date), user transactions write into both disks. A data item 
copy in the recovering mirror cannot be read until it has been written at least once. See Sections 
8.5 and 8.6. 
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“flush the cache” by “write to the archive all data items that were updated (in 
the stable database or cache) since the last archive checkpoint.” To do this, for 
each data item in stable storage there must be a dirty bit that tells whether the 
data item has been updated in stable storage since it was last ivritten to the 
archive database. (It needn’t tell whether the data item has been updated in 
cache, since the cache slots’ dirty bits give this information.) Checkpoint clears 
this bit after the data item is written to the archive (i.e., after the archive stor- 
age device has acknowledged the Write). After a media failure, Restart brings 
the archive to the committed state by redoing updates of transactions that 
committed after the last nrchitle checkpoint record (i.e., the last checkpoint 
record written by archive checkpointing). 

In cache consistent stable checkpointing, we complete the execution of all 
RM operations, flush the cache, and mark the log to indicate that the check- 
point has occurred. We modify this for archive checkpointing in exactly the 
same way we modified commit consistent checkpointing. The archive check- 
point record in the log should include a list of transactions that Lvere active at 
the last checkpoint. After a media failure, Restart brings the archive to the 
committed state by redoing the update records that followed the last archive 
checkpoint record and were issued by committed transactions, and undoing 
transactions that were active at the Iast archive checkpoint and did not subse- 
quently commit. 

Cache consistent archive checkpoinring is an improvement over commit 
consistent archive checkpointing in that the RM does not need to wait for all 
active transactions to terminate before initiating the checkpointing activity. 
However, commit consistent archive checkpointing provides a second line of 
defense if the stable database and both copies of the log are destroyed. We can 
at least restore a database state that reflects a consistent point in the past, 
merely by loading the archive database as the stable database. In some applica- 
tions, this is an acceptable compromise. 

The problem with both of these algorithms is the delay involved in bring- 
ing the archive up-to-date during the checkpoint procedure. This is a much 
bigger performance problem than flushing the cache in stable checkpointing, 
for two reasons. First, there is more data to write to the archive - all data 
items that were written since the previous archive checkpoint, even if they are 
in the stable database. And second, much of the data to be written to the 
archive database must first be read from the stable database. This delay is 
intoierable for many applications. 

One way to avoid the delay is to use shadowing. When archive check- 
pointing begins, an archive shadow directory is created, which defines the state 
of the database at the time checkpointing began. An archive checkpoint record 
is written to the log to indicate that Checkpointing has begun. Now the RM 
can resume normal operation in parallel with checkpointing. When the RM 
processes an update to the stable database, it leaves intact the shadow page 
which is still referenced by the archive shadow directory. When the checkpoint- 
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ing procedure terminates, it writes another archive checkpoint record in the 
log, which says that all of the log updates up to the previous archive check- 
point record are now in the archive database. 

Another way to avoid the delay is to use a variation of fuzzy checkpoint- 
ing. When archive checkpointing begins, it writes a begin-archive-checkpoint 
record that includes a Iist of transactions that are active at this time. It then 
reads from the stable database those data items that have been written since 
the previous begin-archive-checkpoint record and copies them to the archive 
database. The RM can process operations concurrently with this activity. 
When Checkpoint terminates, it writes an end-archive-checkpoint record, 
indicating that all log updates up to the previous begin-archive-checkpoint 
record are now in the archive database, and possibly some later ones as well. 
Restart for media failures can now function like the Restart algorithm 
described in Section 6.4 for partial data item physical logging. The only differ- 
ence is in the interpretation of checkpoint records; the last matched pair of 
begin-archive-checkpoint/end-archive-checkpoint records should be regarded 
as the penultimate and last checkpoint records, respectively, Notice that the 
backward scan of the log for undo is only needed beginning with the second 
(i.e., the one closer to the end of the log) of the last pair of archive checkpoint 
records, because later update records in the log could not have been written to 
the archive during the last checkpointing activity, 

Media failures frequently only corrupt a small portion of the database, 
such as a few cylinders of a disk, or only one of many disk packs. The Restart 
procedures we just described are designed to restore the entire archive database 
to its committed state. The performance of Restart for partial media failures 
can be improved substantially by designing it to restore a defined set of data 
items (see Exercise 6.34). 

