
3
TWO PHASE LOCKING

3.1 AGGRESSIVE AND CONSERVATIVE SCHEDULERS

In this chapter we begin our study of practical schedulers by looking at two
phase locking schedulers, the most popular type in commercial products. For
most of the chapter, we focus on locking in centralized DBSs, using the model
presented in Chapter 1. Later sections show how locking schedulers can be
modified to handle a distributed system environment. The final section
discusses specialized locking protocols for trees and dags.

Recall from Chapter 1 that when a scheduler receives an operation from a
TM it has three options:

1. immediately schedule it (by sending it to the DM);

2. delay it (by inserting it into some queue); or

3. reject it (thereby causing the issuing transaction to abort).

Each type of scheduler usually favors one or two of these options. Based
on which of these options the scheduler favors, we can make the fuzzy,
yet conceptually useful, distinction between aggressive and conservative
schedulers.

An aggressive scheduler tends to avoid delaying operations; it tries to
schedule them immediately, But to the extent it does so, it foregoes the oppor-
tunity to reorder operations it receives later on. By giving up the opportunity
to reorder operations, it may get stuck in a situation in which it has no hope of
finishing the execution of all active transactions in a serializable fashion. At
this point, it has to resort to rejecting operations of one or more transactions,
thereby causing them to abort (option (3) above).

47

48 CHAPTER 3 / TWO PHASE LOCKING

A conservative scheduler, on the other hand, tends to delay operations.
This gives it more leeway to reorder operations it receives later on. This Ieeway
makes it less likely to get stuck in a situation where it has to reject operations
to produce an SR execution. An extreme case of a conservative scheduler is one
that, at any given time, delays the operations of all but one transaction. When
that transaction terminates, another one is selected to have its operations
processed. Such a scheduler processes transactions serially. It never needs to
reject an operation, but avoids such rejections by sometimes excessively delay-
ing operations.

There is an obvious performance trade-off between aggressive and conser-
\Jative schedulers. Aggressive schedulers avoid delaying operations and thereby
risk rejecting them later. Conservative schedulers avoid rejecting operations by
deliberately delaying them. Each approach works especially well for certain
types of applications.

For example, in an application where transactions that are likely to
execute concurrently rarely conflict, an aggressive scheduler might perform
better than a conservative one. Since conflicts are rare, conflicts that require
the rejection of an operation are even rarer. Thus, the aggressive sched-
uler wouId not reject operations very often. By contrast, a conservative
scheduler would needlessly delay operations, anticipating conflicts that seldom
materialize.

On the other hand, in an application where transactions that are likely to
execute concurrently conflict, a conservative scheduler’s cautiousness may pay
off, An aggressive scheduler might output operations recklessly, frequently
placing itself in the undesirable position where rejecting operations is the only
alternative to producing incorrect executions.

The rate at which conflicting operations are submitted is not the only
factor that affects concurrency control performance. For example, the Ioad on
computer resources other than the DBS is also important. Therefore, this
discussion of trade-offs between aggressive and conservative approaches to
scheduling should be taken with a grain of salt. The intent is to develop some
intuition about the operation of schedulers, rather than to suggest precise rules
for designing them. Unfortunately, giving such precise rules for tailoring a
scheduler to the performance specifications of an application is beyond the
state-of-the-art.

Almost all types of schedulers have an aggressive and a conservative
version. GeneraIly speaking, a conservative scheduler tries to anticipate the
future behavior of transactions in order to prepare for operations that it has
not yet received. The main information it needs to know is the set of data items
that each transaction will read and write (called, respectively, the rendset and
writeset of the transaction). In this way, it can predict which of the operations
that it is currently scheduling may conflict with operations that will arrive in
the future. By contrast, an aggressive scheduler doesn’t need this information,
since it schedules operations as early as it can, relying on rejections to correct
mistakes.

3.2 BASIC TWO PHASE LOCKING 49

A very conservative version of any type of scheduler can usually be built if
transactions predeclare their readsets and writesets. This means that the TM
begins processing a transaction by giving the scheduler the transaction’s read-
set and writeset. Predeclaration is more easily and efficiently done if trans-
actions are analyzed by a preprocessor, such as a compiler, before being
submitted to the system, rather than being interpreted on the fly.

An impediment to building very conservative schedulers is that different
executions of a given program may result in transactions that access different
sets of data items. This occurs if programs contain conditional statements. For
example, the following program reads either x and y, or x and Z, depending on
the value of x that it reads.

Procedure Fuzzy-readset begin
Start;
a : = Read(x),
if (a > 0) then b : = Read(y) else b : = Read(z);
Commit

end

In this case the transaction must predeclare the set of all data items it might
read or write. This often causes the transaction to overstate its readset and
writeset. For example, a transaction executing Fuzzy-readset would declare its
readset to be {x, y, Z) , even though on any single execution it will only access
two of those three data items. The same problem may occur if transactions
interact with the DBS using a high level (e.g., relational) query language. A
high level query may potentially access large portions of the database, even
though on any single execution it only accesses a small portion of the database.
When transactions overstate readsets and writesets, the scheduler ends up
being even more conservative than it has to be, since it will delay certain opera-
tions in anticipation of others that will never be issued.

3.2 BASIC TWO PHASE LOCKlNG

Locking is a mechanism commonly used to solve the problem of synchronizing
access to shared data. The idea behind locking is intuitively simple. Each data
item has a lock associated with it. Before a transaction T, may access a data
item, the scheduler first examines the associated lock. If no transaction holds
the lock, then the scheduler obtains the lock on behalf of T,. If another trans-
action T, does hold the lock, then T, has to wait until T2 gives up the lock.
That is, the scheduler will not give T, the lock until T, releases it. The sched-
uler thereby ensures that only one transaction can hold the lock at a time, so
only one transaction can access the data item at a time.

Locking can be used by a scheduler to ensure serializability. To present
such a locking protocol, we need some notation.

50 CHAPTER 3 I TWO PHASE LOCKING

Transactions access data items either for reading or for writing them. We
therefore associate two types of locks with data items: read locks and write
locks. We use rl[x] to denote a read lock on data item x and w/[x] to denote a
write Iock on x. We use rl,[x] (or u~/,[x]) to indicate that transaction T, has
obtained a read (or write) lock on x. As in Chapter 2, we use the letters o, p,
and 4 to denote an arbitrary type of operation, that is, a Read (r) or Write (w).
We use oE,[x] to denote a lock of type o by T, on x.

Locks can be thought of as entries in a lock table. For example, Y~~[x]

corresponds to the entry [x, Y, TJ in the table. For now, the detailed data struc-
ture of the table is unimportant. We’ll discuss those details in Section 3.6.

Two locks p&[x] and ql,[y] conflict if x = y, i # j, and operations p and q
are of conflicting type. That is, two locks conflict if they are on the same data
item, they are issued by different transactions, and one or both of them are
write locks.] Thus, two locks on different data items do not conflict, nor do
two locks that are on the same data item and are owned by the same transac-
tion, even if they are of conflicting type.

We also use rl,[x] (or wl,[x]) to denote the operation by which T, sets or
obtains a read (or write) lock on X. It will always be clear from the context
whether rl,[x] and wl,[x] denote locks or operations that set locks.

We use m,[x] (or wu,[x]) to denote the operation by which T, releases its
read (or write) lock on x. In this case, we say T, unlocks x (the u in ru and WM
means unlock).

It is the job of a two phase locking (2PL) scheduler to manage the locks by
controiling when transactions obtain and release their locks. In this section,
we’ll concentrate on the Basic version of 2PL. We’ll look at specializations of
2PL in later sections.

Here are the rules according to which a Basic 2PL scheduler manages and
uses its locks:

1. When it receives an operation p;[x] from the TM, the scheduler tests if
p&[x] conflicts with some ql,[x] that is already set. If so, it delays p,[x],
forcing TI to wait until it can set the lock it needs. If not, then the
scheduler sets pl,[x], and then sends pJxJ to the DM.2

2. Once the scheduler has set a lock for T,, say pl,[x], it may not release
that lock at least until after the DM acknowledges that it has processed
the lock’s corresponding operation, pi[x].

3. Once the scheduler has released a lock for a transaction, it may not
subsequently obtain any more locks for that transaction (on any
data item).

‘We will generalize the notion of lock conflict to operations other than Read and Write in
Section 3.8.
‘The scheduler must be implemented so that setting a lock is atomic relative to setting conflict-
ing locks. This ensures that conflicting locks are never held simultaneously.

3.2 BASIC TWO PHASE LOCKING 51

Rule (1) prevents two transactions from concurrently accessing a data item
in conflicting modes. Thus, conflicting operations are scheduled in the same
order in which the corresponding locks are obtained.

Rule (2) supplements rule (1) by ensuring that the DM processes opera-
tions on a data item in the order that the scheduler submits them. For example,
suppose Ti obtains r&[x], which it releases before the DM has confirmed that
T~[x] has been processed. Then it is possible for Tj to obtain a conflicting lock
on X, wlJx], and send w,[x] to the DM. Although the scheduler has sent the
DM Ti[x] before zuj[z], without rule (2) there is no guarantee that the DM will
receive and process the operations in that order.

RuIe (3), called the two phase rule, is the source of the name two phase
locking. Each transaction may be divided into two phases: a growing phase
during which it obtains locks, and a shrinking phase during which it releases
locks. The intuition behind rule (3) is not obvious. Roughly, its function is to
guarantee that all pairs of conflicting operations of two transactions are sched-
uled in the same order. Let’s look at an example to see, intuitively, why this
might be the case.

Consider two transactions T, and T,:

T,: T*[Xl -+ WJYI + Cl T,: wbl + dyl + cz

and suppose they execute as follows:

H* = 4[Xl r,[xl w[xl wL[xl w&l WUYI %[YI wdxl WdYl c2 WL[Yl
W[Yl WdYl Cl

Since T,[x] < w,[x] and w,[y] < w,[y], SG(H,) consists of the cycle T, + T2 +
T,. Thus, H, is not SR.

The problem in H, is that T, released a lock (ru,[.r]) and subsequently set a
lock (wl,[y]), in violation of the two phase rule. Between TU,[X] and wl,[y],
another transaction T2 wrote into both x and y, thereby appearing to follow T,
with respect to x and precede it with respect to y. Had T, obeyed the two phase
rule, this “window” between TU,[X] and wl,[y] would not have opened, and T,
could not have executed as it did in H,. For exampie, T, and T2 might have
executed as follows.

1. Initially, neither transaction owns any locks.

2. The scheduler receives r,[x] from the TM. Accordingly, it sets ul,[x] and
submits r,[x] to the DM. Then the DM acknowledges the processing
of TJX].

3. The scheduler receives ZUJX] from the TM. The scheduler can’t set
wl,[x], which conflicts with rl,[x], so it delays the execution of w,[x] by
placing it on a queue.

4. The scheduler receives w,[y] from the TM. It sets wl,[y] and submits
w,[y] to the DM. Then the DM acknowledges the processing of w,[y].

5. The scheduler receives c1 from the TM, signalling that T, has termi-
nated. The scheduler sends c, to the DM. After the DM acknowledges

52 CHAPTER 3 I TWO PHASE LOCKING

processing cl, the scheduler releases rl,[x] and wl,[y]. This is safe with
respect to rule (2), because Y,[x] and w,[y] have already been processed,
and with respect to rule (3), because T, won’t request any more locks.

6, The scheduler sets wl,[x] so that wJx], which had been delayed, can
now be sent to the DM. Then the DM acknowledges w?[x].

7. The scheduler receives wZ[y] from the TM. It sets WI&~] and sends wJy]
to the DM. The DM then acknowIedges processing w&l.

8. Tz terminates and the TM sends cJ to the scheduler. The scheduler sends
c, to the DM. After the DM acknowledges processing cl, the scheduler
releases ZU~~[X] and w1Jy].

This execution is represented by the following history.

Hz is serial and therefore is SR.
An important and unfortunate property of 2PL schedulers is that they are

subject to deadlocks. For example, suppose a 2PL scheduler is processing
transactions T, and T,

T,: r,[xl -+ Wl[Yl + c1 T3: w[yl --+ w[xl -+ c3

and consider the following sequence of events:

1. Initially, neither transaction holds any locks.

2. The scheduler receives rl[x] from the TM. It sers rl,[~] and submits r,[x]
to the DM.

3. The scheduler receives wJy] from the TM. It sers wl,[y] and submits
w,[y] to the DM.

4. The scheduler receives w,[x] from the TM. The scheduler does not set
wl,[x] because it conflicts with rl,[x] which is already set. Thus w,[x] is
delayed.

5. The scheduler receives w,[y] from the TM. As in (4), w,[y] must be
delayed.

Although the scheduler behaved exactly as prescribed by the ruies of 2PL
schedulers, neither T, nor T3 can complete without violating one of these rules.
If the scheduler sends w,[y] to the DM without setting wl,b], it violates rule
(I). Similarly for w,+[x]. Suppose the scheduler releases w/,[y], so it can set
wl,[y] and thereby be allowed to send w,[y] to the DM. In this case, the sched-
uler will never be able to set wl,[x] (so it can process w,[x]), or else it would
violate rule (3). Similarly if it releases rl,[x]. The scheduler has painted itself
into a corner.

This is a classic deadlock situation. Before either of two processes can
proceed, one must release a resource that the other needs to proceed.

3.3 CORRECTNESS OF BASIC TWO PHASE LOCKING 53

Deadlock also arises when transactions try to strengthen read locks to
write locks. Suppose a transaction Ti reads a data item x and subsequently tries
to write it. Ti issues Yi[x] to the scheduler, which sets rl;[x]. When Ti issues
w;[x] to the scheduler, the scheduler must upgrade rli[x] to wli[x]. This upgrad-
ing of a lock is called a lock conversion. To obey 2PL, the scheduler must not
release rli[x]. This is not a problem, because locks set by the same transaction
do not conflict with each other. However, if two transactions concurrently
try to convert their read locks on a data item into write locks, the result is
deadlock.

For example, suppose T4 and T5 issue operations to a 2PL scheduler.

T,: r&x] + w4[x] + c4 T,: r&Y] + w,[x] + c,

The scheduler might be confronted with the following sequence of events:

1. The scheduler receives Y,,[x], and therefore sets rl.,[x] and sends r4[x] to
the DM.

2. The scheduler receives rJx], and therefore sets rl,[x] and sends r5[x] to
the DM.

3. The scheduler receives w,[x]. It must delay the operation, because wl,,[x]
conflicts with rl,[x].

4. The scheduler receives w5[x].,,,It must delay the operation, because wI,[x]
conflicts with rl,[x].

Since neither transaction can release the rl[x] it owns, and since neither can
proceed until it sets ~4x1, the transactions are deadlocked. This type of dead-
lock commonly occurs when a transaction scans a large number of data items
looking for data items that contain certain values, and then updates those data
items. It sets a read lock on each data item it scans, and converts a read lock
into a write lock only when it decides to update a data item.

We will examine ways of dealing with deadlocks in Section 3.4.

3.3 *CORRECTNESS OF BASIC TWO PHASE LOCKING

To prove that a scheduler is correct, we have to prove that all histories repre-
senting executions that could be produced by it are SR. Our strategy for prov-
ing this has two steps. First, given the scheduler we characterize the properties
that all of its histories must have. Second, we prove that any history with these
properties must be SR. Typically this last part involves the Serializability Theo-
rem. That is, we prove that for any history H with these properties, SG(H) is
acyclic.

To prove the correctness of the 2PL scheduler, we must characterize the set
of 2P.L histories, that is, those that represent possible executions of transac-
tions that are synchronized by a 2PL scheduler. To characterize 2PL histories,
we’ll find it very helpful to include the Lock and Unlock operations. (They

54 CHAPTER 3 / TWO PHASE LOCKING

were not in our formal model of Chapter 2.) Examining the order in which
Lock and Unlock operations are processed will help us establish the order in
which Reads and Writes are executed. This, in turn, will enable us to prove
that the SG of any history produced by 2PL is acyclic.

To characterize 2PL histories, let’s list all of the orderings of operations
that we know must hold. First, we know that a lock is obtained for each data-
base operation before that operation executes. This follows from rule (1) of
2PL. That is, 01,[3c] < o,[x]. From rule (2) of 2PL, we know that each opera-
tion is executed by the DM before its corresponding lock is released. In terms
of histories, that means o,[x] < oti,[x]. In particular, if oi[x] belongs to a
committed transaction (all of whose operations are therefore in the history),
we have ol,[x] < o,[x] < OI~,[X].

Proposition 3.1: Let H be a history produced by a 2PL scheduler. If oi[x]
is in C(H), then ol,[x] and ou,[x] are in C(H), and ol,[x] < o,[x] <
ozf,[x]:. cl

Now suppose we have two operations pJx] and q,[x] that conflict. Thus, the
locks that correspond to these operations also conflict. By rule (1) of 2PL,
only one of these locks can be held at a time. Therefore, the scheduler must
release the lock corresponding to one of the operations before it sets the
lock for the other. In terms of histories, we must have pu,[x] < ql,[x] or
qdxl < PUXI.

Proposition 3.2: Let H be a history produced by a 2PL scheduler. If p,[x]
and s,[x] (i # j) are conflicting operations in C(H), then either eui[x] <
ql,[xl or 44x1 < eL[xl. 0

Finally, let’s look at the two phase rule, which says that once a transaction
releases a lock it cannot subsequently obtain any other locks. This is equiva-
lent to saying that every Iock operation of a transaction executes before every
unlock operation of that transaction. In terms of histories, we can write this as
ml < WM.

Proposition 3.3: Let H be a complete history produced by a 2PL sched-
uler. If e,[x] and ‘~,[y] are in C(H), then pl,[x] < qz&]. 0

Using these properties, we must now show that every 2PL history H has an
acyclic SG. The argument has three steps. (Recall that SG(H) contains nodes
only for the committed transactions in H.)

1. If T, + 7J is in SG(H), then one of Ti’s operations on some data item,
say x, executed before and conflicted with one of T,‘s operations. There-
fore, T, must have released its lock on x before T, set its lock on X.

3.3 CORRECTNESS OF BASIC TWO PHASE LOCKING 55

2. Suppose T; + Tj --t Tk is a path in SG(H). From step (l), T, released
some lock before Tj set some lock,‘and similarly Tj released some lock
before Tk set some lock. Moreover, by the two phase rule, T1 set all of
its locks before it released any of them. Therefore, by transitivity, T,
released some lock before Tk set some lock. By induction, this argument
extends to arbitrarily long paths in SG(H). That is, for any path T, -+
T, + * - - --f T,,, T, released some lock before T, set some lock.

3. Suppose SG(H) had a cycle T, + T, + * * * + T, + T,. Then by step
(2), T, released a lock before T, set a lock. But then T, violated the
two phase rule, which contradicts the fact that H is a 2PL history.
Therefore, the cycle cannot exist. Since SG(H) has no cycles, the
Serializability Theorem implies that H is SR.

Notice that in step (2), the lock that Ti released does not necessarily
conflict with the one that Tk set, and in general they do not. T/s lock conflicts
with and precedes one that Tl set, and Tj released a lock (possibly a different
one) that conflicts with and precedes the one that Tk set. For example, the
history that leads to the path Ti -+ Tj + Tk could be

dxl --, Qxl + qEy1 + dY1.

Tcs lock on x does not conflict with Tk’s lock on y.
We formalize this three step argument in the following lemmas and theo-

rem. The two lemmas formalize steps (1) and (2). The theorem formalizes
step (3).

Lemma 3.4: Let H be a 2PL history, and suppose T; --f Tl is in SG(H).
Then, for some data item x and some conflicting operations p;[x] and qJx]
in H, pu;[x] < q1,[x].

Proof: Since T, + Tj, there must exist conflicting operations ei[x] and
qj[x] such that ei[x] < qj[x]. By Proposition 3.1,

1. ,Dli[x] < P~[x] < PU;[X], and

2. ql,[X] < qj[X] < quj[X]*

By Proposition 3.2, either p~i[x] < ql,[x] or qz+[x] < pl,[x]. In the latter
case, by (I), (2) and transitivity, we would have qj[x] < pi[x], which
contradicts pi[x] < q/[x]. Thus, pz4i[x] < ql,[x], as desired. 0

Lemma 3.5: Let H be a 2PL history, and let T, + T, + - * * -+ T, be a
path in SG(H), where n > 1. Then, for some data items x and y, and some
operations p,[x] and qn[y] in H, pu,[x] < ql,,[y].

Proof: The proof is by induction on II. The basis step, for IZ = 2, follows
immediately from Lemma 3.4.

56 CHAPTER 3 / TWO PHASE LOCKING

For the induction step, suppose the lemma holds for n = k for some k 1
2. We will show that it holds for n = k + 1. By the induction hypothesis,
the path T, -+ * * * --* Tk implies that there exist data items x and z, and
operations e,[x] and ok[z] in H, such that eu,[zc] < olJz]. By Tk + Tk+,
and Lemma 3.4, there exists data item y and conflicting operations oh[y],
and qh+][y] in H, such that o’uh[y] < qlk+i[y]. By Proposition 3.3, oIk[z]
< o’tlb[y]. By the last three precedences and transitivity, ,DU,[X] < q/k-,[y],
as desired. I3

Theorem 3.6: Every 2PL history H is serializable.

Proof: Suppose, by way of contradiction, that SG(H) contains a cycle T,
-+ Tz --) * . * --t T, --+ T,, where n > 1. By Lemma 3.5, for some data
items x and y, and some operations p,[x] and q,[y] in H, ~M~[x] < ql,[y].
But this contradicts Proposition 3.3. Thus, SG(H) has no cycles and so, by
the Serializability Theorem, H is SR. 0

3.4 DEADLOCKS

The scheduler needs a strategy for detecting deadlocks, so that no transaction
is blocked forever. One strategy is timeotlt. If the scheduler finds that a trans-
action has been waiting too long for a lock, then it simply guesses that there
may be a deadlock involving this transaction and therefore aborts it. Since the
scheduler is only guessing that a transaction may be involved in a deadlock, it
may be making a mistake. It may abort a transaction that isn’t really part of a
deadlock but is just waiting for a lock owned by another transaction that is
taking a long time to finish. There’s no harm done by making such an incorrect
guess, insofar as correctness is concerned. There is certainly a performance
penalty to the transaction that was unfairly aborted, though as we’ll see in
Section 3.12, the overall effect may be to improve transaction throughput,

One can avoid too many of these types of mistakes by using a long timeout
period. The longer the timeout period, the more chance that the scheduler is
aborting transactions that are actually involved in deadlocks. However, a long
timeout period has a liability, too. The scheduler doesn’t notice that a transac-
tion might be deadlocked until the timeout period has elapsed. So, should a
transaction become involved in a deadlock, it will lose some time waiting for
its deadlock to be noticed. The timeout period is therefore a parameter that
needs to be tuned. It should be long enough so that most transactions that are
aborted are actually deadlocked, but short enough that deadlocked transac-
tions don’t wait too long for their deadlocks to be noticed. This tuning activity
is tricky but manageable, as evidenced by its use in several commercial prod-
ucts, such as Tandem.

Another approach to deadlocks is to detect them precisely To do this, the
scheduler maintains a directed graph called a waits-for graph (WFG). The
nodes of WFG are labelled with transaction names. There is an edge T, --t T,,

3.4 DEADLOCKS 57

from node Ti to node T,, iff transaction T, is waiting for transaction Tj to
release some lock.3

Suppose a WFG has a cycle: T, + T, + * * * 4 T, -+ T,. Each transaction
is waiting for the next transaction in the cycle. So, T, is waiting for itself, as
is every other transaction in the cycle. Since all of these transactions are
blocked waiting for locks, none of the locks they are waiting for are ever going
to be released. Thus, the transactions are deadlocked. Exploiting this observa-
tion, the scheduler can detect deadlocks by checking for cycles in WFG.

Of course, the scheduler has to maintain a representation of the WFG in
order to check for cycles in it. The scheduler can easily do this by adding an
edge Ti -+ Tj to the WFG whenever a lock request by T; is blocked by a
conflicting lock owned by T1. It drops an edge Ti + Tj from the WFG when-
ever it releases the (last) lock owned by Tj that had formerly been blocking a
lock request issued by T;. For example, suppose the scheduler receives YJx],
but has to delay it because Tj already owns wl,[x]. Then it adds an edge T; + Tj
to the WFG. After Tj releases w~[x], the scheduler sets rl;[x], and therefore
deletes the edge Ti -+ Tja

How often should the scheduler check for cycles in the WFG? It could
check every time a new edge is added, looking for cycles that include this new
edge. But this could be quite expensive. For example, if operations are
frequently delayed, but deadlocks are relatively rare, then the scheduler is
spending a lot of effort looking for deadlocks that are hardly ever there. In
such cases, the scheduler should check for cycles less often. Instead of checking
every time an edge is added, it waits until a few edges have been added, or until
some timeout period has elapsed. There is no danger in checking less
frequently, since the scheduler will never miss a deadlock. (Deadlocks don’t go
away by themselves!) Moreover, by checking less frequently, the scheduler
incurs the cost of cycle detection less often. However, a deadlock may go unde-
tected for a longer period this way. In addition, all cycles must be found, not
just those involving the most recently added edge.

When the scheduler discovers a deadlock, it must break the deadlock by
aborting a transaction. The Abort will in turn delete the transaction’s node
from the WFG. The transaction that it chooses to abort is called the victim.
Among the transactions involved in a deadlock cycle in WFG, the scheduler
should select a victim whose abortion costs the least. Factors that are
commonly used to make this determination include:

3WFGs are related to SGs in the following sense. If T; + T’ is in the WFG, and both T; and
Tj ultimately commit, then Tj --f Ti will be in the SG. However, if Ti aborts, then Tj --f Ti
may never appear in the SG. That is, WFGs describe the current state of transactions, which
includes waits-for situations involving operations that never execute (due to abortions). SGs
only describe dependencies between committed transactions (which arise from operations that
actually execute).

58 CHAPTER 3 / TWO PHASE LOCKING

n The amount of effort that has already been invested in the transaction.
This effort will be lost if the transaction is aborted.

c The cost of aborting the transaction. This cost generally depends on the
number of updates the transaction has already performed.

o The amount of effort it will take to finish executing the transaction. The
scheduler wants to avoid aborting a transaction that is almost finished.
To do this, it must be able to predict the future behavior of active trans-
actions, e.g., based on the transaction’s type (Deposits are short, Audits
are long}.

c The number of cycles that contain the transact~iion. Since aborting a
transaction breaks all cycles that contain it, it is best to abort transac-
tions that are part of more than one cycle (if such transactions exist).

A transaction can repeatedly become involved in deadlocks. In each dead-
lock, the transaction is selected as the victim, aborts, and restarts its execu-
tion, only to become involved in a deadlock again. To avoid such cyclic
restarts, the victim selection algorithm should also consider the number of
times a transaction is aborted due to deadlock. If it has been aborted too many
times, then it should not be a candidate for victim selection, unless all transac-
tions involved in the deadlock have reached this state.

3.5 VARIATIONS OF TWO PHASE LOCKING

Conservative 2PL

It is possible to construct a 2PL scheduler that never aborts transactions. This
technique is known as Conservative 2PL or Static 2X. As we have seen, 2PL
causes abortions because of deadlocks. Conservative 2PL avoids deadlocks by
requiring each transaction to obtain all of its locks before any of its operations
are submitted to the DM. This is done by having each transaction predeclare
its readset and writeset. Specifically, each transaction T, first tells the scheduler
all the data items it will want to Read or Write, for example as part of its Start
operation. The scheduler tries to set all of the locks needed by T,. It can do this
providing that none of these locks conflicts with a lock held by any other trans-
action. If the scheduler succeeds in setting all of T,‘s locks, then it submits Ti’s
operations to the DM as soon as it receives them. After the DM acknowledges
the processing of T,‘s last database operation, the scheduler may release all of
l-j’s locks.

If, on the other hand, an)’ of the locks requested in T,‘s Start conflicts with
locks presently held by other transactions, then the scheduler does not grant
any of T,‘s locks. Instead, it inserts T, along with its lock requests into a wait-
ing queue. Every time the scheduler releases the locks of a completed transac-
tion, it examines the waiting queue to see if it can grant all of the lock requests

3.5 VARIATIONS OF TWO PHASE LOCKING 59

of any waiting transactions. If so, it then sets all of the locks for each such
transaction and continues processing as just described.

In Conservative 2PL, if a transaction T; is waiting for a lock held by Tj,
then T; is holding no locks. Therefore, no other transaction Th can be waiting
for T,, so there can be no WFG edges of the form Tk -+ T,. Since there can be
no such edges, T, cannot be in a WFG cycle, and hence cannot become part of
a deadlock. Since deadlock is the only reason that a 2PL scheduler ever rejects
an operation and thereby causes the corresponding transaction to abort,
Conservative 2PL never aborts a transaction. (Of course, a transaction may
abort for other reasons.) This is a classic case of a conservative scheduler. By
delaying operations sooner than it has to, namely, when the transaction begins
executing, the scheduler avoids abortions that might otherwise be needed for
concurrency contro1 reasons.

Strict 2PL

Almost all implementations of 2PL use a variant called Strict 2PL. This differs
from the Basic 2PL scheduler described in Section 3.2 in that it requires the
scheduler to release all of a transaction’s locks together, when the transaction
terminates. More specifically, Tls locks are released after the DM acknowl-
edges the processing of ci or aj, depending on whether T; commits or aborts
(respectively).

There are two reasons for adopting this policy. First, consider when a 2PL
scheduler can release some o&[x]. To do so the scheduler must know th;it: (1) T,
has set all of the locks it will ever need, and (2) T; will not subsequently issue
operations that refer to X. One point in time at which the scheduler can be sure
of (1) and (2) is when T, terminates, that is, when the scheduler receives the ci
or ai operation. In fact, in the absence of any information from the TM aside
from the operations submitted, this is the earliest time at which the scheduler
can be assured that (1) and (2) hold.

A second reason for the scheduler to keep a transaction’s locks until it
ends, and specifically until after the DM processes the transaction’s Commit or
Abort, is to guarantee a strict execution. To see this, let history H represent an
execution produced by a Strict 2PL scheduler and suppose wi[x] < oj[x]. By
rule (1) of 2PL (Proposition 3.1) we must have

1. w&[x] < WJX] < wtii[x], and

2, Olj[X] < Oj[X] < OZfj[X].

Because wli[~] and olj[~] conflict (whether o is r or w, we must have either
wtti[x] < oI,[x] or oUj[x] < wlJx] (by Proposition 3.2). The latter, together
with (1) and (2), would contradict that wi[x] < ol[x] and, therefore,

3. Wzfj[X] < olj[x].

60 CHAPTER 3 I TWO PHASE LOCKING

But because H was produced by a Strict 2PL scheduler we must have that

4. either a, < wu,[x] or c, < wu,[x].

From (2) - (4), it follows that either a, < oI[x] or c, < o,[x], proving that H
is strict.

Actually, from this argument it follows that it is only necessary to hold
write locks until after a transaction commits or aborts to ensure strictness.
Read locks may be released earlier, subject to the 2PL rules to ensure
serializability. Pragmatically, this means that read locks can be released when
the transaction terminates (i.e., when the scheduler receives the transaction’s
Commit or Abort), but write locks must be held until after the transaction
commits or aborts (i.e., after the DM processes the transaction’s Commit or
Abort).

Recall that strict histories have nice properties. They are recoverable and
avoid cascading aborts. Furthermore, Abort can be implemented by restoring
before images. For this reason, 2PL implementations usually take the form
of Strict 2PL schedulers, rather than the seemingly more flexible Basic 2PL
schedulers.

3.6 IMPLEMENTATION ISSUES

An implementation of 2PL for any particular system depends very much on the
overall design of the computer system and on the available operating system
facilities. It is therefore difficult to give general guidelines for implementation.
However, at the risk of superficiality, we will briefly sketch the issues faced in
most implementations of locking.

The scheduler abstraction is usually implemented by a combination of a
lock manager (LM) and a TM. The LM services the Lock and Unlock opera-
tions. When the TM receives a Read or Write from a transaction, it sends the
appropriate Lock operation to the LM. When the LM acknowledges that the
lock is set, the TM sends the Read or Write to the DM. Thus, the TM
subsumes the scheduler function of ensuring that a lock is set before the corre-
sponding operation is performed.

Notice that the control flow here differs somewhat from the scheduler
abstraction. In our DBS modeI, the TM sends the Read or Write directly to the
scheduler. The scheduler sets the appropriate lock and forwards the Read or
Write to the DM.

The Lock Manager

The LM maintains a table of locks, and supports the operations Lock(trans-
action-id, data-item, mode) and Unlock(transaction-id, data-item), where

3.6 IMPLEMENTATION ISSUES 61

transaction-id is the identifier of the transaction requesting the lock,4 data-item
is the name of the data item to be locked, and mode is “read” or “write.” To
process a Lock operation, the LM tries to set the specified lock by adding an
entry to the lock table. If another transaction owns a conflicting lock, then the
LM adds the lock request to a queue of waiting requests for that data item.5
Unlock releases the specified lock, and grants any waiting lock requests that
are no longer blocked.

Lock and Unlock operations are invoked very frequently In most transac-
tion processing systems (such as airline reservation and on-line banking), each
transaction does little computing for each data item it accesses. Therefore,
unless locking is very fast, it consumes a significant fraction of the processor’s
time. As a rule of thumb, it should take on the average no more than several
hundred machine language instructions to set or release a lock (including
potential overhead for a monitor call, supervisor call, context switch, etc.). To
reach this speed, the LM is often optimized carefully for special cases that
occur frequently, such as setting a lock that conflicts with no other locks, and
releasing all of a transaction’s locks at once.

The lock table is usually implemented as a hash table with the data item
identifier as key, because hash tables are especially fast for content-based
retrieval. An entry in the table for data item x contains a queue header, which
points to a list of locks on x that have been set and a list of lock requests that
are waiting. Each lock or lock request contains a transaction-id and a lock
mode. Since a very large number of data items can potentially be locked, the
LM limits the size of the lock table by only allocating entries for those data
items that actually are locked. When it releases the last lock for a data item X,
it deallocates the entry for X.

Since the TM normally releases all of a transaction’s read locks as soon as
the transaction terminates, releasing a transaction’s read locks should be a
basic LM operation. Similarly, if the scheduler is strict, the TM releases a
transaction’s write locks as soon as the DM acknowledges committing the
transaction. So releasing write locks should also be a basic LM operation. To
make these operations fast, a common practice is to link together in the lock
table all of the read lock entries and all of the write lock entries of each transac-
tion. If the Commit operation is very efficient, then it may not be cost effective
to release read locks before the Commit and write locks afterwards. Instead, it
may be satisfactory to release write and read locks after the Commit. This
saves the overhead of one call to the LM, at the expense of some lost concur-
rency by holding read locks a little longer than necessary.

4This is the transaction identifier discussed in Section 1.1.
50ne could add another parameter to Lock that specifies whether, in the event that the lock
request cannot be granted, the request should be queued or cancelled (i.e., return immediately
to the caller).

62 CHAPTER 3 I TWO PHASE LOCKING

The lock table should be protected. It should only be accessed by the
programs that implement Lock and Unlock, so that it cannot be easily
corrupted. Clearly, a stray update to memory that compromises the integrity of
the lock table’s data structures is likely to cause the entire system to malfunc-
tion (by executing in a non-SR manner) or die. This goal of protection may be
accomplished by making the LM part of the operating system itself, thereby
providing strong protection against corruption by user programs. Alterna-
tively, it might be implemented as a monitor or device driver. The latter tech-
nique is a common workaround in systems that do not support shared memory
between processes.