To reduce the software complexity of the RM, it is valuable to design 
archive and stable checkpointing so that exactly the same Restart procedure 
can be used for system and media failures, the only difference being the choice 
of stable or archive database and stable or archive log. The algorithms we 
described for commit consistent checkpointing and cache consistent check- 
pointing (with and without shadowing) have this property. The one we 
described for fuzzy checkpointing requires some modification to attain this 
property (see Exercise 6.35). 

BlBLlOGRAPHlC NOTES 

The undo-redo paradigm for understanding centralized DBS recovery grew from the 
early work of [Bjork 731, [Bjork, Davies 721, and [Davies 731, and from work on fault tol- 
erant computing (e.g., see [Anderson, Lee 811, [Shrivastava 851, and [Siewiorek, Swarz 821). 
The categorization of algorithms by their undo and redo characteristics was developed 
independently in the survey papers [Bernstein, Goodman, Hadzilacos 831 and 
[Haerder, Reuter 831. Shadowing is discussed in [Lorie 771, [Reuter 801, [Verhofstad 771, 
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and [Verhofstad 781. The undo/redo model and its connection to recoverability is 
formalized in [Hadzilacos 831 and [Hadzilacos 861. Strategies for cache management 
are described in [Effelsberg, Haerdei 841. 

In this chapter, we assumed strict executions throughout. Some aspects of cascad- 
ing aborts are discussed in [Briatico, Ciuffoletti, Simoncini 841 and [Hadzilacos 821. 

The undo/redo algorithm for partial data item physical logging is from [Gray 781. 
A discussion of the many subtleties of logging algorithms appears in [Traiger 821. Using 
LSNs in pages is described in [Lindsay SO]. Logging algorithms for particular DBSs are 
described in [Crus 841 (IBM’s DB2), [Gray et al. 81a] (IBM’s System R), [Ong 841 
(Synapse), and [Peterson, Strickland 831 (IBM’s IMS). 

Undo/no-redo algorithms are described in [Chan et al. 821 (CCA’s Adaplex), 
[Dubourdieu 821 (Prime’s DBSs), and [Rappaport 751 (where undo is performed by 
Reads, as described at the end of Section 6.5). Redo/no-undo algorithms are described 
in [Bayer 831, [Elhardt, Bayer 843, [Lampson, Sturgis 761, [Menasce, Landes 801, and 
[Stonebraker 79b] (the university version of INGRES). The no-undo/no-redo algo- 
rithm in Section 6.7 is from [Lorie 771. 

The performance of recovery algorithms has been analyzed in [Garcia-Molina, 
Kent, Chung 851, [Griffeth, Miller 841, and [Reuter 841. Recovery algorithms for data- 
base machines are discussed in [Agrawal, Dewitt 8Sa]. 

EXERCISES 

6.1 Consider disk hardware that provides no checksum protection. We 
can partially compensate for this missing functionality by the following 
technique: Put a serial number in the first and last word of the block; put 
the disk address of the block in the second word of the block; and incre- 
ment the serial number every time the block is written. What types of 
errors can we detect using this method? What types of errors are not 
detected? What types of CM and RM algorithms would best compensate 
for the weak error detection functionality? 

6.2 Suppose that the disk hardware provides checksum protection on the 
address and data of each sector (i.e., each fixed length segment of a track). 
Suppose that the operating system offers Read and Write commands on 
pages, each page consisting of two sectors. What additional behavior of 
the disk hardware and operating system would you require (if any) so that 
the RM can view each Write of a page as an atomic operation? Suppose the 
operating system can report errors on a sector-by-sector basis. How might 
this information be used by the CM or RM to improve its performance? 

6.3 Suppose each Write is either atomic or causes a media failure. Is it still 
useful for a Write to respond with a return code indicating whether it 
executed in its entirety or not at all, assuming that the return code is not 
reliable in the event of a media failure? Why? 