Blocking and Aborting Transactions

When the LM releases a lock for x, it may be able to grant other lock requests
that are waiting on x’s lock queue. If there are such waiting requests, then the
LM must,,schedule them “fairly”; otherwise, it runs the risk of delaying some
forever.

For example, suppose there is a queue of lock requests [rL,[x], rl,[x],
wl,[x], r/,[x]] waiting for ~jl,[x] to be released, where rl,[x] is at the head of the
queue. After it releases wl,[x], the LM can now set rl,[x] and r!;[xJ. It can also
set rl,[x]. This is unfair, in the sense that rl,[x] has jumped ahead of u/14[x]. It
can also lead to the indefinite postponement of ~~i,[r], since a steady stream of
read lock requests may continually jump ahead of wl,[x], preventing it from
being set. This danger of indefinite postponement can be avoided by servicing
the queue first-come-first-served, thereby never letting a read lock request
jump ahead. Or, the LM can allow read lock requests to jump ahead only if no
write lock request has been waiting too long, where the maximum waiting
time is a tunable parameter.

The mechanism by which the LM causes transaction 7, to wait and later
unblocks it depends on the process synchronization primitives provided by the
operating system, and on the way transactions and DBS modules are struc-
tured. For example, suppose each transaction executes as a process, and the
DBS is also a process. The DBS receives Read and Write requests as messages.
For each such message, it invokes its LM to set the appropriate lock. By not
responding to a transaction T,‘s message, the DBS has effectively blocked T,, if
T, is waiting for the response. It eventually unblocks T, by sending the response
message. Alternatively, suppose T, calls the DBS as a procedure (e.g., a moni-
tor) that executes in T,‘s process context. Then the DBS can block T, simply by
blocking the process in which T, is executing (e.g., by waiting on a condition
that is assigned uniquely to T,). When the LM executing (in the DBS) in
another transaction’s context releases the relevant lock, it can signal the event
for T, (e.g., by signaling TJ’s condition), thereby unblocking T, and allowing it
to complete the lock request.

3.6 IMPLEMENTATION 1SSUES 63

Similar issues arise in aborting the victim of a detected deadlock. The TM
must be informed of the forced abortion, so it can either notify the transaction
or automatically restart it. When processing an Abort (for deadlock or any
other reason), the TM must delete the transaction’s legacy from the lock table.
Performing such activities outside the normal flow of control of the transaction
again depends on several factors: how transactions, the TM, the LM, and the
deadlock detector are structured as processes; if and how they share memory;
and what synchronization and process control primitives they can exercise on
each other.

System dependencies are often paramount in designing solutions to these
control problems. The quality of those solutions can be among the most
important factors affecting the robustness and performance of the concurrency
control implementation.

Atomicity of Reads and Writes

A critical assumption in our model of histories is that every operation in the
history is atomic. Since our correctness proof of 2PL is built on the history
model, our implementation of 2PL must honor its assumptions. There are
four operations that we used in histories to argue the correctness of 2PL:
Lock, Unlock, Read, and Write. These four operations must be implemented
atomically.

To ensure that concurrent executions of Locks and Unlocks are atomic,
accesses to the lock table must be synchronized using an operating system
synchronization mechanism, such as semaphores or monitors. If accesses to
the lock table are synchronized by a single semaphore (or lock, monitor, etc.),
then a very high locking rate may cause that semaphore to become a bottle-
neck. This bottleneck can be relieved by partitioning the lock table into several
component tables, with a different semaphore serializing accesses to each
component. To insert a lock entry, the Lock operation selects the appropriate
component by analyzing its parameters (e.g., by hashing the data item name),
and then requesting the semaphore that regulates access to that component.

Since most databases are stored on disk, Reads and Writes on data items
are usually implemented by Reads and Writes of fixed-size disk blocks. If the
granularity of a data item is a disk block, then it is straightforward to imple-
ment Read and Write atomically. Each Read or Write on a data item is imple-
mented as an atomic Read or Write on a disk block. If the granularity of data
items is not a disk block, then extra care is needed to ensure that Reads and
Writes on data items execute atomically.

For example, suppose the granularity of data items is a record, where
many records fit on each disk block, but no record is spread over more than
one disk block. A program that implements Read must read the disk block that
contains the record, extract the record from that block, and return the record
to the calling program. A program that implements Write must read the disk

64 CHAPTER 3 / TWO PHASE LOCKING

FIGURE 3-1
A Banking Database

block that contains the record, update the relevant record in that block, and
then write the block back to disk.”

An uncontrolled concurrent execution of two of these operations may not
be atomic. For example, suppose that two Writes execute concurrently on
different records stored in the same block. Supposeeach Write begins by inde-
pendently and concurrently reading a copy of the block into its local memory
area. Each Write now updates the copy of irs record in its private copy of the
disk block, and then writes that private copy back to disk. Since each Write
was working on an independent copy of the block, one of the record updates
gets lost. If the two Writes had executed serially (with their associated Reads),
then neither update would have been lost. Therefore, the implementation is
not atomic.

A solution to this problem is to require that each block be locked while a
Write is being applied to a record contained in that block. Depending on how
Read and Write are implemented, Reads may need to lock disk blocks as well.

Notice that these locks on blocks that make record operations atomic are
generaIly not the same as the record locks that are used to make transactions
serializable. A lock on a block can be released as soon as the operation
that was using it completes. A lock on a record must follow the 2PL locking
protocol.

3.7 THE PHANTOM PROBLEM

We have been modelling a database as a fixed set of data items, which can be
accessed by Reads and Writes. Most real databases can dynamically grow and
shrink. In addition to Read and Write, they usually support operations to
Insert new data and Delete existing data. Does 2PL extend naturally to
support dynamic databases? The answer is yes, but the following example
would suggest no.

‘As we will see in Chapter 6, the disk Writes do not have to take place phy,icaliy to complete
the transaction.

3.7 THE PHANTOM PROBLEM 65

Suppose we have two files representing banking information (see Fig. 3-l):
an Accounts file that, for each account, gives the account number (Account#),
the bank branch that holds the account (Location), and the amount of money
in the account (Balance); and an Assets file that, for each bank branch (Loca-
tion) gives the total assets of that branch (Total).

We have two transactions to execute on this database. Transaction T,
reads all of the accounts in Tyngsboro’ from the Accounts file, adds up their
Balances, and compares that sum to the Total assets in Tyngsboro (in Assets).
Transaction TL adds a new account [99, Tyngsboro, 501 by inserting a record
into the Accounts file and then adding the Balance of that account to the Total
assets in Tyngsboro. Here is one possible execution of these transactions:

Read,(Accounts[339], Accounts[914], Accounts[22]);

Insert,(Accounts[99, Tyngsboro, SO]);

Read,(Assets[TyngsboroJ); / * returns 3858 ” /

Write,(Assets[Tyngsboro]); 1” writes 3908 * /

Read,(Assets[Tyngsboro]); / * returns 3908 ” /

This execution could have resulted from an execution in which both T, and T2
were two phase locked. T, begins by locking the three Accounts records that it
wants to Read. (It has to read all of the Accounts records to determine which
ones are in Tyngsboro.) Then T, locks the record it is about to insert and, after
inserting the record, locks the Tyngsboro record in Assets. After finishing with
its update to Assets, T, releases both of its locks. Now T, can finish up by
locking the Tyngsboro record in Assets, reading the Total for that Branch, and
terminating.

Unfortunately, the execution is not SR. T, reads Accounts 339, 914, and
22, but when it reads the Assets of Tyngsboro, it gets a Total that includes
Account 99. If T, had executed serially before T,, then it would have correctly
read the old Total for Tyngsboro, 3858. If T, had executed serially after T,,
then it would have read all four Accounts records and the correct new Total for
Tyngsboro.

The problem is record 99 in Accounts. When T, first looks in Accounts, it
doesn’t find that record. However, when it looks in Assets a little later, it finds
a Total that reflects the insertion of record 99. Record 99 is called a phantom
record, because it seems to appear and disappear like a ghost.

The phantom problem is the concurrency control problem for dynamic
databases. The example seems to show that 2PL does not guarantee correct
execu.tions for dynamic databases. Fortunately, the example is misleading
and 2PL actually is a good method for synchronizing accesses to dynamic
databases.

‘Rhymes with “Kingsborough.”

66 CHAPTER 3 / TWO PHASE LOCKING

To see how the example is misleading, let’s return to first principles. A
basic assumption of our model is that a transaction communicates with other
transactions on/?1 through Reads and Writes, and that all such Reads and
Writes are synchronized by the scheduler. In the example under discussion,
there is a hidden conflict between a Read from I, and a Write from T,. Since T,
read all of the records in Accounts, it must have read some control information
that told it which records to read, and since Tz inserted a record into Accounts,
it must have ~c~ritte~ that control information. These Read and Write opera-
tions on the control information must be locked, just like any other accesses to
shared data.

Suppose we adopt a straightforward implementation that locks control
information. For example, suppose each file has an end-of-file marker (EOF)
after the last record. To determine which records to read, T, reads (and locks)
records until it reads (and locks) EOF. To insert a record, Tl must move EOF,
so it write locks it. T,‘s and T>‘s locks on EOF would prevent the incorrect
execution under discussion: if T, reads EOF before T? tries to write it, then TL
is unable to insert the new record until after T, reads Assets[Tyngsboro]; if T,
writes EOF before T, tries to read it, then T, cannot finish scanning records in
Accounts until after T2 adds the new record and updates Assets[Tyngsboro].

Unfortunately, this straightforward implementation may perform poorly
Every transaction that inserts a record locks EOF, thereby preventing any
other transaction from scanning or inserting into the file. In some cases this is
unavoidable. For instance, in the example T, is scanning for Accounts records
in Tyngsboro, and T2 is inserting such a record. However, if T2 were inserting a
record into Marlboro instead of Tyngsboro, then T, and T2 would not be
accessing any records in common, so their conflict between accesses to EOF
would be unnecessary. We can exploit this observation by using a technique
called index locking.

index Locking

Suppose each file has one or more indices associated with it. Each index is
defined on exactly one field of the file, and contains a set of index entries. Each
index entry has one value of the field on which it’s defined and a list of pointers
to the records that have that field value. Indices are commonly used in DBSs to
speed up access to sets of records whose fields have given values.x In the exam-
ple database of Fig. 3-1, we might create an index on the Location field of
Accounts for this purpose.

When a transaction such as T, scans Accounts for records in Tyngsboro, it
reads and locks the index entry for Tyngsboro. Since any transaction that

*Section 3.13 describes locking schedulers that are specialized for synchronizmg access to tree-
strucrured indices.

3.8 LOCKING ADDITIONAL OPERATIONS 67

inserts a new record r in Tyngsboro must add a pointer to Y in the index entry
for Tyngsboro, it will try to lock that index entry and thereby conflict with T,
as desired. If a transaction inserts a record into any other Location, it will
access a different index entry and therefore won’t conflict with T,. Thus, T,
only conflicts with transactions that insert records that it wants to read.

Recall that data item names are not interpreted by the LM. Therefore, a
transaction can set a lock on an index entry even though the index does not
physically exist. Thus, we can obtain the benefit of index locking without
requiring the indices to exist. Each transaction that scans records sets a lock on
an index entry that “covers” all of the records it’s reading, and each transaction
that inserts a record sets a lock on every index entry that would include the
new record (if the index existed) and that may be locked by a scanning trans-
action. The effect is the same as if the transactions were locking indices that
physically exist.

In a sense, a transaction that locks the Tyngsboro index entry is effectively
locking all records that satisfy the predicate (Location = “Tyngsboro”).

One can generalize index locking by allowing more complex predicates to
be locked, such as conjunctions of such predicates. That is, the data item name
stored in the lock table is actually a predicate. Two locks conflict if there could
be a record that satisfies both predicates, that is, if the lock predicates are
mutually satisfiable. This is called predicate locking. While more general than
index locking, it is also more expensive, since it requires the LM to detect
conflicts between arbitrary predicates. It is therefore not widely used.

3.8 LOCKING ADDlTlONAL OPERATiONS

In some applications, there are periods with heavy Write traffic on certain data
items, called hot spots. For example, in the banking database of Fig. 3-1,
every deposit and withdrawal transaction for Accounts at a given branch Loca-
tion requires updating the Assets record for that Location; during periods of
peak load, the Assets records may become hot spots. When hot spots are
present, many transactions may be delayed waiting for locks on hot spot data
items. This performance problem can often be avoided by adding other types
of operations to the standard repertoire of Read and Write.

For example, in deposits and withdrawals, Writes are used to add and
subtract from the Total assets of Locations. If we implement Increment and
Decrement as atomic operations, then most Writes can be replaced by these
operations. Since Increment and Decrement commute, they can set weaker
locks than Write operations, which do not commute. These weaker locks
allow transactions to execute concurrently in situations where ordinary write
locks would have them delay one another, thereby helping to relieve the bottIe-
neck created by the hot spot. A version of this scheme is implemented in the
Main Storage Data Base (MSDB) feature of IBM’s IMS Fast Path.

68 CHAPTER 3 / TWO PHASE LOCKING

The generalized locking scheme has four types of operations: Read, Write,
Increment, and Decrement. It therefore has four types of locks: read locks,
write locks, increment locks, and decrement locks. To define the conflict rela-
tion between lock types, we examine the corresponding operation types to
determine which ones commute. To determine this, we have to be precise
about what Increment and Decrement actually do. Let us define them this way:

Increment(x, z&J: add val to data item x.

Decrement(x, val): subtract val from data item x.

We ass~ume that data item values can be arbitrary positive or negative
numbers. To ensure that Increment and Decrement commute, we assume that
neither operation returns a value to the transaction that issued it. Therefore,
for any data item x and values val, and valD, the sequence of operations
[Increment(x, ~a/,), Decrement(x, vale)] produces exactly the same result as
the sequence [Decrement(x, valD), Increment(x, vail)]. That is, each operation
returns the same result (i.e., nothing) and the two operations leave x in the
same final state, independent of the order in which they execute. Since they
commute independent of the value of vu/, and valD, we drop the val parameters
in what follows.

Increment(x) and Decrement(x) do conflict with Read(x) and Write(x). For
example, Read(x) returns a different value of x depending on whether it
precedes or follows Increment(x). Increment(x) produces a different value
depending on whether it precedes or follows Write(x). Lock types should be
defined to conflict in the same way that their corresponding operations conflict
(we’ll explain why in a moment). Therefore, the compatibility matrix for the
lock types is as shown in Fig. 3-2. A “y” (yes) entry means that two locks of
the types specified by the row and column labels for that entry can be simulta-
neously held on a data item by two different transactions, i.e., the two lock
types do not conflict. An “n” (no) entry means that the two lock types cannot
be concurrently held on a data item by distinct transactions, i.e., the lock types
conflict.

Since increment and decrement locks do not conflict, different transactions
can concurrently set these locks, most importantly on hot spot data items.
Transactions that use these new lock types will therefore be delayed less
frequently than if they had only used write locks, which do conflict.

This technique requires that Increment(x) and Decrement(x) be imple-
mented atomically. Each of these operations must read x, update the value
appropriately, and then write the result back into x. To ensure that this read-
update-write process is atomic, no other operation can access the data item
while the process is going on. Thus, while an Increment or Decrement is oper-
ating on a data item, the data item is effectively locked (against any other oper-
ations on that data item). This lock is only held for the duration of the
Increment or Decrement operation. Once the operation is completed, this lock

3.9 MULTIGRANULARITY LOCKING 69

Read Write Increment Decrement

fii~~~t i,

FIGURE 3-2
A Compatibility Matrix

can be released. However, the increment or decrement lock must be held until
the transaction commits to satisfy the two phase rule and strictness.

To understand why this generalized form of 2PL works correctly, we need
to revisit the proof of correctness, Lemmas 3.4 and 3.5 and Theorem 3.6.
Relative to this issue, the critical step in the proof is: If Ti -+ Tj is in SG(H),
then T; and Tj had conflicting accesses to some data item, and T; unlocked that
data item before Tj locked it. As long as every pair of conflicting (i.e., noncom-
mutative) operation types have associated lock types that conflict, then this
argument is valid. Since we defined the lock types so that this property holds,
this generalized form of 2PL is correct. We don’t even need to modify the proof
to handle this case, since it is expressed in terms of arbitrary conflicting opera-
tions, such as p and q.

So, we can easily add new operation types by following these simple rules:

1. Ensure that the implementation of each new operation type is atomic
with respect to all other operation types.

2. Define a lock type for each new operation type.

3. Define a compatibility matrix for the lock types (for both the old and
new operations) so that two lock types conflict iff the corresponding
operation types on the same data item do not commute.

3.9 MULTIGRANULARITY LQCKlNG

So far we have viewed the database as an unstructured collection of data items.
This is a very abstract view. In reality a data item could be a block or page of
data, a file, a record of a file, or a field of a record. The granularity of a data
item refers to that item’s relative size. For instance, the granularity of a file is
coarser, and the granularity of a field finer, than that of a record.

The granularity of data items is unimportant as far as correctness is
concerned. The granularity is important, however, when it comes to perfor-
mance. Suppose, for instance, that we use some version of 2PL. Using coarse
granules incurs low overhead due to locking, since there are fewer locks to

70 CHAPTER 3 I TWO PHASE LOCKING

Database

I
Area

I
File

I
Record

FIGURE 3-3
A Lock Type Graph

manage. At the same time, it reduces concurrency, since operations are more
likely to conflict. For example, if we lock files, two transactions that update
the same file cannot proceed concurrently even if they access disjoint sets of
records. Fine granularity locks improve concurrency by allowing a transaction
to lock only those data items it accesses. But fine granularity involves higher
locking overhead, since more locks are requested.’