6.4 Sketch the design of a cache manager for in-place updating, assuming 
page level granularity. In addition to supporting Fetch and Flush, your CM 
should give the RM the ability to specify the order in which any pair of 
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pages is written to disk (e.g., to satisfy the undo and redo rules). You may 
assume that the CM will be used by an RM that does undo/redo logging, 
Remember that the RM will use the interface to read and write log pages 
as well as data item pages. Treat the replacement strategy as an uninter- 
preted procedure, but do define the interface to that procedure. What 
measures of performance did you use in selecting your design? What 
assumptions about application behavior did you make when deciding 
among alternative approaches ? What alternatives did you reject for 
performance reasons? 

6.5 Suppose the scheduler produces SR executions that avoid cascading 
aborts but are not strict. Suppose that the order of log records is consistent 
with the order in which the RM executed Writes. If [ Ti, X, u] precedes [ Tj, 
x, v] in the log, then what can you say about the order of Write, Commit, 
and Abort operations in the history that produced that log? What else can 
you say about the order of operations if you are given that Tj read x before 
writing it? 

6.6 Since many transactions are writing entries to the end of the log 
concurrently, the RM must synchronize those log updates. This becomes a 
hot spot when the transaction rate becomes too high. Propose two mecha- 
nisms to minimize the effect of this hot spot. Describe the effects that each 
of the mechanisms has on Restart, if any. 

6.7 Suppose we use an archive database and log to handle media recovery, 
Restate the Undo, Redo, and Garbage Collection Rules to properly reflect 
the combined requirements of system failures and media failures. 

6.8 In cache consistent or fuzzy checkpointing, it is possible that a long 
running transaction prevents the RM from garbage collecting the log. 
How can this happen? One solution is to rewrite the log records of long 
running transactions at the end of the log. Suppose we take this approach 
in the partial data item logging algorithm. Checkpoint shouId find all log 
records that precede the penultimate checkpoint record and that are 
needed to handle transactions that are still active at the last checkpoint, 
and it should rewrite them at the end of the log. Restart should make 
appropriate use of these rewritten log records. Sketch the modifications 
needed for Checkpoint and Restart to perform these activities. Compare 
the cost and benefit of this algorithm with the approach in which Check- 
point aborts any transactions that are active at two consecutive check- 
points. 

6.9 Consider the following variation on fuzzy checkpointing. Each execu- 
tion of Checkpoint initiates flushes of all those cache slots that have not 
been flushed since before the previous checkpoint. Before writing its 
checkpoint record and allowing the RM to resume normal operation, it 
waits until all flushes initiated by the previous invocation of Checkpoint 
have completed. However, it does not wait until the flushes that it initiated 
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have completed. Compare the performance of this fuzzy Checkpoint 
procedure with Restart algorithm described in the chapter. How does this 
new Checkpoint procedure affect the behavior of Restart for the partial 
data item logging algorithm? 

6.10 Suppose that we allow the RM to continue to process operations while 
a cache consistent checkpointing procedure is in progress. Checkpoint 
must pin (or otherwise lock) each data item x while it is writing it to the 
stable database, to avoid interfering with RM-Writes to x. Under what 
conditions can Checkpoint write a checkpoint record in the log and termi- 
nate? Is Checkpoint in any danger of becoming involved in a deadlock or 
of being indefinitely postponed? If so, give a method for circumventing the 
problem. 

6.11 When Restart begins executing after a system failure, it must find the 
end of the log. Propose a method for doing this. Remember that your 
method can only use information in stable storage for this purpose. What 
control information regarding the log is kept on stable storage? How often 
is it updated? Estimate the average time required for Restart to find the 
end of the log, e.g., measured in number of stabIe storage accesses. 

6.12 Rewrite the Restart procedure for the partial data item logging algo- 
rithm in pseudo-code. Include the optimizations Al, ,42, Cl, and C2. 
Write a procedure to garbage collect the log, assuming that the log is not 
needed for media recovery. Explain why the algorithm produces the 
committed database state. 