Selecting a granularity for locks requires striking a balance between lock-
ing overhead and amount of concurrency. We can do even better than choosing
a uniform “optimal” granule size for all data items by means of multi-
grandarit~ locking (MGL). MGL allows each transaction to use granule sizes
most appropriate to its mode of operation. Long transactions, those that
access many items, can lock coarse granules. For example, if a transaction
accesses many records of a file, it simply locks the entire file, instead of locking
each individual record. Short transactions can lock at a finer granularity. In
this way, long transactions don’t waste time setting too many locks, and short
transactions don’t block others by locking large portions of the database that
they don’t access.

MGL requires an LM that prevents two transactions from setting conflict-
ing locks on two granules that overlap. For example, a file shouId not be read
locked by a long transaction if a record of that file is write locked by a short
transaction. An unsatisfactory solution would be to require that the long trans-
action look at each record of the file to find out whether it may lock the file.
This would defeat the very purpose of locking at coarse granularity - namely,
to reduce locking overhead.

A better solution is possible by exploiting the natural hierarchical relation-
ship between locks of different granularity. We represent these relationships by

‘There are other factors that could ~duse concurrency to actually decrease when finer granular-
ity is used. For a more detailed discussion of the effects of granularity on performance, see
Section 3.12.

3.9 MULTIGRANULARITY LOCKING 71

DBl

/I\ I\
A\ /\ /\ T\ A\

R1.l R1.2 R1.3 R2.1 R2.2 R3.1 R3.2 R4.1 R4.2 R5.1 R5.2 R5.3

FIGURE 3-4
A Lock Instance Graph

r W ir iw riw

Y Y n Y n n

W n n n n n

ir Y n Y Y Y
iw n n Y Y n

riw n n Y n n

FIGURE 3-5
A Compatibility Matrix for Multigranularity Locking

a lock type graph. Each edge in the graph connects a data type of coarser gran-
ularity to one of finer granularity. For example, in Fig. 3-3 areas (i.e., regions
of disks) are of coarser granularity than files, which are of coarser granularity
than records.

A set of data items that is structured according to a lock type graph is
called a lock instance graph (see Fig. 3-4). The graph represents an abstract
structure that is used only by the scheduler to manage locks of different
granularities. It need not correspond to the physical structure of the data items
themselves.

We’ll assume that the lock instance graph is a tree. (Later we’ll consider
more general types of lock instance graphs.) Then a lock on a coarse granule x
explicitly locks x and implicitly locks all of x’s proper descendants, which are
finer granules “contained in” x. For example, a read lock on an area implicitly
read locks the files and records in that area.

72 CHAPTER 3 / TWO PHASE LOCKING

It is also necessary to propagate the effects of fine granule locking activity
to the coarse granules that “contain” them. To do this, each lock type has an
associated intention lock type. So, in addition to read and write locks, we have
itftention read (ir) locks and intention write (iw) locks. Before it locks x, the
scheduler must ensure that there are no locks on ancestors of x that implicitly
lock x in a conflicting mode. To accomphsh this, it sets intention locks on those
ancestors. For exampIe, before setting rl[x] on record x, it sets ir locks on x’s
database, area, and file ancestors (in that order). For any y, irl[y] and wl[y]
conflict. Thus, by setting irl[y] on every ancestor y of X, the scheduler ensures
that there is no wl[y] that implicitly write locks X. For the same reason, iwl[x]
conflicts with rl[x] and wl[x] (see Fig. 3-5).

Suppose a transaction reads every record of a file and writes into a few of
those records. Such a transaction needs both a read lock on the file (so it can
read all records) and an iw lock (so it can write lock some of them). Since this
is a common situation, it is useful to define an riw lock type. An riwl[x] is
logically the same as owning both rl[x] and iwl[x] (see Fig. 3-5).

For a given lock instance graph G that is a tree, the scheduler sets and
releases locks for each transaction T, according to the following MGL pro-
tocol:

1. If x is not the root of G, then to set rl,[x] or irl,[x], T, must have an ir or
iw lock on x’s parent.

2. If x is not the root of G, then to set wl,[x] or iwl,[x], T, must have an iw
lock on x’s parent.

3. To read (or write) x, T, must own an r or w (or w) lock on some ances-
tor of x. A lock on x itself is an explicit lock for x; a lock on a proper
ancestor of x is an implicit lock for x.

4. A transaction may not release an intention lock on a data item X, if it is
currently holding a lock on any child of x.

Rules (1) and (2) imply that to set rl,[x] or wl,[x], T, must first set the
appropriate intention locks on all ancestors of X. Rule (3) implies that by lock-
ing X, a transaction has implicitly locked all of x’s descendants in G. This
implicit locking relieves a transaction from having to set explicit locks on x’s
descendants, which is the main reason for MGL. Rule (4) says that locks
should be released in leaf-to-root order, which is the reverse of the root-to-leaf
direction in which they were obtained. This ensures that a transaction never
owns a read or write lock on x without owning the corresponding intention
locks on ancestors of x.

For example, referring to Fig. 3-4, suppose that transaction T, wants to
set rl,[F3]. It must first set irl,[DBl], then irl,[Al], and finally rl,[F3]. Now
suppose Tj tries to set wlJR3.21. It must set iwl,[DBl], iwl,[Al], and iwl,[F3].
It can obtain the first two locks, but not iwlJF3], because it conflicts with
rl,[F3]. After T, releases rl,[F3], T, can set iwl,[F3] and wl,[R3.2]. Now

3.9 MULTIGRANULARITY LOCKING 73

suppose T3 comes along and tries to set rl,[Al]. It must set irl,[DBl], which it
can do immediately, and then set rl,[Al]. It cannot do this before T, releases
iwl,[Al].

Correctness

The goal of the MGL protocol is to ensure that transactions never hold
conflicting (explicit or implicit) locks on the same data item (i.e., node of the
lock instance graph).

Theorem 3.7: Suppose all transactions obey the MGL protocol with
respect to a given lock instance data graph, G, that is a tree. If a transac-
tion owns an explicit or implicit lock on a node of G, then no other trans-
action owns a conflicting explicit or implicit lock on that node.

Proof: It is enough to prove the theorem for leafnodes. For, if two trans-
actions held conflicting (explicit or implicit) locks on a nonleaf node x,
they would be holding conflicting (implicit) locks on all descendants and,
in particular, all leaf descendants of X. Suppose then that transactions Tj
and Tj own conflicting locks on leaf x. There are seven cases:

transaction T; transaction Tj

1. implicit r lock explicit w lock

2. implicit Y lock implicit w lock

3. explicit r lock explicit w lock

4. explicit Y lock implicit w lock

5. implicit w lock explicit w lock

6. implicit w lock implicit w lock

7. explicit w lock explicit w lock

Case 1. By rule (3) of the MGL protocol, Ti owns rl;[y] for some
ancestor y of X. By rule (2) of the MGL protocol (and induction), Tj must
own an iw lock on every ancestor of X. In particular, it owns iw&[y], which
is impossible because the lock types iw and r conflict.

Case 2. By rule (3) of the MGL protocol, Ti owns rl;[y] for some
ancestor y of x, and Tj owns Wlj[y’] for some ancestor y’ of X. There are
three subcases: (a) y = y’, (b) y is an ancestor of y’, and (c) y’ is an ances-
tor of y. Case (a) is impossible, because Ti and Tj are holding conflicting
read and write locks (respectively) on y = y’. Case (b) is impossible
because Tj must own iwljy], which conflicts with rli[y]. And case (c) is
impossible because Ti must own irlJy’], which conflicts with wl,[y’]. Thus,
the assumed conflict is impossible.

74 CHAPTER 3 / TWO PHASE LOCKING

Cases (3) and (7) are obviously impossible. Cases (4) and (5) foIlow
the same argument as case (I), and (6) follows the argument of (2). q

implementation Issues

Theorem 3.7 says that the MGL protocol prevents transactions from owning
conflicting locks. However, this is not sufficient for serializability. To ensure
serializability, a scheduIer that manages data items of varying granularities
must use the MGL protocol in conjtinction with 2PL. One way of framing the
relationship between these two techniques is to say that 2PL gives rules for
when to lock and unlock data items. The MGL protocol tells bow to set or
release a lock on a data item, given that data items of different granularities are
being locked. For example, for a transaction T, to read a record, 2PL requires
that T, set a read lock on the record. To set that read lock, MGL requires
setting ir locks on the appropriate database, area, and file, and setting an r
lock on the record.

Using MGL, the LM services commands to set and release locks in a
conventional manner. When it gets a lock request, it checks that no other
transaction owns a conflicting lock on the same data item, where the data item
could be a database, area, file, or record. If no conflicting locks are set, then it
grants the lock request by setting the lock. Otherwise, it blocks the transaction
until either the lock request can be granted or a deadlock forces it to reject the
request, thereby causing the transaction to abort. The LM need not know
about the lock type graph, the lock instance graph, the MGL protocol, or
implicit locks. Its only new feature is that it handIes more lock types (namely,
intention locks) using the expanded compatibility matrix.

Given the larger number of lock types, there are more types of lock conver-
sion than simply converting a read lock to a write lock. For example, one
might convert irl,[x] to rl,[x] or riwl,[x]. To simplify this lock conversion activ-
ity, it is helpful to define the strength of lock types: lock type p is stronger than
lock type 4 if for every lock type o, oli[x] conflicts with ql,[x] implies that ol,[x]
conflicts with p&[x]. For example, riw is stronger than r, and Y is stronger than
ir, but r and iw have incomparable strengths.

If a transaction owns p&[x] and requests ql,[x], then the LM should
convert pl,[x] into a lock type that is at least as strong as both p and q, For
example, if p = I and q = iw, then the LM should convert rl,[x] into riwl,[x].
The strengths of lock types and the lock conversion rules that they imply can
be derived from the compatibility matrix. However, this is too inefficient to
do at run-time for each lock request. It is better to derive the lock conversion
rules statically, and store them in a table that the LM can use at run-time (see
Fig. 3-6). The lock conversion problems of deadlocks (cf. Section 3.2) and fair
scheduling (cf. Section 3.6) must also be generalized to this expanded set of
lock types.

3.9 MULTIGRANULARITY LOCKING 75

ir

iw

Requested r
lock type

riw

W

Old lock type

ir iw r riw W

ir iw Y riw W

iw iw riw riw W

r riw r riw W

riw riw riw riw W

W W W W W

FlGURE 3-6
Lock Conversion Table
If a transaction has a lock of “old lock type” and requests a lock of “requested lock type,”
then the table entry defines the lock type into which the “old lock type” should be
converted.

Lock Escalation

A system that employs MGL must decide the level of granularity at which a
given transaction should be locking data items. Fine granularity locks are no
problem. The TM or scheduler simply requests them one by one as it receives
operations from the transaction. Coarse granularity locks are another matter.
A decision to set a coarse lock is based on a prediction that the transaction is
likely to access many of the data items covered by the lock. A compiler may be
able to make such predictions by analyzing a transaction’s program and
thereby generating coarse granularity lock requests that will be explicitly
issued by the transaction at run-time. If transactions send high level (e.g., rela-
tional) queries to the TM, the TM may be able to tell that the query will gener-
ate many record accesses to certain files.

The past history of a transaction’s locking behavior can also be used to
predict the need for coarse granularity locks. The scheduler may only be able
to make such predictions based on the transaction’s recent behavior, using a
technique called escalation. In this case, transactions start locking items of fine
granularity (e.g., records). If a transaction obtains more than a certain number
of locks of a given granularity, then the scheduler starts requesting locks at the
next higher level of granularity (e.g., files), that is, it escalates the granularity
of the locks it requests. The scheduler may escalate the granularity of a trans-
action’s lock requests more than once.

In Section 3.2, we showed that a deadlock results when two transactions
holding read locks on a data item try to convert them to write locks. Lock
escalation can have the same effect. For example, suppose two transactions are
holding iw locks on a file and are setting w locks on records, one by one. If
they both escalate their record locking activity to a file lock, they will both try
to convert their iw lock to a w lock. The result is deadlock.

76 CHAPTER 3 / TWO PHASE LOCKING

Database

/Area\
Index File

1
Index entry

\ /
Record

FIGURE 3-7
A Dag Structured Lock Type Graph

In some applications, lock escalations have a high probability of leading to
lock conversions that cause deadlocks. In such cases lock escalation may be
inappropriate. Instead, if a transaction gets too many fine granularity locks, it
should be aborted and restarted, setting coarser granularity locks in its second
incarnation. This may be less expensive than lock escalation, which may cause
a deadlock.

Generalized Locking Graph

So far, we have assumed that the lock type graph is a tree. This is too restrictive
for some applications. In particular, if we use indices, then we would like to be
able to lock records of a file by locking indices, index entries, the file, or
records. Thus, we are led to the locking type graph of Fig. 3-7, which is a
rooted dag,l” not a tree.

However, we cannot use the MGL protocol’s rules for w and iw locks, as
illustrated by the following example. Consider the banking database of
Fig. 3-1, structured using the lock type graph of Fig. 3-7. Suppose there is an
index on Location in Accounts, and that the Location index and the Accounts
file are stored in area Al. Suppose T, has an ir lock on the database, on Al,
and on the Location index for Accounts, and an r lock on the Tyngsboro index

‘“See Appendix, Section A.3, for the definition of rooted dag.

3.10 DISTRIBUTED TWO PHASE LOCKING 77

entry, Suppose another transaction T, has an iw lock on the database and Al
and a w lock on the Accounts file. This is an error, because T, has implicitly
read locked all records pointed to by the Tyngsboro index entry and T, has
implicitly write locked those very same records.

One solution to this problem is to require a transaction to set a w or iw
lock on x only if it owns an iw lock on all parents of X. For example, to obtain
a write lock on record 14, a transaction must have an iw lock on (say) the
Tyngsboro index entry alzd the Accounts file. To implicitly write lock X, a
transaction must explicitly or implicitly write lock all parents of x. So, to
implicitly write lock the records in the Accounts file, it is not enough to set a
write lock on the Accounts file. One must also write lock the Location index
(or all of the index’s entries). This prevents the problem of the last paragraph;
if T, has an ir lock on the Location index, then T, cannot obtain a w lock on
that index and therefore cannot implicitly lock any of the records in the
Accounts file.

For a given lock instance graph G that is a dag, the scheduler sets and
releases locks for each transaction Ti as follows:

1. If x is not the root of G, then to set rl;[x] or irli[x], Ti must have an ir or
iw lock on some parent of X.

2. If x is not the root of G, then to set w&[x] or iwli[x], Ti must have an iw
lock on all of x’s parents.

3. To read x, Ti must own an r or w lock on some ancestor of x. To write
x, Ti must own, for every path from the root of G to x, a w lock for
some ancestor of x along that path (i.e., it may own different locks for
different paths). A lock on x itself is an explicit lock for X; locks on
proper ancestors of x are implicit locks for X.

4. A transaction may not release an intention lock on a data item x if it is
currently holding a lock on any child of x.

The proof that this protocol prevents transactions from owning conflicting
(explicit or implicit) locks is similar to that of Theorem 3.7 (see Exercise 3.23).

3.10 DlSTRlBUTED TWO PHASE LOCKlNG

Two phase locking can also be used in a distributed DBS. Recall from Section
1.4 that a distributed DBS consists of a collection of communicating sites, each
of which is a centralized DBS. Each data item is stored at exactly one site. We
say that the scheduler manages the data items stored at its site. This means that
the scheduler is responsible for controlling access to these (and only these)
items.

A transaction submits its operations to a TM. The TM then delivers each
Read(x) or Write(x) operation of that transaction to the scheduler that
manages 3~. When (and if) a scheduler decides to process the Read(x) or

76 CHAPTER 3 I TWO PHASE LOCKING

Write(x), it sends the operation to its local DM, which can access x and return
its value (for a Read) or update it (for a Write). The Commit or Abort opera-
tion is sent to all sites where the transaction accessed data items.

The schedulers at all sites, taken together, constitute a distributed sched-
uler. The task of the distributed scheduler is to process the operations submit-
ted by the TMs in a (globally) serializable and recoverable manner.

We can build a distributed scheduler based on 2PL. Each scheduler main-
tains the locks for the data items stored at its site and manages them according
to the 2PL rules. In 2PL, a Read(x) or Write(x) is processed when the appropri-
ate lock on x can be obtained, which only depends on what other locks on x
are presently owned. Therefore, each local 2PL scheduler has all the informa-
tion it needs to decide when to process an operation, without communicating
with the other sites. Somewhat more problematic is the issue of when to release
a lock. To enforce the two phase rule, a scheduler cannot release a transaction
Tl’s lock until it knows that T, wiI1 not submit any more operations to it OY any
other scheduler. Otherwise, one scheduler might release Ti’s lock and some
time later another scheduler might set a lock for r,, thereby violating the two
phase rule (see Exercise 3.26).

It would appear that enforcing the two phase rule requires communication
among the schedulers at different sites. However, if schedulers use Strict 2PL,
then they can avoid such communication. Here is why. As we said previously,
the Thl that manages transaction T, sends Ti’s Commit to all sites where
T, accessed data items. By the time the TM decides to send T,‘s Commit to all
those sites, it must have received acknowledgments to all of TI’s operations.
Therefore, T, has surely obtained all the locks it will ever need. Thus, if a
scheduler releases T,‘s locks after it has processed Tz’s Commit (as it must under
Strict 2PL), it knows that no scheduler will subsequently set any locks for T,.

To prove that the distributed 2PL scheduler is correct we simply note that
any history H it could have produced satisfies the properties of 2BL histories
described in Propositions 3.1-3.3. By Theorem 3.6 then, H is SR. Moreover if
the local schedulers use Strict 2PL, H is STand therefore RC.”

The simplicity of this argument is a consequence of the fact that histories
model centralized and distributed executions equally well. Since we’ll typicaIly
specify the properties of histories generated by a scheduler without referring to
whether it is a centralized or distributed one, the proof of correctness will
apply to both cases.

IlOne may question the legitimacy of this argument, gwen that the Commit or Abort of a
distributed transaction is processed by several sites, yet is represented as a single atomic event in
a history For the time being, we can view cl or a, as the atomic event corresponding to the
moment T,‘s TM received acknowledgments of the processing of T,‘s Commit or Abort by all
sites where T, accessed data items. In Chapter 7 we’ll have a lot more to say about why (and
how) the commitmpnt and abortion of a distributed transaction can be viewed as an atomic
event.

3.11 DISTRIBUTED DEADLOCKS 79

3.11 DISTRMJTED DEADLOCKS

As in the centralized case, a distributed 2PL scheduler must detect and resolve
deadlocks. Timeouts can be used to guess the existence of deadlocks. Or we
can explicitly detect deadlocks using WFGs.

The scheduler at site i can maintain a local waits-for graph, WFGi, record-
ing the transactions that wait for other transactions to release a lock on data
items managed by that scheduler. Each WFGi is maintained as described for
centralized 2PL. The global waits-for graph, WFG, is the union of the local
WFG,s.

Unfortunately, it is possible that WFG contains a cycle, and therefore the
system is deadlocked, even though each WFG; is acyclic. For example,
consider a distributed scheduler consisting of two 2PL schedulers: scheduler A
manages x and scheduler B manages y. Suppose that we have two transactions:

T, = YI[Xl + W,[Yl + Cl T, = rAyI -+ w,[xl * cz
Now consider the following sequence of events:

1. Scheduler A receives T~[x] and sets rl,[x].

2. Scheduler B receives ~;[y] and sets rl,[y].

3. Scheduler B receives w,[y]. Since wI,[y] conflicts with rl,[y], the sched-
uler makes w,[y] wait and adds the edge T,-+T, to WFGB.

4. Scheduler A receives w,[x]. That scheduler delays w,[x] and adds T,+T,
to WFGA.

The union of WFGA and WFGB contains the cycle T, + TL+ T,, and we
therefore have a deadlock. But this deadlock is not detected by either sched-
uler’s local WFG, since both WFGA and WFGB are acyclic. Such a deadlock is
called a distributed deadlock. To discover such deadlocks, all the schedulers
must put their local WFGs together and check the resulting global WFG for
cycles.

Global Deadlock Detection

A simple way to do this is for each scheduler to send changes to its WFG, to a
special process, the global deadlock detector. The global deadlock detector
keeps the latest copy of the local WFG that it has received from each scheduler.
It periodically takes the union of these local WFGs to produce a global WFG,
and checks it for cycles.

Since the global WFG is only periodically analyzed for cycles, deadlocks
may go undetected for a while. As in centralized DBSs, the main penalty for
the delay in detecting deadlocks is that deadlocked transactions are holding
resources that they aren’t using and won’t use until the deadlock is broken.
The communications delays in shipping around the local WFGs contribute to

80 CHAPTER 3 I TWO PHASE LOCKING

the delay of distributed deadlock detection, so this delay may be longer than in
a centralized DBS.

Once the global deadlock detector finds a deadlock, it must select a victim
to abort. This is done based on the same considerations as centralized dead-
locks. Therefore, in addition to receiving local WFGs, the global deadlock
detector needs information from each site to help it make good victim selec-
tions. Moving this information around costs more messages. A technique
called piggybacking can be used to reduce this message cost.

In piggybacking, n messages that originate at one sire and that are all
addressed to a common other site are packaged up in one large message. Thus,
the number of messages is reduced by a factor of n. Since communication cost
is generally a function of the number of messages exchanged (as well as the
amount of information), reducing the number of messages in this way can
significantly reduce communication cost.

This technique can be applied to global deadIock detection. Each site has
its local WFG to send to the global deadlock detector. It also has information
for victim selection to send, such as each transaction’s resource consumption
or abortion cost. Combining this information into one message reduces the
cost of sending it to the global deadlock detector.

Phantom Deadlocks

Another problem with distributed deadlock detection relates again to the delay
in detecting deadlocks. Clearly, every deadlock will eventually be detected. It
may take a while before all of the edges in the deadlock cycle are sent to the
global deadlock detector. But since deadlocks don’t disappear spontaneously,
eventually aI of the edges in the cycle will propagate to the deadlock detector,
which will then detect the deadlock.

But what about edges in the global WFG that are out-of-date, due to the
deIay in sending local WFGs to the global deadlock detector? Might the global
deadlock detector find a WFG cycle that isn’t really a deadlock? Such incor-
rectly detected deadlocks are called phantom deadlocks.

For example, suppose a scheduler sends its local WFG containing some
edge T, --t Tl to the global deadlock detector. Suppose that shortly after this
local WFG is sent, TJ releases its locks, thereby unblocking T,. Since the sched-
uler only sends its local WFG periodicaIly, the global detector may use the copy
of the graph containing T, -+ T, to look for cycles. If it finds a cycle containing
that edge, it may believe it has found a genuine deadlock. But the deadlock is a
phantom deadlock. It isn’t real, because one edge in the cycle has gone away,
unknown to the global deadlock detector.

Phantom deadlocks can surely happen if a transaction that was involved in
a real deadlock spontaneously aborts. For example, a deadlocked transaction
might be aborted because some hardware resource (e.g., a terminal) being
used by the transaction failed. Although the deadlock wasn’t detected, it was

3.11 DISTRIBUTED DEADLOCKS 81

broken by the spontaneous abortion. If the global deadlock detector finds the
deadlock before it learns of the abortion, it may unnecessarily abort another
transaction.

It is interesting that phantom deadlocks can only occur due to spontaneous
abortions, as long as all transactions are two phase locked. To see this, assume
that each lock operation corresponds to a database operation (i.e., no inten-
tion locks), and no transaction spontaneously aborts. Suppose the global dead-
lock detector found a cycle, T, + T2 + * * * -+ T, -+ T,, but there really is no
deadlock. Since no transaction spontaneously aborts, and there is no dead-
lock, all transactions eventually commit. In the resulting execution, since each
lock operation corresponds to a database operation, for each edge Ti -+ T;,, in
this WFG cycle, there must be an edge Ti+l + 7’; in the SG of the execution.
This is true even if the deadlock cycle is a phantom cycle; each edge in the cycle
existed at some time, so the conflict between the database operations for each
edge is real and must produce an SG edge. However, that means that the SG
has the same cycle as the WFG, but in the opposite direction. This is impossi-
ble, because all transactions were two phase locked. We leave the extension of
this argument for intention locks as an exercise (Exercise 3.25).

Distributed Cycle Detection

Most WFG cycles are of length two. To see why, consider how a WFG grows.
Suppose we start with all active transactions waiting for no locks, so the WFG
has no edges. As transactions execute, they become blocked waiting for locks,
so edges begin to appear. Early in the execution, most transactions are not
blocked, so most edges will correspond to a transaction’s being blocked by a
lock owned by an unblocked transaction. But as more transactions become
blocked, there is an increased chance that a transaction Ti will be blocked by a
lock owned by a blocked transaction Tie Such an event corresponds to creating
a path of length two (i.e., Ti waits for Tj, which is waiting for some other
transaction).

Suppose all transactions access the same number of data items, and all
data items are accessed with equal probability. Then it can be shown that, on
the average, blocked and unblocked transactions own about the same number
of locks. This implies that if transactions randomly access data items, then all
transactions (both blocked and unblocked ones) are equally likely to block a
given unblocked transaction. So the probability that an edge creates a path of
length two (or three, four, etc.) is proportional to the fraction of blocked trans-
actions that are on the ends of paths of length one (or two, three, etc.). Since
initially there are no paths, this must mean that short paths predominate. That
is, most transactions are unblocked, many fewer are blocked at the ends of
paths of length two, many fewer still are at the ends of paths of length three,
and so forth. Hence, an edge that completes a cycle has a much higher chance

82 CHAPTER 3 I TWO PHASE LOCKING

of connecting an unblocked transaction to one-at the end of a path of Iength
one than to one at the end of longer paths. Therefore, most WFG cycles
are of length two. For typical appIications, over 90% of WFG cycles are of
length two.

This observation that cycles are short may make global deadlock detection
a less attractive choice than it first appears to be. With global deadlock detec-
tion there may be a significant delay and overhead in assembling all of the local
WFGs at the global deadlock detector. Thus, a distributed deadlock might go
undetected for quite a while. This is especially annoying because most dead-
locks involve only two transactions. If the two sites that participate in the
deadlock communicate directly, they can detect the deadlock faster by
exchanging WFGs with each other. But if every pair of sites behaved this way,
then they would all be functioning as global deadlock detectors, leading to
much unnecessary communication.

Path pushing is a distributed deadlock detection algorithm that allows all
sites to exchange deadlock information without too much communication.
Using path pushing, each site looks for cycles in its local WFG iznd lists all
paths in its WFG. It selectively sends portions of the list of paths to other sites
that may need them to find cycles. Suppose site A has a path T, -+ * * * -+ T,. It
sends this path to every site at which T, might be blocked, waiting for a lock.
When a site, say B, receives this path, it adds the path’s edges to its WFG. Site
B’s WFG may now have a cycle. If not, B still may find some new and longer
paths that neither A nor B had seen before. It lists these paths and sends them
to sites that may have more edges to add to the paths.

Every cycle in the global WFG can be decomposed into paths, each of
which exists in one local WFG. Using this algorithm, each site sends its paths
to other sites that may be able to extend them, by concatenating them with
paths that (only) it knows about. Eventually, each path in a cycle will be
“pushed” all the way around the cycle and the cycle will be detected by some
site.

For example, suppose sites A, B, and C have the following WFGs.

WFGA = T, -+ T, --) T,

WFGB = T, --f T,
WFGc = T, -, T,

Site A sends the one and only path in WFGA to site B, whose graph is now

WFGB = T, -+ T, --f T, -+ T,

Since WFGB has changed, site B sends its one and only path to C, whose WFG
becomes

WFGc = T, -+ Ts -+ T3 -+ T, -+ T,

which contains a cycle.

3.11 DISTRIBUTED DEADLOCKS 83

This method usually detects short cycles faster than global deadlock detec-
tion. If T, is waiting for T, at site A and T, is waiting for T, at site B, then as
soon as either A or B sends its paths to the other site, the receiving site will
detect the deadlock. By contrast, using global deadlock detection, both A and
B would have to wait until both of them send their WFGs to the global dead-
lock detector, which then has to report the deadlock back to both A and B.

Path pushing sounds fine, as long as each site knows where to send its
paths. It could send them to all sites, and in some cases that is the best it can
do. But this does involve a lot of communication. The communications cost
could easily overshadow the benefit of detecting short cycles more quickly.

One can avoid some of the communication by observing that not all paths
need to be sent around. Consider a deadlock cycle that is a concatenation of
paths, pi, pti, each of that is local to one site’s WFG, say site,, site,
(respectively). So far, we have been pushing all of those paths around the cycle.
So to start, site, sends p1 to site,, site1 sends pZ to site3, etc. Now each site
knows about longer paths, so site, sends [pn, p,] to site 2, site 2 sends [p,, pJ to
site,, etc. Using this approach, every site will end up detecting the deadlock,
which is clearly more than what’s necessary, Even worse, two sites that detect
the same deadlock might choose different victims.

To reduce the traffic, suppose that (1) each transaction, T,, has a unique
name, Id(Ti), which identifies it, and (2) Ids are totally ordered. In every cycle,
at least one path Ti + * * * + T; has Id(Ti) < Id(T,). (If no path had this
property, then Ti + * 9 * + Ti implies Id(T;) > Id(T;), a contradiction.) If we
only send around paths that have this property, we will still find every cycle.
But on average, we will only be sending half as many paths. Therefore, after a
site produces a list of paths, it should only send those that have the property,

Communications traffic can be controlIed further if each transaction is
only active at one site at a time. Suppose that when a transaction Tj executing
at site A wants to access data at another site B, it sends a message to B, stops
executing at A, and begins executing at B. (EssentiaIly, Tj is making a remote
procedure call from A to B.) It does not continue executing at A until B replies
to A that it is finished executing its part of the transaction.

When site A finds a path in its WFG from T; to Tj, it need only send it to B.
A knows that B is the only place where Tj could be executing and thereby be
blocked waiting for a lock. Of course, Tj at B may have sent a message to C,
and so may be stopped at B and now executing at C. But then B will send the
path Ti + * * * + Tj to C the next time it performs deadlock detection. Even-
tually, the path T, -+ - - 9 + Tj will make its way to every site at which Tj
could be waiting for a lock.

In the resulting algorithm, each site, say A, performs the following steps,
Site A periodically detects cycles in its local WFG. For each cycle, it selects a
victim and aborts it. It then lists all paths not in cycles. For each such path, Tj
-+a * * + Tj, if

84 CHAPTER 3 / TWO PHASE LOCKING

1. Id(T;) < Id(T,), and

2. T, was formerly active at site A, but is now stopped, waiting for a
response from another site B,

then A sends the path to B. When a site receives a list of paths from another
site, it adds those edges to its WFG and performs the above steps.

We explore additional simplifications to this algorithm in Exercises 3.27
and 3.28.

Timestamp-based Deadlock Prevention

Deadlock prevention is a cautious scheme in which the scheduler aborts a
transaction when it determines that a deadlock might occur. In a sense, the
timeout technique described earlier is a deadlock prevention scheme. The
system doesn’t know that there is a deadlock, but suspects there might be one
and therefore aborts a transaction.

Another deadlock prevention method is to run a test at the time that the
scheduler is about to block T, because it is requesting a lock that conflicts with
one owned by T1. The test should guarantee that if the scheduler allows T, to
wait for T,, then deadlock cannot result. Of course, one could never let T, wait
for T,. This trivially prevents deadlock but forces many unnecessary abortions.
The idea is to produce a test that allows waiting as often as possible without
ever allowing a deadlock.

A better test uses a priority that TMs assign to each transaction. Before
allowing T, to wait for T1, a scheduIer compares the transactions’ priorities. If
T, has higher priority than T],, then T, is allowed to wait; otherwise, it is
aborted. In this scheme, T, waits for T1 only if T, has higher priority than T),
Therefore, for each edge T, -+ T, in WFG, T, has higher priority than Tie The
same is true of longer paths rhat connect T, to T,. If there were a cycle in the
WFG connecting T, to itself, then T, would have a priority higher than itself,
which is impossible because each transaction has a single priority. Thus, dead-
lock is impossible.

However, this scheme may be subject to a different misfortune that pre-
vents a transaction from terminating. If priorities are not assigned carefully, it
is possible that every time a transaction tries to lock a certain data item, it is
aborted because its priority isn’t high enough. This is called livelock or cyclic
restart.

For example, suppose each TM uses a counter to assign a priority to each
transaction when it begins executing or when it restarts after being aborted.
Suppose a TM supervises the execution of T, and T, as follows.

1. The TM assigns T, a priority of 1.

2. T, issues w,[x], causing it to set u//,[x],

3. The TM assigns T,, a priority of 2.

3.11 DISTRIBUTED DEADLOCKS 85

4. Tj issues wj[y], causing it to set w~,[Y].

5. T; issues wi[y]. Since Tj has set wl,[y], we have to decide whether to
allow T; to wait. Since Tts priority is lower than Tj’S, T, is aborted.

6. The TM restarts T,, assigning it a priority of 3.

7, Ti issues wi[x], causing it to set wl;[x].

8. Tj issues wj[x]. Since T; has set wlJx] and has a higher priority than Tj,
Tj is aborted.

9. The TM restarts Tj, assigning it a priority of 4.

10. Tj issues wj[y], causing it to set wb[y].

We are now in exactly the same situation as step (4). If the transactions
follow the same sequence of requests that they did before, they will each cause
the other one to abort as before, perhaps forever. They are in a livelock.

Livelock differs from deadlock because it doesn’t prevent a transaction
from executing. It just prevents the transaction from completing because it is
continually aborted. One way to avoid livelock is to ensure that each transac-
tion eventually has a high enough priority to obtain all of the locks that it
needs without being aborted. This can be accomplished by using a special type
of priority called timestamps.

Timestamps are values drawn from a totally ordered domain. Each trans-
action T; is assigned a timestamp, denoted ts(TJ, such that if Ti + Tj then
either ts(Ti) < ts(Tj) or ts(Tj) < ts(Ti).

Usually, TMs assign timestamps to transactions. If there is only one TM in
the entire system, then it can easily generate timestamps by maintaining a
counter. To generate a new timestamp, it simply increments the counter and
uses the resulting value. If there are many TMs, as in distributed DBSs, then a
method is needed to guarantee the total ordering of timestamps generated by
different TMs. It is desirable to find a method that doesn’t require the TMs to
communicate with each other, which would make the timestamp generation
activity more expensive.

The following technique is usually used to make this guarantee. Each TM
is assigned a unique number (its process or site identifier, for example). In
addition, each TM maintains a counter as before, which it increments every
time it generates a new timestamp. However, a timestamp is now an ordered
pair consisting of the current value of the counter followed by the TM’s unique
number. The pairs are totally ordered, first by their counter value and second,
in case of ties, by their unique TM numbers.

The local counter used by each TM can be an actual clock. If a clock is
used, then the TM obviously should not increment it to guarantee uniqueness.
Instead, it should simply check that the clock has ticked between the assign-
ment of any two timestamps.

Since timestamps increase monotonically with time and are unique, if a
transaction lives long enough it will eventually have the smallest timestamp

86 CHAPTER 3 / TWO PHASE LOCKING

(i.e., will be the oldest) in the system. We can use this fact to avoid livelock by
using a rule for priority-based deadlock prevention that never aborts the oldest
active transaction. Every transaction that is having trouble finishing due to
livelock will eventually be the oldest active transaction, at which point it is
guaranteed to finish.