6.13 In the partial data item logging algorithm, it is unnecessary to undo 
any of 7,‘s updates if the LSN of Ti’s abort record is less than the minimum 
stable-LSN over all dirty cache slots at the time of the last checkpoint. 
Similarly, it it is unnecessary to redo any update record with LSN less than 
the minimum stable-LSN over those cache slots. Explain why. hlodify 
your solution to Exercise 6.12 to incorporate these optimizations. 

6.14 Ordinarily, the Restart procedure for the partial data item logging 
algorithm would have to reexecute from the beginning if it were inter- 
rupted by a system failure. Propose a method for checkpointing the 
Restart procedure, to reduce the amount of work Restart has to repeat 
after a system failure. To reduce the chances of damaging the existing Iog, 
Restart should only append records to the log; it should not modify any 
previously existing log records. 

6.15 Is the Restart procedure for the partial data item logging algorithm 
still correct under the assumption that the scheduler avoids cascading 
abort but is not strict? If so, explain why If not, propose a way of circum- 
venting the problem without strengthening the scheduling guarantees 
beyond ACA and SR. 
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6.16 Design a garbage collection procedure for the partial data item logging 
algorithm. The procedure should run concurrently with ordinary RM 
processing, and should not affect Restart’s ability to recover from a system 
failure. How would you lay out the log on disk to avoid head contention 
between RM logging and the garbage collection algorithm? 

6.17 The last step of the Restart procedure for the partial data item logging 
algorithm was to execute Checkpoint twice. Why is one checkpoint not 
enough? What is the benefit of doing only one checkpoint? Under what 
conditions, if any, might this be a good compromise? 

6.18 In a tightly-coupled multiprocessor computer, the sequential Restart 
procedure for the partial data item logging algorithm is limited to execute 
on only one processor. Propose a modification to the algorithm and/ or log 
structure to exploit the inherent parallelism of the computer. 

6.19 Suppose we use an undo/redo algorithm that logs complete data 
items, where data items don’t contain the LSN of the update record that 
last modified it. Given the large amount of log space that update records 
will consume, it is undesirable to log both the before and after image of 
each Write. Suppose we avoid this problem by logging just the after image, 
since the before image must be somewhere earlier in the log. Suppose we 
use commit consistent checkpointing. 

Define a data structure for the log (update records, checkpoint 
records, etc.). Describe algorithms that use that data structure to imple- 
ment the five RM procedures and Checkpoint. What problems would you 
have to solve to extend your algorithm to handle cache consistent check- 
pointing? 

6.20 Suppose we use an undo/redo algorithm that logs complete data 
items, and uses fuzzy checkpointing. Suppose each update record in the 
log contains the (complete) before and after image of the data item 
updated, and a pointer to the previous update record of the same transac- 
tion. Assume that each checkpoint record contains lists of transactions 
that committed and aborted since the previous checkpoint, in addition to a 
list of active transactions at the time of the checkpoint and the stable-LSNs 
of dirty cache slots. 

Write a Restart procedure that recovers from a system failure by doing 
a single backward scan of the log. Compare the working storage require- 
ments of this algorithm with those of Restart in the partial data item 
logging algorithm. What modifications would you need to make to handle 
partial data item logging and still be able to perform Restart with a single 
log scan? 

6.21 In logical logging, suppose each update record describes an operation 
that is applied to at most one data item. Suppose we implement undo and 
redo procedures for all operations so that for each log record LR on data 
item X, undo(LR) has no effect if x does not include LR’s update, and 
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redo(LR) has no effect if x already includes LR’s update. Does Restart in 
the partial data item logging algorithm work correctly on a log with this 
structure? That is, assuming fuzzy checkpointing, is it correct to undo all 
uncommitted updates during a backward scan of the log, and then redo all 
committed updates during a forward scan? If so, argue the correctness of 
the algorithm. If not, explain why. 

6.22 System R allows a single logical update record to cause an update to 
more than one data item. Work out the details of the System R RM algo- 
rithm described in Section 6.4 so that such multi-data-item updates are 
properly handled. 