Suppose we define a transaction’s priority to be the inverse of its times-
tamp. Thus, the older a transaction, the higher its priority, We can then use
timestamps for deadlock prevention, without risking livelock, as follows.
Suppose the scheduler discovers that a transaction T, may not obtain a lock
because some other transaction Ti has a conflicting lock. The scheduler can use
several strategies, two of which are:

Wait-Die: if ts(T,) < ts(Ti) then T, waits else abort T,.

Wound-Wait: if ts(T,) < ts(T,) then abort Tj else T, waits.

The words wound, wait, and die are used from T,‘s viewpoint; T, wounds T,,
causing T, to abort; T, waits; and T, aborts and therefore dies. In both
methods, only the younger of the two transactions is aborted. Thus, the oldest
active transaction is never aborted by either method.

To ensure these methods are not subject to livelock, two other restrictions
are needed. First, the timestamp generator must guarantee that it only gener-
ates a finite number of timestamps smaller than any given timestamp. If this
were not true, then a transaction could remain in the system indefinitely with-
out ever becoming the oldest transaction. Second, when an aborted transac-
tion is restarted, it uses its old timestamp. If it were reassigned a new
timestamp every time it was restarted, then it might never become the oldest
transaction in the system.

Notice that wounding a transaction might not cause it to abort. The defi-
nition of Wound-Wait should really be:

if ts(T,) < ts(T]) then try to abort T, else T, waits.

The scheduler can only try to abort T, because T, may have already terminated
and committed before the scheduler has a chance to abort it. Thus, the abort
may be ineffective in killing the transaction. That’s why it’s called wound and
not kill; the scheduler wounds T,, in a (possibly unsuccessful) attempt to kill it.
But this still avoids the deadlock, because the wounded transaction releases its
locks whether it commits or aborts.

Wound-Wait and Wait-Die behave rather differently. In Wound-Wait, an
old transaction T, pushes itself through the system, wounding every younger
transaction T, that it conflicts with. Even if T, has nearly terminated and has
no more locks to request, it is still vulnerable to T,. After T, aborts T, and Ti
restarts, T, may again conflict with T,, but this time T, waits.

By contrast, in Wait-Die an old transaction T, waits for each younger
transaction it encounters. So as T, ages, it tends to wait for more younger
transactions. Thus, Wait-Die favors younger transactions while Wound-Wait

3.12 LOCKING PERFORMANCE 87

favors older ones. When a younger transaction Tj conflicts with T,, it aborts.
After it restarts, it may again conflict with T, and therefore abort again - a
disadvantage relative to Wound-Wait. However, once a transaction has
obtained all of its locks, it will not be aborted for deadlock reasons - an
advantage over Wound-Wait.

Comparing Deadlock Management Techniques

Each approach to deadIock management has its proponents. Many centralized
DBSs, such as IBM’s DB2 and RTI’s INGRES, use WFG cycle detection. Each
of the distributed techniques we have described is implemented in a commer-
cial product, and each putatively works well: Tandem uses timeout; Distrib-
uted INGRES uses centralized deadlock detection; IBM’s System R* prototype
uses path pushing; and GE’s MADMAN uses timestamp-based prevention.

3.12 LOCKING PERFORMANCE”

To accept published guidelines on locking performance requires a leap of faith,
because the results are derived with simplistic assumptions and the state-of-
the-art is unsettled. Nevertheless, an understanding of locking performance is
pivotal to quality system design. This section should be read as preliminary
results of an immature field.

Throughout this section, we will assume that all transactions require the
same number of locks, all data items are accessed with equal probability, and
all locks are write locks. The transactions use Strict 2PL: data items are locked
before they are accessed, and locks are released only after the transactions
commit (or abort). The DBS is centralized, so there is no communication cost.
However, the DBS may be running on a machine with two or more tightly
coupled processors.

Resource and Data Contention

In any multiprogramming system, the amount of work done on the system
cannot increase linearly with the number of users. When there is resource
contention over memory space, processor time, or I/O channels, queues form
and time is wasted waiting in the queues. In DBSs that use locking, queues also
form because of delays due to lock conflicts, called data contention.

Locking can cause thrashing. That is, if one increases the number of trans-
actions in the system, throughput will increase up to a point, then drop. The

‘ZWritten by Dr. Y.C. Tay, Mathemathics Department, National University of Singapore. Unlike
other sections, this section mentions results that are not derived in the book. For adequate justi-
fications of these conclusions, we refer the reader to the bibliographic notes.

88 CHAPTER 3 / TWO PHASE LOCKING

user usually observes this as a sudden increase in response time. This phenom-
enon is similar to thrashing in operating systems. There, the throughput drops
due to time wasted in page faults when too many processes each have too little
space. It is the result of resource contention - too many processes fighting
over main memory. In DBSs, thrashing can be caused by data contention
alone. In an idealized system with unlimited hardware resources, so that trans-
actions queue only for data and never for resources, thrashing may still occur.

We distinguish two forms of thrashing: RC-thrashing, which occurs in
systems with resource contention and no data contention, and DC-thrashing,
which occurs in an idealized system with data contention and no resource
contention. Although all systems have some resource contention, DC-
thrashing is a useful concept.

Thrashing

Resource and data contention produce rather different forms of thrashing.
With RC-thrashing, the system is busy transferring pages in and out of
memory, so user processes make little progress. This suggests that DC-
thrashing may be caused by transaction restarts induced by deadlocks. If the
deadlock rate is high, then transactions are busy being repeatedly restarted, so
transactions make little progress. However, DC-thrashing is in fact not caused
by restarts, but by blocking.

Measurements of experimental and commercial DBSs indicate that dead-
locks are much rarer than conflicts. Simulations also show that, up to the DC-
rhrashing point, transactions spend much more time waiting in lock queues
than in being restarted. Moreover, the restart rate can be as low as l-2% of
throughput when DC-thrashing happens. But the most conclusive evidence is
that beyond the DC-thrashing point, increasin, 0 the number of transactions
actually decreases the number of transactions that are not blocked. That is,
adding one more transaction causes more than one transaction (on average) to
be blocked. Thus, whereas RC-thrashing happens because the system is busy
doing wasteful work, DC-thrashing happens because too many transactions
are tied up in lock queues, thus reducing system utilization.

It does not even take much blocking to cause DC-thrashing. At the DC-
thrashing point, the average length of a lock queue could be less than one, and
the average depth of a tree in the waits-for graph less than two. (The latter
implies that, up to the DC-thrashing point, most deadlock cycles have only
two transactions.) Hence, if half the transactions are blocked, the system is
probably thrashing.

Although blocking is the dominant performance factor up to the DC-
thrashing point, the effect of deadlocks does increase at a much faster rate than
blocking. Beyond the thrashing point, restarts rapidly overtake blocking as the
dominant factor.

3.12 LOCKING PERFORMANCE 89

Blocking and Restarts

Locking resolves conflicts either by blocking a transaction or by aborting and
restarting it. Restarts are obviously undesirable, since work is wasted. The
way blocking degrades performance is more subtle. Blocking lets a transaction
hold locks without doing anything with them, even while other transactions
are waiting to acquire those locks. Through DC-thrashing, we have seen how
seriously this can affect performance.

Both restarts and blocking are bad for performance. But which is worse?
Since Strict 2PL may be thrashing and yet have a very low deadlock rate, it
resolves almost all conflicts by blocking. Therefore, let us call Strict 2PL a
blocking policy, Alternatively, a pure restart policy simply aborts a transaction
whenever it requests a lock that is already held by another transaction, and
restarts the aborted transaction when the other releases the lock. Thus, a pure
restart policy resolves all conflicts by restarts. Comparing these two policies is
a way of comparing the performance effect of blocking and restarts.

Intuitively, a pure restart policy is very severe. One might expect it to
perform badly compared with a blocking policy. Surprisingly, this is not neces-
sarily so. Let the multiprogramming level (MPL) refer to the number of active
transactions. Since aborted transactions waiting to restart consume minimal
resources, we exclude them from MPL. However, since transactions blocked in
lock queues by a blocking policy consume resources (mainly, memory space) as
transactions in resource queues do, we include them in MPL.

Given the same MPL and under two conditions (see the next paragraph), a
pure restart policy has a throughput that is only slightly lower than that of a
blocking policy before the latter’s DC-thrashing point. Furthermore, when
DC-thrashing sets in for the blocking policy, the pure restart policy has a
higher throughput. (See Fig. 3-8. Note that this comparison does not take
resource contention into account yet; if there were no conflicts, the throughput
would increase linearly with MPL in this figure.)

The two tiequired conditions are quick transaction abortion and low
resource contention. If abortions take too long, they will slow down the
throughput of a pure restart policy, thus making it inferior to a blocking policy,
which is only marginally affected by abort time since it has a low deadlock
rate. Resource contention also hurts a pure restart policy more than a blocking
policy. With the latter, some transactions are blocked in lock queues, so fewer
transactions compete for resources. (Thus, data contention alleviates resource
contention for a blocking policy.) Since resource contention causes transactions
to waste time waiting in resource queues, it degrades the throughput of a
blocking policy less than that of a pure restart policy. This too can make a pure
restart policy consistently inferior (see Fig. 3-9).

Therefore, our intuition that a pure restart policy has worse throughput
than a blocking policy is based on the assumption that restarts either take a
long time or add too much resource contention. However, both assumptions

90 CHAPTER 3 I TWO PHASE LOCKfNG

Pure restart
policy

Blocking

Number of transactions
that have begun execution

*
MPL

FIGURE 3-8
Throughput of Blocking and Pure Restart Policies with No Resource Contention

Throughput

t
MPL = Number of transactions

that have begun execution

- Blocking
policy

Pure restart
policy

L---e
MPL

FIGURE 3-9
Possible Effect of Resource Contention on Fig. 3-8

3.12 LOCKING PERFORMANCE 91

could be violated. A clever implementation can make transaction abortion
fast. And resource contention can perhaps be minimized by giving each trans-
action a dedicated microprocessor, so there is no contention for CPU cycles.
Hence, a pure restart policy may be feasible.

Still, a pure restart policy has a longer response time than a blocking
policy, even when their throughputs are similar. This is because an aborted
transaction must wait for the conflicting transaction to release the lock before
restarting, thus increasing its response time.

Therefore, except for the response time difference, blocking a transaction
for a conflict may not be better than restarting it. Blocking is selfish. A blocked
transaction can preserve what it has done, and prevent transactions that need
its locks from making progress. Restarting is self-sacrificing. Since a conflict
prevents a transaction from proceeding, restarting it frees its locks, so that it
will not hinder others. When data contention becomes intense, altruism is the
better policy, This is why a pure restart policy has a higher throughput than a
blocking policy when the latter suffers from DC-thrashing, provided the two
conditions hold. One may therefore consider restarts as a means of overcom-
ing the upper bound that blocking imposes on the throughput through DC-
thrashing.

Predeclaration

Another way to exceed the throughput limit that blocking imposes is to replace
Basic 2PL, where a transaction sets locks as it needs them, by Conservative
2PL, where it obtains them before it begins. As the number of transactions
increases, the throughput under Basic 2PL is initially higher than under
Conservative 2PL, but eventually becomes lower. However, resource conten-
tion can change this. Under light data contention, Basic 2PL delays fewer
transactions, and so suffers more resource contention. Its throughput is there-
fore reduced more, and may become consistently lower than Conservative
2PL.

Resource contention aside, how can Conservative 2PL have a higher
throughput than Basic 2PL? Intuitively, since Basic 2PL only sets locks as they
are needed, it should have more concurrency and therefore higher throughput
than Conservative 2PL. This is true when data contention is light. But when it
becomes heavy, as when DC-thrashing sets in, Basic 2PL in fact causes transac-
tions to hold locks longer than under Conservative 2PL, thereby lowering
throughput.

Conservative 2PL is sometimes favored because it avoids deadlocks.
However, DC-thrashing occurs even if deadlocks are rare. Conservative 2PL
should therefore be first considered as a means of bringing throughput above
the limit set by blocking through DC-thrashing. Its advantage in deadlock
avoidance is secondary.

92 CHAPTER 3 I TWO PHASE LOCKING

A Bound on Workload

We have said little about performance beyond the DC-thrashing point. Indeed,
we have assumed that a system will not be driven beyond that point, since
there is no performance gain to be had. DC-thrashing thus defines an operat-
ing regimen for the combination of parameters that affect the performance.
What is this region?

Suppose N is the MPL, k the number of locks a transaction requires, and
D the number of data items, where data item is the locking granularity. (Note
that, in general, k is less than the number of data accesses a transaction makes.
For instance, if a data item is a file, two writes on one particular file would
require only one lock.) Then a measure of the data contention is the DC-
workload W = k?N/D. DC-thrashing occurs at about W = 1.5, so the operat-
ing region is roughly bounded by k’N/D < 1.5. (This number 1.5 was nu-
merically obtained from a performance modeI, and confirmed through
simulations. It is not known why DC-thrashing occurs at this particular value
of W)

The value 1.5 is almost surely optimistic, It is based on the assumption
that accesses are uniform over the database. In reality, access patterns are
skewed, which causes DC-thrashing to occur earlier. Furthermore, DC-
thrashing does not account for resource contention, which further reduces the
throughput. Therefore, real DBSs thrash. before the DC-thrashing point.
Hence, the value 1.5 only indicates the order of magnitude of the bound on the
DC-workload.

MPL, Transaction Length, and Granularity

Bearing the caveat in mind, MPL should therefore be less than l.SD/k’ for
given k and D. This bound should only act as a guide in planning a system.
The true bound will quickly reveal itself once the system is built.

Other than thrashing, there is another constraint on the MPL. Although
throughput increases with N (up to the thrashing point), the deadlock rate
increases- even faster. If restarts are expensive, they may further reduce the
number of active transactions that can be handled.

As expected, increasing the number of locks per transaction reduces the
throughput. It also increases the number of deadlocks per transaction comple-
tion. Transactions should therefore be kept short. Long transactions should be
broken into smaller ones, if possible. For a quantitative but simplistic argu-
ment, suppose N transactions requiring k locks each are broken into 2N trans-
actions requiring k? locks each. The DC-workload then drops from k?N/D to
(k/2j2(2N)l D = kzN/2D, thus reducing the data contention.

Besides the number of transactions and the number of locks they need,
another parameter’in the DC-workload is the number of data items D. A small
D (coarse granularity) implies more data is covered by each lock. A large D
(fine granularity) implies the opposite.

3.12 LOCKING PERFORMANCE 93

Coarse
granularity

b
Fine
granularity

FIGURE 3-10
The General Granularity Curve

Three factors determine the effect of granularity on performance. One is
locking overhead. The finer the granularity, the more locks a transaction must
set, thus incurring more overhead.

Another factor is data contention. Intuitively, the finer the granularity, the
more potential concurrency, so the better the performance. Actually, this intu-
ition is not entirely correct. Finer granularity does reduce the probability of
conflict per request. However, more locks are needed too, so the number of
conflicts a transaction encounters may increase. One can see this from the DC-
workload k*N/D. If an increase in D causes a proportionate increase in k, then
the DC-workload increases, so there is more data contention.

The third factor is resource contention. Recall that data contention allevi-
ates resource contention by blocking some transactions. Refining the granular-
ity may therefore release so many transactions from lock queues that they end
up spending even more time in resource queues.

These three factors combine to shape the granttlarity curve in Fig. 3-10.
The initial drop in throughput as granularity is refined is caused by an increase
in k when D is increased, leading to increased locking overhead and data
contention. As granules shrink, the number of locks a transaction requires
approaches the maximum of one new lock per data access. Now k becomes
insensitive to D, the DC-workload decreases, and throughput picks up if gran-
ularity is further refined. The final drop in the granularity curve is caused by
resource contention. Suppose there are enough transactions in the system to
cause RC-thrashing if some transactions are not blocked in lock queues. Then

94 CHAPTER 3 I TWO PHASE LOCKING

Throughput
A

00 Fine
granularity granularity

FIGURE 3-i 1
Possible Granularity Curve for Long Transactions

refining granularity reduces the data contention, unblocks the transactions,
and causes a drop in throughput through RC-thrashing.

A given system may not see the entire granularity curve. For instance, for
long transactions, which access a significant portion of the database, even the
finest granularity may not bring the throughput above the initial drop, as in
Fig. 3-11. Each transaction should then lock the entire database, thus using
the coarsest granularity. For short transactions, k may quickly become insensi-
tive to D, so the initial drop in the granularity curve is minimal. If, in addition,
N is not excessive, then the final drop in the granularity curve will not occur,
so the curve may look like Fig. 3-12. In this case, the curve suggests that the
granularity should be as fine as possible.

Read Locks and Nonuniform Access

We have so far assumed that all locks are write locks. Suppose now that a frac-
tion s of the lock requests are for read locks, and the rest are for write locks.
Then the DC-workload drops from ,&N/D to (14) kLN/D. Equivalently, it is
as if the granules have been refined, with D increased to D/(1-P).

Contrary to our assumption, transactions do not really access all data with
equal probability. In particular, a portion p of the database may contain high-

3.13 TREE LOCKING 95

Throughput

0’ *
Coarse Fine
granularity granularity

FIGURE 3-12
Possible Granularity Curve for Short Transactions

traffic data that transactions access with a higher probability q than the rest of
the database. For example, if e = 0.2 and q = 0.7, then 70% of a transaction’s
requests fall within 20% of the database. If we assume uniform access among
high-traffic data, and uniform access among the rest of the data as well,
then this skewed access pattern increases the DC-workload from kZN/D to
(1 + (q-~)zl~(l-p))(,4zN/D). Equivalently, it is as if the number of granules
has been reduced from D to D/(1 + (q-p)*lp(l-e).