6.23 Revise the LSN-based logical logging aIgorithm for record locking so 
that it logs undos. 

6.24 Suppose we use LSN-based logging and record locking, with logging 
of undos (see Exercise 6.23). If Restart logs undos during its backward 
scan of the log, and it is interrupted by a system failure, then it has more 
work to do on its next execution. It might not terminate, even if the inter- 
failure time grows with each execution. One approach is to have Restart 
periodically checkpoint its activity, Using this approach, or one of your 
own, sketch a method for ensuring that Restart always terminates, assum- 
ing that Restart logs undos and the interval between some two system fail- 
ures is greater than some minimum value. 

6.25 Revise the LSN-based logging algorithm so that it stores an LSN in 
every record rather than in every page (i.e., data item), and does not log 
undos. 

6.26 The Restart procedure for the LSN-based logging algorithm saves 
unnecessary work by only undoing or redoing update records whose effect 
is not already in the stable copy of the data item. Characterize the set of 
data items that are read and written by Restart in the partial data item 
Iogging algorithm without LSNs in data items but are not read or written 
z&h LSNs in data items. What application and system parameters affect 
the size of this set (e.g., the number of dirty data items in cache at the time 
of failure, the number of log pages in between each pair of checkpoint 
records)? Derive a formula that estimates the size of this set as a function 
of these parameters. 

6.27 In the undo/no-redo algorithm, checkpointing is needed because a 
data item containing an undone update may sit in cache for a long time 
without being flushed. Propose a modification to RM-Abort that avoids 
this problem, and therefore eliminates the need for checkpointing. 

6.28 Describe the RM procedures for the undo/no-redo algorithm using 
muItiversion concurrency control, as sketched in Section 6.5. 

6.29 Suppose the entire database can fit in volatile storage. Design a no- 
undo/redo algorithm that logs partial data items and protects against 
system failures (i.e., no media recovery). Assume that the database is 
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updated frequently, so that keeping the log small is important. Assume 
also that there is limited bandwidth to stable storage, so that a relatively 
small number of data items can be flushed per unit time. Notice that the 
only reason to flush data items is for checkpointing purposes. Propose a 
strategy for checkpointing that minimizes the time to recover from a 
system failure. 

6.30 In the no-undo/redo algorithm, shadowing can be used to facilitate a 
transaction’s reading data items that it previously wrote. When a transac- 
tion Ti first writes a data item X, a new version of x is created in stable 
storage and is written into a cache slot. The previous (i.e., shadow) 
version of x is not overwritten. Using this approach, each RM-Read from 
T, can be processed normally on the database state that includes Tts 
updates. Work out the details of this approach by providing algorithms for 
the five RM procedures. 

6.31 Is it possible to modify the no-undo/no-redo algorithm to use record 
locking? If so, explain how. What are the performance implications? If 
not, explain why. 

6.32 To compress the archive log, it is helpful to use a checkpointing 
method that allows most before images and abort records to be dropped 
from the log. Design such an archive checkpointing strategy for the partial 
data item logging algorithm. Propose an efficient algorithm for compress- 
ing the stable log before moving it to the archive. 

6.33 Explain why each of the archive recovery methods proposed in 
Section 6.8 is idempotent. 

6.34 Since only a small portion of the database may be affected by a media 
failure, it is helpful if the archive Restart procedure is able to recover a 
given set of data items, rather than the whole database. Suppose we use 
LSN-based logging and fuzzy archive checkpointing. Design an efficient 
algorithm that can recover individual data items independently. Notice the 
problem with redo; update records on the same data item do not normally 
have forward pointers, so it is hard to avoid a complete scan of the log. 
Consider the possibility of using an extra forward pointer field in each 
update record, which is filled in by Restart during the backward scan of 
the log, in order to speed up the redo scan by following those pointers. 

6.35 Explain why the procedure outlined in Section 6.8 for fuzzy archive 
checkpointing leads to a different Restart procedure than the one we used 
for fuzzy stable checkpointing in the partial data item logging algorithm. 
Propose modifications to the checkpointing algorithms so that their 
Restart algorithms can be identical (except for the choice of stable or 
archive database and log as input). 
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