3.13 TREE LOCKING

Suppose data items are known to be structured as nodes of a tree, and transac-
tions always access data items by following paths in the tree. The scheduler
can exploit the transactions’ predictable access behavior by using locking
protocols that are not two phase. That is, in certain cases, a transaction can
release a lock and subsequently obtain another lock. This can lead to better
performance.

To simplify the discussion we shall not distinguish between Reads and
Writes. Instead we have just one type of operation, “transaction T; accesses
data item x,” denoted ai[x]. The Access operation a;[~] can read and/or write
into x. Hence, two Access operations on the same data item conflict.

96 CHAPTER 3 / TWO PHASE LOCKING

We associate a lock type a with the operation type a. We use al,[x] to
denote an access lock on x by transaction T,. Since two Access operations on x
conflict, two access locks on x also conflict.

In tree locking (TL), we assume that a hierarchical structure has been
imposed on the set of data items. Ii That is, there is a tree DT, called the data
tree, whose nodes are labelled by the data items. The TL scheduler enforces
the following rules:

1. Before submitting a,[x] to the DM, the scheduler must set al,[x].

2. The scheduler can set al,[x] only if no al,[x] is set, for all j # i.

3. If x is not the root of DT, then the scheduler can set ali[x] only if ai,[y] is
already set, where ~1 is x’s parent in DT.

4. The scheduler must not release al,[x] until at least after the DM has
acknowledged that al[x] has been processed.

5. Once the scheduler releases a lock on behalf of T,, it may not subse-
quently obtain that same lock again for ri.

Rules (3) and (5) imply that the scheduler can release aL,[x] only after it has
obtained the locks T, needs on x’s children. This handshake between locking
children and unlocking their parent is called lock coupling. Notice that lock
coupling implies that locks are obtained in root-to-leaf order.

This leads to the key fact about TL: If T, locks x before T,, then for every
descendant II of x in DT, if T, and T1 both lock V, then T, locks u before T1. To
see this, let (x, z,, z,, V) be the path of nodes connecting x to v (n 2 0). By
rules (3) and (5), T, must lock z, before releasing its lock on x. Since T, locks x
before T,, that means T, must lock z, before T,. A simple induction argument
shows that the same must be true for every node on the path. This gives us the
following proposition.

Proposition 3.8: If T, locks x before T,, then for every descendant P of x
in DT, if T, and TI both lock v, then T, locks LJ before 7j. [7

Consider any edge T, -+ T, in the SG of some history produced by TL. By the
definition of SG, there is a pair of conflicting operations a,[x] < a,[x]. By rules
(1), (2), and (4), T, unlocked x before q locked x. By Proposition 3.8, it imme-
diateIy follows that T, Iocked the root before T,, since x is a descendant of the
root and, by rule (3), all transactions must lock the root. By rule (2), this
implies that T, unlocked the root before T, locked the root. A simple induction
argument shows that this property also holds for paths in the SG. That is, if
there is a path from T, to T, in SG, then T, unlocked the root before T, locked
the root.

“This should not be confused with the lock instance graph, used in connection with muiti-
granularity locking.

3.13 TREE LOCKING 97

Suppose the SG has a cycle T, s . * * -+ T, + T,. By the previous para-
graph, it follows that T, unlocked the root before T, locked the root. This
violates rule (5), so the cycle cannot exist. Thus, we have proved the following
theorem.

Theorem 3.9: The tree locking scheduler produces serializable execu-
tions. 0

TL scheduling is reminiscent of a scheduling policy used to avoid dead-
locks in operating systems where processes must obtain resources in a
predefined linear order. TL schedulers share the property of deadlock freedom
with this policy, To see this, first note that if T; is waiting to lock the root, it
can’t be involved in a deadlock (since it has no locks and therefore no transac-
tion could be waiting for it). Now, suppose Ti is waiting for a lock currently
held by Tj on a node other than the root. By the argument just given, Tj
unlocks the root before T; locks it. Thus, by induction, if the WFG has a cycle
containing Ti, Ti unlocks the root before it locks the root, a contradiction. So,
TL schedulers are not prone to deadlocks.

In addition to deadlock avoidance, another benefit of TL is that locks can
be released earlier than in 2PL. For any data item X, once a transaction has
locked all of x’s children that it will ever lock, it no longer needs ali[x] to satisfy
rule (3), and can therefore release it. The problem is, how does the scheduler
know that T; has locked all of x’s children that it needs? Clearly, if Ti has
locked all children of X, then it has locked all those that it needs. However,
other than this special case, the scheduler cannot determine that T, no longer
needs ali[x] unless it receives some advice from Tts TM. Without this help, it
can only safely release a transaction Ti’s locks when the transaction terminates.
In this case transactions are (strictly) two phase locked and there is little point
in enforcing the additional restriction of tree locking - except that we also get
deadlock freedom. Therefore, TL only makes sense in those cases where the
TM knows transactions’ access patterns well enough to tell the scheduler when
to release locks.

Releasing locks earlier than the end of the transaction is valuable for
performance reasons. By holding locks for shorter periods, transactions block
each other less frequently. Thus transactions are delayed less often due to lock-
ing conflicts, and thereby have better response time.

However, this benefit is only realized if transactions normally access nodes
in DT in root-to-leaf order. If they don’t, then TL is imposing an unnatural
ordering on their accesses, thereby forcing them to lock nodes before they’re
ready to use them or to lock nodes that they don’t use at all. In this sense, TL
could be reducing the concurrency among transactions.

In addition, we may need to strengthen TL to ensure recoverability, strict-
ness, or avoidance of cascading aborts. For example, to avoid cascading
aborts, a transaction should hold its lock on each data item it writes until it

98 CHAPTER 3 / TWO PHASE LOCKING

commits, which is more than what TL requires. For internal nodes, holding
locks for longer periods can have a serious performance impact, since transac-
tions must lock an internal node x to access any of x’s descendants. Fortu-
nately, in many practical applications, most updates are to leaves of DT, which
transactions can lock until commitment with little performance impact, We’ll
look at one such application, B-trees, later in the section.

Variations of Tree Locking

TL can be generalized in several ways. First, we need not restrict a transaction
to set its first lock on the root of DT. It is safe for it to begin by locking any
data item in DT However, once it sets its first lock on some data item X, rule
(3) implies that it can subsequently only lock data items in the subtree rooted
at x (see Exercise 3.39).

TL can also be generalized to distinguish between read and write locks. If
each transaction sets either only read locks or only write locks, then the ordi-
nary conflict rules between these locks are satisfactory for producing SR execu-
tions. However, if a transaction can set both read and write locks, then
problems can arise, because read locks can allow transactions to “pass” each
other while moving down the tree. For example, suppose x is the root of the
tree, y is a child of X, and z is a child of y. Consider the following sequence of
events:j4

In this execution, T, write locked x before T2, but T2 write locked z before T,,
producing a non-SR execution. This was possible because T2 “passed” T, when
they both held read locks on y. A solution to this problem is to require that for
every path of data items x,, . . ., x,, if T, sets write locks on X, and x,, and sets
read locks on the other data items on the path, then it obtains locks on all data
items on the path before it releases locks on any of them. By holding locks this
long, a transaction ensures that other transactions cannot pass it along this
path. Another solution is to require that Iocks set by a transaction along a path
are of nondecreasing strength. (See Exercise 3.40.)

A third generalization of tree locking is dag locking (DL), in which data
items are organized into a partial order rather than a hierarchy. That is, there is
a rooted dag whose nodes are labelled by the data items. The DL scheduler
must enforce the same rules (1) - (S), the only difference being

3. Unless x: is the root, to obtain a lock on X, T, must be holding (at that
time) a lock on some parent of x, and there must have been a time at
which T, held locks on all parents of X.

“Reca11 that ri,[x], 2uIJx], TUJX] and ZLW,[X] mean that T, has set a read lock on x, set a write
lock on x, released its read lock on x, and released its write lock on x, respectively.

3.13 TREE LOCKING 99

FIGURE 3-13
A B-tree
In this example, there is room for up to three keys in each internal node and up to five keys
in each leaf.

As with TL, the DL scheduler produces SR executions and is not prone to
deadlocks (see Exercise 3.41). The two previous generalizations apply to this
case too.

B-Tree LockingIs

An important application of tree locking is to concurrency control in tree-
structured indices. The most popular type of search tree in database systems is
B-trees. There are several specialized tree locking protocols specifically
designed for B-trees, some of which we will describe. These protocols can also
be applied to other types of search structures, such as binary trees and dynamic
hash tables.

ISThis subsection assumes a basic knowledge of B-trees; see [Bayer, McCreight 721, and [Comer
791. We use the B+-tree variation in this section, which ,is the variation of choice for commercial
products, such as IBM’s VSAM.

100 CHAPTER 3 / TWO PHASE LOCKING

P P

0 221 287 t

LY L

127 134 145 189 218 127 134 145 I 153 189 218

FIGURE 3-14
A B-tree Insertion Causing a Split
(a) Before inserting key 153.
(b) After splitting L to make room for key 153.

A B-tree consists of a set of nodes structured as a tree. Its purpose is to
index a set of records of the form [key, data], where the key values are totally
ordered and may consist, for example, of numbers or alphanumeric strings.

Each node of a B-tree contains a sorted list of key values. For internal
nodes, each pair of consecutive field vaiues defines a range of key values
between two keys, k, and k,+l (see Fig. 3-13). For each such pair of consecu-
rive values, there is a pointer to a subtree that contains all of the records whose
key values are in the range defined by that pair. For leaf nodes, each key has
the data part of the record associated with that key value (but no pointer).
Since the data portion of records is uninterpreted by the B-tree algorithms of
interest to us, we will ignore them in the following discussion and examples.

The two B-tree algorithms that are important for this discussion are
Search and Insert. (Delete leads to problems similar to those of Insert, so we
will not treat it here.) The search of a B-tree for a key value begins at the root.
Each node has information that directs the search to the appropriate child of
that node. The search proceeds down one path until it reaches a leaf, which
contains the desired key value. For example, a search for key 134 in Fig. 3-13
(1) finds the key range [127, 301) in the root R, (2) follows the pointer to P,
(3) finds the key range [127, 221) in node P, (4) follows the pointer to L, and
(5) finds the key 134 in L.16

To insert a record R in a B-tree, a program first searches for the leaf L that
should contain the record. If there is room for R in L, then it inserts R there
(properly sequenced). Otherwise, it allocates another node L’, moves half of
L’s records from L to L’, and adds the minumum key in L’ and a pointer to L’

16The notation [a, 6) means the range of values from a to b that includes the value a but not the
value 6.

3.13 TREE LOCKING 101

in L’s parent (see Fig. 3-14). If L’s parent has no room for the extra key and
pointer, then the program splits L’s parent in the same way that it split L. This
splitting activity continues recursively up the tree until it reaches a node that
has room for the pointer being added, or it splits the root, in which case it adds
a new root.

We want to implement Search and Insert as transactions.” We could use
2PL for this purpose. But since Search and Insert begin by accessing the root of
the tree, each such operation would effectively lock the entire tree.

We can do somewhat better by using tree locking. Since Search only reads
nodes, it sets read locks. Since Insert writes into a leaf L, it should certainly set
a write lock on L. If L was full before the Insert began, then Insert will also
write into some of L’s ancestors, and must set write locks on them as well.
Unfortunately, Insert cannot determine whether it will need to write into
nonleaf nodes until it actually reads L to determine if L is full. Since this
happens at the end of its search down the tree, it doesn’t know which nodes to
write lock until it has read all the nodes it will read. Herein lies the critical
problem of B-tree locking.

Exactly which nodes does Insert have to write lock? If L isn’t full, then it
only write locks L. If L is full, then it will write into L’s parent, l? If P is full,
then it will write into P’s parent, and so on. In general, if L is full, then Insert
should set write locks on the path P,, . ,. , P,, L of ancestors of L (n 2 1) such
that P, is not full and P, through P, are full.

One way for Insert to do this is to set write locks during its search down
the tree. It releases each write lock when it realizes that the lock is not needed.
Insert does this as follows. Before reading a node N, it sets a write lock on that
node. If N is not full, then N won’t be split. It therefore releases all locks it
owns on N’s ancestors, since the insertion will not cause any of them to be
written. After it has read L, it has write locked the appropriate path, and can
proceed with its updating activity.

This approach requires setting write locks before they are actually known
to be needed. If internal nodes are not full, as is often the case in B-trees, then
all of the write locks on internal nodes will be released. These locks needlessly
generate conflicts during the search, thereby delaying the transaction. For this
reason, it is probably better to delay the acquisition of write locks until it is
known that they are needed. This more aggressive approach can be accom-
plished by doing lock conversions.

r’A user may want to regard Search and Insert as atomic operations nested within a larger
transaction. This means that a Search or Insert must be atomic with respect to other Searches
or Inserts issued by the same or different transactions. In this sense, Search and Insert are inde-
pendent transactions. However, larger transactions that invoke multiple Searches and Inserts
have ocher synchronization requirements. This opens a broader collection of issues, that of
nested transactions, which is not treated in this book. See the Bibliographic Notes in Chapter 1
for references.

102 CHAPTER 3 / TWO PHASE LOCKING

FIGURE 3-l 5
Links in a B-tree

During its initial search procedure, Insert only sets read locks on internal
nodes. It concludes the search by setting a write lock on L. If it discovers that L
is full, then it converts the necessary read locks into write locks. So, starting at
the node closest to the root that it must write lock, it proceeds down the tree
converting its read locks to write locks. In this way, it only sets write locks on
nodes that actually have to be written.

Unfortunately, this modified protocol can lead to deadlock. For instance,
two transactions may both be holding a read lock on a node and wanting to
convert it to a write lock - a deadlock situation. One can avoid such a dead-
lock by introducing a new lock type, called might-write. A might-write lock
conflicts with a write or might-write lock, but not with a read lock. Instead of
obtaining read locks on its first pass down the tree, Insert obtains might-write
locks. When it reaches a non-full node, it releases its ancestors’ locks as before.
After it reaches the desired leaf, it converts the might-write locks that it still
owns to Write locks. This prevents two Inserts from locking the same node,
and therefore prevents deadlocks on lock conversion.

B-Tree Locking Using Links

Lock contention can be reduced even further by departing from the lock
coupling requirement of TL. Insert can be designed to write into each B-tree
node independently, without owning a lock on the node’s parent.

This algorithm requires that each node N have a link to its right sibling,
denoted link(N). That is, link(N) points to the child of N’s parent, P, that
follows N, as in Fig. S-15. If N is P’s rightmost child, then link(N) points to
the first child of P’s right sibling (or, if P has no right sibling, then link(N)
points to the first grandchild of the right sibling of P’s parent, etc.), Thus, all
of the nodes in each level are linked in key order through link(N). Only the
rightmost node on each level has a null link.

3.13 TREE LOCKING 103

FIGURE 3-16
The B-tree of Fig. 3-15 after Inserting Key 153

Insert keeps these links up-to-date by adjusting them when it splits a node.
Suppose Insert obtains a lock on node N, is ready to insert a value into N,
but discovers that N is full. Then it splits N by moving the rightmost half
of its contents to a newly allocated node N’. It sets link(N’) : = link(N) and
link(N) : = N’, and then releases its lock on N (see Fig. 3-16, where N = L
and N’ = L’). Notice that at this point, Insert owns no locks at all. Yet it now
can obtain a lock on N’s parent, P, and add a pointer to N’ in P If it can’t
add this pointer because P is full, it repeats the splitting process just de-
scribed. Otherwise, it can simply insert the pointer and release the lock on I?

A Search proceeds down the tree as before, but without lock coupling.
That is, after it reads an internal node N to obtain the pointer that directs it to
the appropriate child C of N, it can release its read lock on N before obtaining
its read lock on C. This obviously creates a window during which an Insert can
come along and update both N and C, thereby appearing to both precede the
Search (with respect to C) and follow it (with respect to N). Normally, this
would be considered non-SR. However, by exploiting the semantics of B-trees
and the link fields, we can modify the Search procedure slightly to avoid this
apparent nonserializability.

The only way that Insert can upset Search’s activity is to modify N in a
way that would have caused Search to follow a different path than the one it is
about to take to C. Any other update to N is irrelevant to Search’s behavior.
This can only happen if Insert splits C, thereby moving some of C’s contents to
a new right neighbor C’ of C, and updating N to include a pointer to C’. If this
occurred, then when Search looks in C, it may not find what it was looking for.
However, in that case Search can look at C’ by following link(C). For example,
suppose a Search is searching for key 189 in Fig. 3-15. It reads P, and releases
its locks. Now an Insert inserts 153, producing the B-tree in Fig. 3-16. Key
189 is now no longer in the node L where Search will look for it, based on the
state of P that it read.

104 CHAPTER 3 I TWO PHASE LOCKING

We therefore modify Search as follows. If Search is looking for value v in a
node N and discovers that v is larger than any value in N, then it reads link(N),
releases its lock on N, locks the node N’ pointed to by link(N), and reads N’. It
continues to follow links in this way until it reaches a node IL’ such that it either
finds in N the value v it is looking for or determines that v is smaller than the
largest value in hr and therefore is not present in the tree. In the example of the
preceding paragraph, Search will discover that the largest key in L is 145, so it
will follow link(L), just in case L split after Search read 1? It will thereby find
189 in L’ as desired.

Notice that since Search and Insert each requests a lock only when it owns
no locks, it cannot be a party to a deadlock.

BIBLIOGRAPHIC NOTES

Two phase locking was introduced in [Eswaran et a1.761. Proofs of correctness have
appeared in [Bernstein, Shipman, Wong 791, [Eswaran et al. 761, and [Papadimitriou
791. Our proof in Section 3.3 is based on one in [Ullman 821. Treating deadlock detec-
tion as cycle detection in a digraph is from [Holt 721. Other work on centralized dead-
lock detection includes [Coffman, Elphick, Shoshani 711, [King, Collmeyer 741, and
[Macri 761. The implementation issues presented in Section 3.6 are largely from Gray’s
classic work on transaction management implementation [Gray 781, and from many
discussions with implementors; see also [Weinberger 821. The phantom problem was
introduced in [Eswaran et al, 761, which suggested predicate locks to solve it. Predicate
locks were later developed in [Wong, Edelberg 771 and [Hunt, Rosenkrantz 791.
Versions of the hot spot technique of Section 3.8 appeared in [Reuter 821 and [Gawlick,
Kinkade 851. Multigranularity locking was introduced in [Gray et al. 751 and [Gray,
Lori, Putzolu 751; further work appeared in [Korth 821. Path pushing deadlock detec-
tion is described in [Gligor, Shattuck 801 and [Obermarck 821. Timestamp-based
prevention appears in [Rosenkrantz, Stearns, Lewis 781 and [Stearns, Lewis,
Rosenkrantz 761. Other distributed deadlock techniques are described in [Beeri, Ober-
marck 811, [Chandy, Misra 821, [Chandy, Misra, Haas 831, [Isloor, Marsland 801,
[Kawazu et al. 791, [Korth et al. 831, [Lomet 791, [Lomet 80a], [Lomet Sob],
[Marsland, Isloor SO], [Menasce, Muntz 791, [Obermarck 821, [Stonebraker 79b], and
[Tirri 831.

The performance effect of transaction characteristics and locking protocols other than
those mentioned in Section 3.12 has mostly been studied in the Iiterature through simu-
Iations. Locking performance in a distributed system was examined in [Ries,
Stonebraker 771 [Ries, Stonebraker 791 [Thanos, Carlesi, Bertino 811, and [Garcia-
Molina 791 for replicated data. Ries and Stonebraker also considered hierarchical lock-
ing, as did [Carey, Stonebraker 841. Multiversion systems were studied in [Carey,
Stonebraker 843, [Kiessling, Landherr 833, and [Peinl, Reuter 831 (see Chapter 5).
Mixtures of queries and updaters were studied in [Lin, Nolte 82a].

The results we have presented about locking performance can be found in [Tap, Good-
man, Suri 851, but most of them can be found elsewhere too. Some were previously
known to other researchers, and some were corroborated by later work. (See [Tay,

EXERCISES 105

Goodman, Suri 841 for an account of the agreements and contradictions among the
papers.) For instance, thrashing caused by locking was observed in [Balter, Berard,
Decitre 821, [Franaszek, Robinson 851, [Lin, Nolte 82b], and [Ryu, Thomasian 861;
blocking was identified as the main cause of this thrashing in the first and fourth
papers. That most deadlock cycles have only two transactions was pointed out in
[Devor, Carlson 821 and [Gray et al. 81b]. The former, as well as [Beeri, Obermarck
811, also observed that deadlocks are rare in System R and IMS/VS. A pure restart
policy was first studied in [Shum, Spirakis 811; it is also a special case of the protocol in
[Chesnais, Gelenbe, Mitrani 831, and was compared to a blocking policy under various
levels of resource contention in [Agrawal, Carey, Livny 851. But the locking protocol
that has received the most attention is conservative 2PL [Galler, Bos 831, [Mitra, Wein-
berger 841, [Morris, Wong 8.51, [Potier, Leblanc SO], and [Thomasian, Ryu 831. The
problem of choosing the appropriate granularity was addressed in [Carey, Stonebraker
841, [Ries, Stonebraker 771, [Ries, Stonebraker 791, and [Ryu, Thomasian 861. The
effect of shared locks was evaluated in [Lavenberg 841 and [Mitra 851. The model of
nonuniform access we have described was introduced in [Mum, Krenz 771, and used in
[Lin, Nolte 821.

Lock coupling protocols for tree locking appeared in [Bayer, Schkolnick 771, [Kedem,
Silberschatz 811, [Samadi 761, and [Silberschatz, Kedem 761. The linking method
appeared in [Kung, Lehman 801 for binary trees, and was extended for B-trees in
[Lehman, Yao 811. Other work on locking protocols for dynamic search structures
includes [Buckley, Silberschatz 841, [Ellis 821, [Ford, Schultz, Jipping 841, [Goodman,
Shasha 851, [Kedem 831, [Kwong, Wood 821, and [Manber, Ladner 841.

EXERCISES

3.1 Give an example of a serializable history that could not have been
produced by a 2PL scheduler.

3.2 Give an example of a non-SR execution that is two phased locked,
except for one transaction that converts a write lock to a read lock.

3.3 Suppose all transactions that write into the database are two phase
locked, but read-only transactions may violate the two phase rule. In what
sense will the database be kept in a consistent state? Is there any sense in
which it will be inconsistent? If we dropped all read-only transactions
from a history, would the resulting history be SR? Do queries read consis-
tent data?

3.4* Prove that every 2PL history H has the following property: There
exists a serial history H, such that for every two transactions T; and Tj in
H, if T; and Tj are not interleaved (see Exercise 2.12) in H and 7’i precedes
Tj in H, then T; precedes Tj in H,.

3.5” Give a serializability theoretic proof that if each transaction is two
phase locked, releases its read locks before it terminates, and releases its
write locks after it commits, then the resulting execution is strict.

106 CHAPTER 3 I TWO PHASE LOCKING

3.6* Define a locked point of a transaction to be any moment at which it
owns all of its locks; that is, it is a moment after it has performed its last
lock operation and before it has released any lock. Using serializability
theory, prove that for every history H produced by a 2PL scheduler there is
an equivalent serial history in which transactions are in the order of their
locked points in H.

3.7 Design an efficient algorithm that finds and lists all cycles in a WFG.
(The algorithm should be efficient in the sense that its running time is poly-
nomial in the size of the graph and in the number of cycles in the graph.)

3.8 Suppose T, is waiting for a lock on x held by T,. Now suppose Tk
requests that lock on x and it too must wait. In general, is it better to add
Tk + T,, irk + T,, or both to the WFG? Discuss the effect of this decision
on the algorithm that schedules waiting requests after a lock is released.

3.9 Consider a centralized DBS that uses 2PL and in which all transactions
are sequential programs. Thus, no transaction can have more than one
ourstanding Read or Write request that is blocked. Could a transaction be
involved in more than one deadlock? Prove your answer.

3.10 Suppose that if a lock request for x cannot be granted immediately,
edges are added to the WFG from the blocked transaction to every transac-
tion that owns a conflicting lock on X. Deadlock detection is then
performed. If no deadlock is detected, then the request is added to the end
of x’s lock queue. The queue is serviced in a first-come-first-served
manner. Show that this method does not detect ail deadlocks. Propose a
modified method that does.

3.11 Let T, -+ . . . + T,, -+ T, be a cycle in a WFG. An edge T, + Tl is a
chord of the cycle if T, and T, are nodes of the cycle and T, -+ T, is not an
edge of the cycle. A cycle is elementary if it has no chords. Suppose we use
a deadlock detector that finds all of the elementary cycles in a WFG, and
breaks each such deadlock by aborting a victim in the cycle. Prove that this
breaks all cycles in the WFG.

3.12 In our description of Conservative 2PL, we assumed that a transaction
predeclares the set of data items it reads or writes. Describe a 2PL sched-
uler that does not predeclare its readset and writeset, yet is not subject to
deadlocks.

3.13 Write a program that implements a Strict 2PL scheduler. Prove that
your program satisfies all of the conditions in Propositions 3.1-3.3.

3.14’ To prove the correctness of 2PL, in Propositions 3.1-3-3 stated condi-
tions that every 2PL history must satisfy. State the additional conditions
that must be satisfied by every 2PL history that represents an execution of
a Strict 2PL scheduler and of a Conservative 2PL scheduler.

EXERCISES 107

3.15 Suppose we partition the lock table, and we assign a distinct sema-
phore to each partition to ensure it is accessed atomically. Suppose each
lock is assigned to a partition based on its data item name, so each transac-
tion may own locks in multiple partitions. To release a transaction’s locks,
the LM must access more than one partition. Since the LM may acquire
more than one semaphore to do this, it may deadlock if two transactions
release their locks concurrently. Give an example of the problem, and
propose a solution to it.

3.16 Instead of using an end-of-file marker as in Section 3.7, suppose we
use fixed length records and maintain a count of the number of records in
a file F. Give an example of a non-SR execution where transaction T, scans
F, TL inserts a record into F, T, reads some other data item x, T2 writes X,
both transactions are two phase locked, and neither transaction locks
count. Explain why this is an example of the phantom problem.

3.17 Consider a database consisting of one file, F. Each transaction begins
by issuing a command “getlock where Q,” where Q is a qualification (i.e.,
a Boolean formula) that’s true for some records and false for others. The
scheduler processes the Getlock command by write locking the set of all
records in F that satisfy Q. The transaction can only read and modify
records that were locked by its Getlock command. The transaction can
insert a new record, which the scheduler write locks just before it inserts it.
The scheduler holds a transaction’s locks until it commits. Does this lock-
ing algorithm prevent phantoms ? If so, prove it correct. If not, show a
non-SR execution.

3.18 Suppose we modify the MGL protocol for dags so that Ti can set
iwli[x] as long as it owns an iw lock on some parent (rather than all
parents) of x. Prove or disprove that the resulting protocol is correct.

3.19 Suppose we reverse the MGL protocol for dags: to set r&[x] or irli[x],
Ti must have an ir or iw lock on all parents of X, and to set wll[x] or
iw1Jx], Ti must have an iw lock on some parent of X. Prove that the result-
ing protocol is correct. Under what conditions would you expect this
protocol to outperform the MGL protocol for dags in Section 3.9?

3.20 The MGL protocol for lock instance graphs that are trees is limited to
read and write locks. Generalize the protocol so that it will work for arbi-
trary lock types (e.g., Increment and Decrement).

3.21 Rule (2) of the MGL protocol requires that if a transaction has a w
lock or iw lock on a data item X, then it must have an iw lock on x’s
parent. Is it correct for it to hold a w lock on x’s parent instead? Is there a
case in which it would be useful to set such a w lock if the lock instance
graph is a tree? What about dags?

3.22 In the dag lock type graph in Fig. 3-7, a lock on an index entry locks
all fields of all records that the entry points to. Suppose we distinguish

108 CHAPTER 3 I TWO PHASE LOCKING

indexed fields from non-indexed fields. A lock on an index entry should
only lock the indexed field of the records it points to. Other fields of these
records can be concurrently locked. Design a lock instance dag that imple-
ments this approach and argue that it has the intended effect, assuming the
dag MGL protocol.

3.23 Prove that the MGL protocol for dag lock instance graphs is correct in
the sense of Theorem 3.7.

3.24 In the MGL protocol for lock instance graphs that are trees, suppose
we allow a transaction to release a lock on a data item x before it releases
its lock on some child of x. Assuming the scheduler uses Basic 2PL, give an
example of an incorrect execution that can result from this.

3.25 In Section 3.11, we argued that if no transaction spontaneously aborts
and every lock obtained by a transaction corresponds to a database opera-
tion (i.e., no intention locks), then there are no phantom deadlocks. Are
phantom deadlocks possible if we allow intention locks? Prove your
answer.

3.26 Consider a distributed DBS. Give an example execution of two trans-
actions which is not SR and satisfies the 2PL rules locally (i.e., at each site,
considered individually) though not globally (i.e., considering all sites
together). In your example, be sure to give the precise sequence in which
locks are set and released by the schedulers as well as the sequence in
which Reads and Writes are executed.

3.27 In this problem, we will simplify the path pushing algorithm for
distributed deadlock detection. Assume that each transaction is a sequen-
tial process; thus, it is only active (unblocked) at one site at a time.
Suppose we augment the WFG at each site, say A, with an additional node
labelled EX for “external.” For each transaction T,, if T, was formerly
executing at site A and now is stopped waiting for a response from some
other site, then add an edge T, -+ EX. If T, is executing at A and was
formerly executing at any other site, then add an edge EX -+ T,.

We now modify the algorithm as follows. Site A periodically detects cycles
in its WFG. If a cycle does not contain the node EX, then a transaction is
aborted. For each cycle EX + T, -+ * * * + T, + EX, site A sends the path
T,-+... -+ TT to the site from which T, is waiting for a response. When a
site receives a list of paths from another site, it adds those edges to its WFG
and performs the above steps. Prove that this algorithm detects all dead-
lock cycles.

3.28 Design an approach to deleting edges from each site’s WFG in the path
pushing deadlock detection algorithm of Section 3.11.

3.29 In timestamp-based deadlock detection, we assigned each transaction
a unique timestamp. Suppose we do not require transactions’ timestamps
to be unique. Do the Wait-Die and Wound-Wait methods still prevent
deadlock? Do they prevent cyclic restart?

EXERCISES 109

3.30 Suppose we alter the definition of Wait-Die as follows:

if ts(T;) > ts(Tj) then Ti waits else abort Ti.

Does this method prevent deadlock? Does it prevent cyclic restart? Back
up your claims with proofs or counterexamples. Compare the dynamic
behavior of this method with standard Wait-Die and Wound-Wait.

3.31 Suppose a transaction is assigned a new timestamp every time it is
aborted and restarted. Using Wound-Wait for deadlock detection, give an
example of two transactions Ti and Tj that cyclically restart each other
using this method. If possible, design them so they “self-synchronize” in
the sense that even with small variations in transaction execution time and
communications delay, they still experience cyclic restart.

3.32 Design a hybrid deadlock detection and prevention algorithm that, to
the extent possible, uses WFG cycle detection locally at each site, and uses
timestamp-based prevention to avoid global deadlocks.

3.33 In Wound-Wait timestamp-based deadlock prevention, suppose that
when Ti wounds Tj, Tj aborts only if it is waiting, or later tries to wait, for
another lock. Does this version of Wound-Wait prevent deadlock? Prove
your answer.

3.34 Suppose we partition the set of sites in a distributed DBS into regions.
Each site has a local deadlock detector. Each region has a global deadlock
detector to which its sites send their WFGs. There is also a system-wide
deadlock detector to which all the regional deadlock detectors send their
WFGs. This arrangement of deadlock detectors is called hierarchical dead-
lock detection. Under what circumstances would you expect hierarchical
deadlock detection to perform better or worse than a single global dead-
lock detector? Is hierarchical deadlock detection subject to phantom dead-
locks under different conditions than a single global deadlock detector?

3.35 Suppose we modify the hierarchical deadlock detector of the previous
problem as follows. Define a transaction to be local if it only accesses data
at one site. Each site constructs a locally compressed WFG by taking the
transitive closure of its WFG and then deleting all nodes corresponding to
local transactions (along with edges that are incident with those nodes).
Each site periodically sends its locally compressed WFG (not its full WFG)
to its regional deadlock detector. Each regional deadlock detector also
does “local” compression, where in this case “local” means local to the set
of sites in the region. Each regional deadlock detector periodically sends
its locally compressed WFG to the system-wide deadlock detector. Does
this deadlock detection scheme detect all deadlocks? Might it detect a
phantom deadlock? Prove your answers.

3.36 Let k, N, and D be as defined in Section 3.12. If the deadlock rate is
low, so that most transactions terminate without restarts, then a transac-

110 CHAPTER 3 /TWO PHASE LOCKING

tion has k/2 locks on average. Assume all locks are write locks, and lock
requests are uniformly distributed over the database.

a. What is the probability of conflict per request?
b. What is the probability that a transaction will encounter a conflict?
c. Suppose k = 1 if D = 2, and k = 2 if D = 5. Let N = 2. Compute

the probabilities in (a) and (b) for D = 2 and D = 5. Note that one
probability decreases while the other increases.

d. Show that, if kN/2D is small, then the probabiIity in (b) is kZN/2D
approximately. Note the relationship with the DC-workload.

3.37 Assume again the conditions in Exercise 3.37. Let R be the response
rime of a transaction. If we assume that when a transaction is blocked,
there is no other transaction waiting for the same lock, then the waiting
time for the lock is R/2 on average (since the deadlock rate is low). Now
let T be the response time of a transaction if the concurrency control were
switched off.

a. Show that (with the concurrency control switched on)

where p is the probability of conflict per request, and iI k - r &k;r!!b
k r.

b. Using the identity
c 0

T F p’ (1 -P)~-’ = kp, and the probability of
r=l

conflict from Problem 3.37, deduce that R = T/ l-
(s#J*

c. Little’s Law from elementary queueing theory now implies that the

throughput is N l-
T(%I*

Does this formula predict DC-thrashing?

d. How does resource contention affect the formulas in (b) and (c)?

3.38 Consider a DBS that uses a Strict 2PL scheduler. In the following,
throughput (i.e., user demand) is the same before and after the change.

a. The code of the transactions running on a particular system is
changed, but the number of locks (all of which are write locks)
required by a transaction is unaffected. The change results in an
increase in response time. Give two possible reasons.

6. A system is running a mixture of queries and updates. (Queries only
set read locks, whereas updates set write locks.) Whenever the propor-
tion of queries increases, overall response time becomes worse. Give
three possible reasons.

EXERCISES 111

c. A certain portion of a database is identified as a high contention area,
so the granularity for this portion was refined. However, response
time becomes worse. Give three possible reasons.

3.39 Modify the TL protocol so that a transaction need not begin by lock-
ing the root of DT. Prove that the modified protocol is correct.

3.40 Extend the TL protocol to handle read locks and write locks. Prove
the resulting protocol produces SR executions and is free of deadlocks.

3.41 Prove that the DL protocol produces SR executions and is free of
deadlocks.

3.42 Do Exercise 3.41 for an arbitrary set of lock types with its associated
compatibility matrix.

3.43 Extend the various versions of B-tree locking in Secion 3.13 to handle
the deletion of nodes.

	Index:
	Contents:

