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TWO PHASE LOCKING 

3.1 AGGRESSIVE AND CONSERVATIVE SCHEDULERS 

In this chapter we begin our study of practical schedulers by looking at two 
phase locking schedulers, the most popular type in commercial products. For 
most of the chapter, we focus on locking in centralized DBSs, using the model 
presented in Chapter 1. Later sections show how locking schedulers can be 
modified to handle a distributed system environment. The final section 
discusses specialized locking protocols for trees and dags. 

Recall from Chapter 1 that when a scheduler receives an operation from a 
TM it has three options: 

1. immediately schedule it (by sending it to the DM); 

2. delay it (by inserting it into some queue); or 

3. reject it (thereby causing the issuing transaction to abort). 

Each type of scheduler usually favors one or two of these options. Based 
on which of these options the scheduler favors, we can make the fuzzy, 
yet conceptually useful, distinction between aggressive and conservative 
schedulers. 

An aggressive scheduler tends to avoid delaying operations; it tries to 
schedule them immediately, But to the extent it does so, it foregoes the oppor- 
tunity to reorder operations it receives later on. By giving up the opportunity 
to reorder operations, it may get stuck in a situation in which it has no hope of 
finishing the execution of all active transactions in a serializable fashion. At 
this point, it has to resort to rejecting operations of one or more transactions, 
thereby causing them to abort (option (3) above). 
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A conservative scheduler, on the other hand, tends to delay operations. 
This gives it more leeway to reorder operations it receives later on. This Ieeway 
makes it less likely to get stuck in a situation where it has to reject operations 
to produce an SR execution. An extreme case of a conservative scheduler is one 
that, at any given time, delays the operations of all but one transaction. When 
that transaction terminates, another one is selected to have its operations 
processed. Such a scheduler processes transactions serially. It never needs to 
reject an operation, but avoids such rejections by sometimes excessively delay- 
ing operations. 

There is an obvious performance trade-off between aggressive and conser- 
\Jative schedulers. Aggressive schedulers avoid delaying operations and thereby 
risk rejecting them later. Conservative schedulers avoid rejecting operations by 
deliberately delaying them. Each approach works especially well for certain 
types of applications. 

For example, in an application where transactions that are likely to 
execute concurrently rarely conflict, an aggressive scheduler might perform 
better than a conservative one. Since conflicts are rare, conflicts that require 
the rejection of an operation are even rarer. Thus, the aggressive sched- 
uler wouId not reject operations very often. By contrast, a conservative 
scheduler would needlessly delay operations, anticipating conflicts that seldom 
materialize. 

On the other hand, in an application where transactions that are likely to 
execute concurrently conflict, a conservative scheduler’s cautiousness may pay 
off, An aggressive scheduler might output operations recklessly, frequently 
placing itself in the undesirable position where rejecting operations is the only 
alternative to producing incorrect executions. 

The rate at which conflicting operations are submitted is not the only 
factor that affects concurrency control performance. For example, the Ioad on 
computer resources other than the DBS is also important. Therefore, this 
discussion of trade-offs between aggressive and conservative approaches to 
scheduling should be taken with a grain of salt. The intent is to develop some 
intuition about the operation of schedulers, rather than to suggest precise rules 
for designing them. Unfortunately, giving such precise rules for tailoring a 
scheduler to the performance specifications of an application is beyond the 
state-of-the-art. 

Almost all types of schedulers have an aggressive and a conservative 
version. GeneraIly speaking, a conservative scheduler tries to anticipate the 
future behavior of transactions in order to prepare for operations that it has 
not yet received. The main information it needs to know is the set of data items 
that each transaction will read and write (called, respectively, the rendset and 
writeset of the transaction). In this way, it can predict which of the operations 
that it is currently scheduling may conflict with operations that will arrive in 
the future. By contrast, an aggressive scheduler doesn’t need this information, 
since it schedules operations as early as it can, relying on rejections to correct 
mistakes. 
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A very conservative version of any type of scheduler can usually be built if 
transactions predeclare their readsets and writesets. This means that the TM 
begins processing a transaction by giving the scheduler the transaction’s read- 
set and writeset. Predeclaration is more easily and efficiently done if trans- 
actions are analyzed by a preprocessor, such as a compiler, before being 
submitted to the system, rather than being interpreted on the fly. 

An impediment to building very conservative schedulers is that different 
executions of a given program may result in transactions that access different 
sets of data items. This occurs if programs contain conditional statements. For 
example, the following program reads either x and y, or x and Z, depending on 
the value of x that it reads. 

Procedure Fuzzy-readset begin 
Start; 
a : = Read(x), 
if (a > 0) then b : = Read(y) else b : = Read(z); 
Commit 

end 

In this case the transaction must predeclare the set of all data items it might 
read or write. This often causes the transaction to overstate its readset and 
writeset. For example, a transaction executing Fuzzy-readset would declare its 
readset to be {x, y, Z) , even though on any single execution it will only access 
two of those three data items. The same problem may occur if transactions 
interact with the DBS using a high level (e.g., relational) query language. A 
high level query may potentially access large portions of the database, even 
though on any single execution it only accesses a small portion of the database. 
When transactions overstate readsets and writesets, the scheduler ends up 
being even more conservative than it has to be, since it will delay certain opera- 
tions in anticipation of others that will never be issued. 

3.2 BASIC TWO PHASE LOCKlNG 

Locking is a mechanism commonly used to solve the problem of synchronizing 
access to shared data. The idea behind locking is intuitively simple. Each data 
item has a lock associated with it. Before a transaction T, may access a data 
item, the scheduler first examines the associated lock. If no transaction holds 
the lock, then the scheduler obtains the lock on behalf of T,. If another trans- 
action T, does hold the lock, then T, has to wait until T2 gives up the lock. 
That is, the scheduler will not give T, the lock until T, releases it. The sched- 
uler thereby ensures that only one transaction can hold the lock at a time, so 
only one transaction can access the data item at a time. 

Locking can be used by a scheduler to ensure serializability. To present 
such a locking protocol, we need some notation. 
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Transactions access data items either for reading or for writing them. We 
therefore associate two types of locks with data items: read locks and write 
locks. We use rl[x] to denote a read lock on data item x and w/[x] to denote a 
write Iock on x. We use rl,[x] (or u~/,[x]) to indicate that transaction T, has 
obtained a read (or write) lock on x. As in Chapter 2, we use the letters o, p, 
and 4 to denote an arbitrary type of operation, that is, a Read (r) or Write (w). 
We use oE,[x] to denote a lock of type o by T, on x. 

Locks can be thought of as entries in a lock table. For example, Y~~[x] 

corresponds to the entry [x, Y, TJ in the table. For now, the detailed data struc- 
ture of the table is unimportant. We’ll discuss those details in Section 3.6. 

Two locks p&[x] and ql,[y] conflict if x = y, i # j, and operations p and q 
are of conflicting type. That is, two locks conflict if they are on the same data 
item, they are issued by different transactions, and one or both of them are 
write locks.] Thus, two locks on different data items do not conflict, nor do 
two locks that are on the same data item and are owned by the same transac- 
tion, even if they are of conflicting type. 

We also use rl,[x] (or wl,[x]) to denote the operation by which T, sets or 
obtains a read (or write) lock on X. It will always be clear from the context 
whether rl,[x] and wl,[x] denote locks or operations that set locks. 

We use m,[x] (or wu,[x]) to denote the operation by which T, releases its 
read (or write) lock on x. In this case, we say T, unlocks x (the u in ru and WM 
means unlock). 

It is the job of a two phase locking (2PL) scheduler to manage the locks by 
controiling when transactions obtain and release their locks. In this section, 
we’ll concentrate on the Basic version of 2PL. We’ll look at specializations of 
2PL in later sections. 

Here are the rules according to which a Basic 2PL scheduler manages and 
uses its locks: 

1. When it receives an operation p;[x] from the TM, the scheduler tests if 
p&[x] conflicts with some ql,[x] that is already set. If so, it delays p,[x], 
forcing TI to wait until it can set the lock it needs. If not, then the 
scheduler sets pl,[x], and then sends pJxJ to the DM.2 

2. Once the scheduler has set a lock for T,, say pl,[x], it may not release 
that lock at least until after the DM acknowledges that it has processed 
the lock’s corresponding operation, pi[x]. 

3. Once the scheduler has released a lock for a transaction, it may not 
subsequently obtain any more locks for that transaction (on any 
data item). 

‘We will generalize the notion of lock conflict to operations other than Read and Write in 
Section 3.8. 
‘The scheduler must be implemented so that setting a lock is atomic relative to setting conflict- 
ing locks. This ensures that conflicting locks are never held simultaneously. 
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Rule (1) prevents two transactions from concurrently accessing a data item 
in conflicting modes. Thus, conflicting operations are scheduled in the same 
order in which the corresponding locks are obtained. 

Rule (2) supplements rule (1) by ensuring that the DM processes opera- 
tions on a data item in the order that the scheduler submits them. For example, 
suppose Ti obtains r&[x], which it releases before the DM has confirmed that 
T~[x] has been processed. Then it is possible for Tj to obtain a conflicting lock 
on X, wlJx], and send w,[x] to the DM. Although the scheduler has sent the 
DM Ti[x] before zuj[z], without rule (2) there is no guarantee that the DM will 
receive and process the operations in that order. 

RuIe (3), called the two phase rule, is the source of the name two phase 
locking. Each transaction may be divided into two phases: a growing phase 
during which it obtains locks, and a shrinking phase during which it releases 
locks. The intuition behind rule (3) is not obvious. Roughly, its function is to 
guarantee that all pairs of conflicting operations of two transactions are sched- 
uled in the same order. Let’s look at an example to see, intuitively, why this 
might be the case. 

Consider two transactions T, and T,: 

T,: T*[Xl -+ WJYI + Cl T,: wbl + dyl + cz 

and suppose they execute as follows: 

H* = 4[Xl r,[xl w[xl wL[xl w&l WUYI %[YI wdxl WdYl c2 WL[Yl 
W[Yl WdYl Cl 

Since T,[x] < w,[x] and w,[y] < w,[y], SG(H,) consists of the cycle T, + T2 + 
T,. Thus, H, is not SR. 

The problem in H, is that T, released a lock (ru,[.r]) and subsequently set a 
lock (wl,[y]), in violation of the two phase rule. Between TU,[X] and wl,[y], 
another transaction T2 wrote into both x and y, thereby appearing to follow T, 
with respect to x and precede it with respect to y. Had T, obeyed the two phase 
rule, this “window” between TU,[X] and wl,[y] would not have opened, and T, 
could not have executed as it did in H,. For exampie, T, and T2 might have 
executed as follows. 

1. Initially, neither transaction owns any locks. 

2. The scheduler receives r,[x] from the TM. Accordingly, it sets ul,[x] and 
submits r,[x] to the DM. Then the DM acknowledges the processing 
of TJX]. 

3. The scheduler receives ZUJX] from the TM. The scheduler can’t set 
wl,[x], which conflicts with rl,[x], so it delays the execution of w,[x] by 
placing it on a queue. 

4. The scheduler receives w,[y] from the TM. It sets wl,[y] and submits 
w,[y] to the DM. Then the DM acknowledges the processing of w,[y]. 

5. The scheduler receives c1 from the TM, signalling that T, has termi- 
nated. The scheduler sends c, to the DM. After the DM acknowledges 
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processing cl, the scheduler releases rl,[x] and wl,[y]. This is safe with 
respect to rule (2), because Y,[x] and w,[y] have already been processed, 
and with respect to rule (3), because T, won’t request any more locks. 

6, The scheduler sets wl,[x] so that wJx], which had been delayed, can 
now be sent to the DM. Then the DM acknowledges w?[x]. 

7. The scheduler receives wZ[y] from the TM. It sets WI&~] and sends wJy] 
to the DM. The DM then acknowIedges processing w&l. 

8. Tz terminates and the TM sends cJ to the scheduler. The scheduler sends 
c, to the DM. After the DM acknowledges processing cl, the scheduler 
releases ZU~~[X] and w1Jy]. 

This execution is represented by the following history. 

Hz is serial and therefore is SR. 
An important and unfortunate property of 2PL schedulers is that they are 

subject to deadlocks. For example, suppose a 2PL scheduler is processing 
transactions T, and T, 

T,: r,[xl -+ Wl[Yl + c1 T3: w[yl --+ w[xl -+ c3 

and consider the following sequence of events: 

1. Initially, neither transaction holds any locks. 

2. The scheduler receives rl[x] from the TM. It sers rl,[~] and submits r,[x] 
to the DM. 

3. The scheduler receives wJy] from the TM. It sers wl,[y] and submits 
w,[y] to the DM. 

4. The scheduler receives w,[x] from the TM. The scheduler does not set 
wl,[x] because it conflicts with rl,[x] which is already set. Thus w,[x] is 
delayed. 

5. The scheduler receives w,[y] from the TM. As in (4), w,[y] must be 
delayed. 

Although the scheduler behaved exactly as prescribed by the ruies of 2PL 
schedulers, neither T, nor T3 can complete without violating one of these rules. 
If the scheduler sends w,[y] to the DM without setting wl,b], it violates rule 
(I). Similarly for w,+[x]. Suppose the scheduler releases w/,[y], so it can set 
wl,[y] and thereby be allowed to send w,[y] to the DM. In this case, the sched- 
uler will never be able to set wl,[x] (so it can process w,[x]), or else it would 
violate rule (3). Similarly if it releases rl,[x]. The scheduler has painted itself 
into a corner. 

This is a classic deadlock situation. Before either of two processes can 
proceed, one must release a resource that the other needs to proceed. 
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Deadlock also arises when transactions try to strengthen read locks to 
write locks. Suppose a transaction Ti reads a data item x and subsequently tries 
to write it. Ti issues Yi[x] to the scheduler, which sets rl;[x]. When Ti issues 
w;[x] to the scheduler, the scheduler must upgrade rli[x] to wli[x]. This upgrad- 
ing of a lock is called a lock conversion. To obey 2PL, the scheduler must not 
release rli[x]. This is not a problem, because locks set by the same transaction 
do not conflict with each other. However, if two transactions concurrently 
try to convert their read locks on a data item into write locks, the result is 
deadlock. 

For example, suppose T4 and T5 issue operations to a 2PL scheduler. 

T,: r&x] + w4[x] + c4 T,: r&Y] + w,[x] + c, 

The scheduler might be confronted with the following sequence of events: 

1. The scheduler receives Y,,[x], and therefore sets rl.,[x] and sends r4[x] to 
the DM. 

2. The scheduler receives rJx], and therefore sets rl,[x] and sends r5[x] to 
the DM. 

3. The scheduler receives w,[x]. It must delay the operation, because wl,,[x] 
conflicts with rl,[x]. 

4. The scheduler receives w5[x].,,,It must delay the operation, because wI,[x] 
conflicts with rl,[x]. 

Since neither transaction can release the rl[x] it owns, and since neither can 
proceed until it sets ~4x1, the transactions are deadlocked. This type of dead- 
lock commonly occurs when a transaction scans a large number of data items 
looking for data items that contain certain values, and then updates those data 
items. It sets a read lock on each data item it scans, and converts a read lock 
into a write lock only when it decides to update a data item. 

We will examine ways of dealing with deadlocks in Section 3.4. 

3.3 *CORRECTNESS OF BASIC TWO PHASE LOCKING 

To prove that a scheduler is correct, we have to prove that all histories repre- 
senting executions that could be produced by it are SR. Our strategy for prov- 
ing this has two steps. First, given the scheduler we characterize the properties 
that all of its histories must have. Second, we prove that any history with these 
properties must be SR. Typically this last part involves the Serializability Theo- 
rem. That is, we prove that for any history H with these properties, SG(H) is 
acyclic. 

To prove the correctness of the 2PL scheduler, we must characterize the set 
of 2P.L histories, that is, those that represent possible executions of transac- 
tions that are synchronized by a 2PL scheduler. To characterize 2PL histories, 
we’ll find it very helpful to include the Lock and Unlock operations. (They 
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were not in our formal model of Chapter 2.) Examining the order in which 
Lock and Unlock operations are processed will help us establish the order in 
which Reads and Writes are executed. This, in turn, will enable us to prove 
that the SG of any history produced by 2PL is acyclic. 

To characterize 2PL histories, let’s list all of the orderings of operations 
that we know must hold. First, we know that a lock is obtained for each data- 
base operation before that operation executes. This follows from rule (1) of 
2PL. That is, 01,[3c] < o,[x]. From rule (2) of 2PL, we know that each opera- 
tion is executed by the DM before its corresponding lock is released. In terms 
of histories, that means o,[x] < oti,[x]. In particular, if oi[x] belongs to a 
committed transaction (all of whose operations are therefore in the history), 
we have ol,[x] < o,[x] < OI~,[X]. 

Proposition 3.1: Let H be a history produced by a 2PL scheduler. If oi[x] 
is in C(H), then ol,[x] and ou,[x] are in C(H), and ol,[x] < o,[x] < 
ozf,[x]:. cl 

Now suppose we have two operations pJx] and q,[x] that conflict. Thus, the 
locks that correspond to these operations also conflict. By rule (1) of 2PL, 
only one of these locks can be held at a time. Therefore, the scheduler must 
release the lock corresponding to one of the operations before it sets the 
lock for the other. In terms of histories, we must have pu,[x] < ql,[x] or 
qdxl < PUXI. 

Proposition 3.2: Let H be a history produced by a 2PL scheduler. If p,[x] 
and s,[x] (i # j) are conflicting operations in C(H), then either eui[x] < 
ql,[xl or 44x1 < eL[xl. 0 

Finally, let’s look at the two phase rule, which says that once a transaction 
releases a lock it cannot subsequently obtain any other locks. This is equiva- 
lent to saying that every Iock operation of a transaction executes before every 
unlock operation of that transaction. In terms of histories, we can write this as 
ml < WM. 

Proposition 3.3: Let H be a complete history produced by a 2PL sched- 
uler. If e,[x] and ‘~,[y] are in C(H), then pl,[x] < qz&]. 0 

Using these properties, we must now show that every 2PL history H has an 
acyclic SG. The argument has three steps. (Recall that SG(H) contains nodes 
only for the committed transactions in H.) 

1. If T, + 7J is in SG(H), then one of Ti’s operations on some data item, 
say x, executed before and conflicted with one of T,‘s operations. There- 
fore, T, must have released its lock on x before T, set its lock on X. 
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2. Suppose T; + Tj --t Tk is a path in SG(H). From step (l), T, released 
some lock before Tj set some lock,‘and similarly Tj released some lock 
before Tk set some lock. Moreover, by the two phase rule, T1 set all of 
its locks before it released any of them. Therefore, by transitivity, T, 
released some lock before Tk set some lock. By induction, this argument 
extends to arbitrarily long paths in SG(H). That is, for any path T, -+ 
T, + * - - --f T,,, T, released some lock before T, set some lock. 

3. Suppose SG(H) had a cycle T, + T, + * * * + T, + T,. Then by step 
(2), T, released a lock before T, set a lock. But then T, violated the 
two phase rule, which contradicts the fact that H is a 2PL history. 
Therefore, the cycle cannot exist. Since SG(H) has no cycles, the 
Serializability Theorem implies that H is SR. 

Notice that in step (2), the lock that Ti released does not necessarily 
conflict with the one that Tk set, and in general they do not. T/s lock conflicts 
with and precedes one that Tl set, and Tj released a lock (possibly a different 
one) that conflicts with and precedes the one that Tk set. For example, the 
history that leads to the path Ti -+ Tj + Tk could be 

dxl --, Qxl + qEy1 + dY1. 

Tcs lock on x does not conflict with Tk’s lock on y. 
We formalize this three step argument in the following lemmas and theo- 

rem. The two lemmas formalize steps (1) and (2). The theorem formalizes 
step (3). 

Lemma 3.4: Let H be a 2PL history, and suppose T; --f Tl is in SG(H). 
Then, for some data item x and some conflicting operations p;[x] and qJx] 
in H, pu;[x] < q1,[x]. 

Proof: Since T, + Tj, there must exist conflicting operations ei[x] and 
qj[x] such that ei[x] < qj[x]. By Proposition 3.1, 

1. ,Dli[x] < P~[x] < PU;[X], and 

2. ql,[X] < qj[X] < quj[X]* 

By Proposition 3.2, either p~i[x] < ql,[x] or qz+[x] < pl,[x]. In the latter 
case, by (I), (2) and transitivity, we would have qj[x] < pi[x], which 
contradicts pi[x] < q/[x]. Thus, pz4i[x] < ql,[x], as desired. 0 

Lemma 3.5: Let H be a 2PL history, and let T, + T, + - * * -+ T, be a 
path in SG(H), where n > 1. Then, for some data items x and y, and some 
operations p,[x] and qn[y] in H, pu,[x] < ql,,[y]. 

Proof: The proof is by induction on II. The basis step, for IZ = 2, follows 
immediately from Lemma 3.4. 
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For the induction step, suppose the lemma holds for n = k for some k 1 
2. We will show that it holds for n = k + 1. By the induction hypothesis, 
the path T, -+ * * * --* Tk implies that there exist data items x and z, and 
operations e,[x] and ok[z] in H, such that eu,[zc] < olJz]. By Tk + Tk+, 
and Lemma 3.4, there exists data item y and conflicting operations oh[y], 
and qh+][y] in H, such that o’uh[y] < qlk+i[y]. By Proposition 3.3, oIk[z] 
< o’tlb[y]. By the last three precedences and transitivity, ,DU,[X] < q/k-,[y], 
as desired. I3 

Theorem 3.6: Every 2PL history H is serializable. 

Proof: Suppose, by way of contradiction, that SG(H) contains a cycle T, 
-+ Tz --) * . * --t T, --+ T,, where n > 1. By Lemma 3.5, for some data 
items x and y, and some operations p,[x] and q,[y] in H, ~M~[x] < ql,[y]. 
But this contradicts Proposition 3.3. Thus, SG(H) has no cycles and so, by 
the Serializability Theorem, H is SR. 0 

3.4 DEADLOCKS 

The scheduler needs a strategy for detecting deadlocks, so that no transaction 
is blocked forever. One strategy is timeotlt. If the scheduler finds that a trans- 
action has been waiting too long for a lock, then it simply guesses that there 
may be a deadlock involving this transaction and therefore aborts it. Since the 
scheduler is only guessing that a transaction may be involved in a deadlock, it 
may be making a mistake. It may abort a transaction that isn’t really part of a 
deadlock but is just waiting for a lock owned by another transaction that is 
taking a long time to finish. There’s no harm done by making such an incorrect 
guess, insofar as correctness is concerned. There is certainly a performance 
penalty to the transaction that was unfairly aborted, though as we’ll see in 
Section 3.12, the overall effect may be to improve transaction throughput, 

One can avoid too many of these types of mistakes by using a long timeout 
period. The longer the timeout period, the more chance that the scheduler is 
aborting transactions that are actually involved in deadlocks. However, a long 
timeout period has a liability, too. The scheduler doesn’t notice that a transac- 
tion might be deadlocked until the timeout period has elapsed. So, should a 
transaction become involved in a deadlock, it will lose some time waiting for 
its deadlock to be noticed. The timeout period is therefore a parameter that 
needs to be tuned. It should be long enough so that most transactions that are 
aborted are actually deadlocked, but short enough that deadlocked transac- 
tions don’t wait too long for their deadlocks to be noticed. This tuning activity 
is tricky but manageable, as evidenced by its use in several commercial prod- 
ucts, such as Tandem. 

Another approach to deadlocks is to detect them precisely To do this, the 
scheduler maintains a directed graph called a waits-for graph ( WFG). The 
nodes of WFG are labelled with transaction names. There is an edge T, --t T,, 



3.4 DEADLOCKS 57 

from node Ti to node T,, iff transaction T, is waiting for transaction Tj to 
release some lock.3 

Suppose a WFG has a cycle: T, + T, + * * * 4 T, -+ T,. Each transaction 
is waiting for the next transaction in the cycle. So, T, is waiting for itself, as 
is every other transaction in the cycle. Since all of these transactions are 
blocked waiting for locks, none of the locks they are waiting for are ever going 
to be released. Thus, the transactions are deadlocked. Exploiting this observa- 
tion, the scheduler can detect deadlocks by checking for cycles in WFG. 

Of course, the scheduler has to maintain a representation of the WFG in 
order to check for cycles in it. The scheduler can easily do this by adding an 
edge Ti -+ Tj to the WFG whenever a lock request by T; is blocked by a 
conflicting lock owned by T1. It drops an edge Ti + Tj from the WFG when- 
ever it releases the (last) lock owned by Tj that had formerly been blocking a 
lock request issued by T;. For example, suppose the scheduler receives YJx], 
but has to delay it because Tj already owns wl,[x]. Then it adds an edge T; + Tj 
to the WFG. After Tj releases w~[x], the scheduler sets rl;[x], and therefore 
deletes the edge Ti -+ Tja 

How often should the scheduler check for cycles in the WFG? It could 
check every time a new edge is added, looking for cycles that include this new 
edge. But this could be quite expensive. For example, if operations are 
frequently delayed, but deadlocks are relatively rare, then the scheduler is 
spending a lot of effort looking for deadlocks that are hardly ever there. In 
such cases, the scheduler should check for cycles less often. Instead of checking 
every time an edge is added, it waits until a few edges have been added, or until 
some timeout period has elapsed. There is no danger in checking less 
frequently, since the scheduler will never miss a deadlock. (Deadlocks don’t go 
away by themselves!) Moreover, by checking less frequently, the scheduler 
incurs the cost of cycle detection less often. However, a deadlock may go unde- 
tected for a longer period this way. In addition, all cycles must be found, not 
just those involving the most recently added edge. 

When the scheduler discovers a deadlock, it must break the deadlock by 
aborting a transaction. The Abort will in turn delete the transaction’s node 
from the WFG. The transaction that it chooses to abort is called the victim. 
Among the transactions involved in a deadlock cycle in WFG, the scheduler 
should select a victim whose abortion costs the least. Factors that are 
commonly used to make this determination include: 

3WFGs are related to SGs in the following sense. If T; + T’ is in the WFG, and both T; and 
Tj ultimately commit, then Tj --f Ti will be in the SG. However, if Ti aborts, then Tj --f Ti 
may never appear in the SG. That is, WFGs describe the current state of transactions, which 
includes waits-for situations involving operations that never execute (due to abortions). SGs 
only describe dependencies between committed transactions (which arise from operations that 
actually execute). 
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n The amount of effort that has already been invested in the transaction. 
This effort will be lost if the transaction is aborted. 

c The cost of aborting the transaction. This cost generally depends on the 
number of updates the transaction has already performed. 

o The amount of effort it will take to finish executing the transaction. The 
scheduler wants to avoid aborting a transaction that is almost finished. 
To do this, it must be able to predict the future behavior of active trans- 
actions, e.g., based on the transaction’s type (Deposits are short, Audits 
are long}. 

c The number of cycles that contain the transact~iion. Since aborting a 
transaction breaks all cycles that contain it, it is best to abort transac- 
tions that are part of more than one cycle (if such transactions exist). 

A transaction can repeatedly become involved in deadlocks. In each dead- 
lock, the transaction is selected as the victim, aborts, and restarts its execu- 
tion, only to become involved in a deadlock again. To avoid such cyclic 
restarts, the victim selection algorithm should also consider the number of 
times a transaction is aborted due to deadlock. If it has been aborted too many 
times, then it should not be a candidate for victim selection, unless all transac- 
tions involved in the deadlock have reached this state. 

3.5 VARIATIONS OF TWO PHASE LOCKING 

Conservative 2PL 

It is possible to construct a 2PL scheduler that never aborts transactions. This 
technique is known as Conservative 2PL or Static 2X. As we have seen, 2PL 
causes abortions because of deadlocks. Conservative 2PL avoids deadlocks by 
requiring each transaction to obtain all of its locks before any of its operations 
are submitted to the DM. This is done by having each transaction predeclare 
its readset and writeset. Specifically, each transaction T, first tells the scheduler 
all the data items it will want to Read or Write, for example as part of its Start 
operation. The scheduler tries to set all of the locks needed by T,. It can do this 
providing that none of these locks conflicts with a lock held by any other trans- 
action. If the scheduler succeeds in setting all of T,‘s locks, then it submits Ti’s 
operations to the DM as soon as it receives them. After the DM acknowledges 
the processing of T,‘s last database operation, the scheduler may release all of 
l-j’s locks. 

If, on the other hand, an)’ of the locks requested in T,‘s Start conflicts with 
locks presently held by other transactions, then the scheduler does not grant 
any of T,‘s locks. Instead, it inserts T, along with its lock requests into a wait- 
ing queue. Every time the scheduler releases the locks of a completed transac- 
tion, it examines the waiting queue to see if it can grant all of the lock requests 
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of any waiting transactions. If so, it then sets all of the locks for each such 
transaction and continues processing as just described. 

In Conservative 2PL, if a transaction T; is waiting for a lock held by Tj, 
then T; is holding no locks. Therefore, no other transaction Th can be waiting 
for T,, so there can be no WFG edges of the form Tk -+ T,. Since there can be 
no such edges, T, cannot be in a WFG cycle, and hence cannot become part of 
a deadlock. Since deadlock is the only reason that a 2PL scheduler ever rejects 
an operation and thereby causes the corresponding transaction to abort, 
Conservative 2PL never aborts a transaction. (Of course, a transaction may 
abort for other reasons.) This is a classic case of a conservative scheduler. By 
delaying operations sooner than it has to, namely, when the transaction begins 
executing, the scheduler avoids abortions that might otherwise be needed for 
concurrency contro1 reasons. 

Strict 2PL 

Almost all implementations of 2PL use a variant called Strict 2PL. This differs 
from the Basic 2PL scheduler described in Section 3.2 in that it requires the 
scheduler to release all of a transaction’s locks together, when the transaction 
terminates. More specifically, Tls locks are released after the DM acknowl- 
edges the processing of ci or aj, depending on whether T; commits or aborts 
(respectively). 

There are two reasons for adopting this policy. First, consider when a 2PL 
scheduler can release some o&[x]. To do so the scheduler must know th;it: (1) T, 
has set all of the locks it will ever need, and (2) T; will not subsequently issue 
operations that refer to X. One point in time at which the scheduler can be sure 
of (1) and (2) is when T, terminates, that is, when the scheduler receives the ci 
or ai operation. In fact, in the absence of any information from the TM aside 
from the operations submitted, this is the earliest time at which the scheduler 
can be assured that (1) and (2) hold. 

A second reason for the scheduler to keep a transaction’s locks until it 
ends, and specifically until after the DM processes the transaction’s Commit or 
Abort, is to guarantee a strict execution. To see this, let history H represent an 
execution produced by a Strict 2PL scheduler and suppose wi[x] < oj[x]. By 
rule (1) of 2PL (Proposition 3.1) we must have 

1. w&[x] < WJX] < wtii[x], and 

2, Olj[X] < Oj[X] < OZfj[X]. 

Because wli[~] and olj[~] conflict (whether o is r or w, we must have either 
wtti[x] < oI,[x] or oUj[x] < wlJx] (by Proposition 3.2). The latter, together 
with (1) and (2), would contradict that wi[x] < ol[x] and, therefore, 

3. Wzfj[X] < olj[x]. 
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But because H was produced by a Strict 2PL scheduler we must have that 

4. either a, < wu,[x] or c, < wu,[x]. 

From (2) - (4), it follows that either a, < oI[x] or c, < o,[x], proving that H 
is strict. 

Actually, from this argument it follows that it is only necessary to hold 
write locks until after a transaction commits or aborts to ensure strictness. 
Read locks may be released earlier, subject to the 2PL rules to ensure 
serializability. Pragmatically, this means that read locks can be released when 
the transaction terminates (i.e., when the scheduler receives the transaction’s 
Commit or Abort), but write locks must be held until after the transaction 
commits or aborts (i.e., after the DM processes the transaction’s Commit or 
Abort). 

Recall that strict histories have nice properties. They are recoverable and 
avoid cascading aborts. Furthermore, Abort can be implemented by restoring 
before images. For this reason, 2PL implementations usually take the form 
of Strict 2PL schedulers, rather than the seemingly more flexible Basic 2PL 
schedulers. 

3.6 IMPLEMENTATION ISSUES 

An implementation of 2PL for any particular system depends very much on the 
overall design of the computer system and on the available operating system 
facilities. It is therefore difficult to give general guidelines for implementation. 
However, at the risk of superficiality, we will briefly sketch the issues faced in 
most implementations of locking. 

The scheduler abstraction is usually implemented by a combination of a 
lock manager (LM) and a TM. The LM services the Lock and Unlock opera- 
tions. When the TM receives a Read or Write from a transaction, it sends the 
appropriate Lock operation to the LM. When the LM acknowledges that the 
lock is set, the TM sends the Read or Write to the DM. Thus, the TM 
subsumes the scheduler function of ensuring that a lock is set before the corre- 
sponding operation is performed. 

Notice that the control flow here differs somewhat from the scheduler 
abstraction. In our DBS modeI, the TM sends the Read or Write directly to the 
scheduler. The scheduler sets the appropriate lock and forwards the Read or 
Write to the DM. 

The Lock Manager 

The LM maintains a table of locks, and supports the operations Lock(trans- 
action-id, data-item, mode) and Unlock(transaction-id, data-item), where 
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transaction-id is the identifier of the transaction requesting the lock,4 data-item 
is the name of the data item to be locked, and mode is “read” or “write.” To 
process a Lock operation, the LM tries to set the specified lock by adding an 
entry to the lock table. If another transaction owns a conflicting lock, then the 
LM adds the lock request to a queue of waiting requests for that data item.5 
Unlock releases the specified lock, and grants any waiting lock requests that 
are no longer blocked. 

Lock and Unlock operations are invoked very frequently In most transac- 
tion processing systems (such as airline reservation and on-line banking), each 
transaction does little computing for each data item it accesses. Therefore, 
unless locking is very fast, it consumes a significant fraction of the processor’s 
time. As a rule of thumb, it should take on the average no more than several 
hundred machine language instructions to set or release a lock (including 
potential overhead for a monitor call, supervisor call, context switch, etc.). To 
reach this speed, the LM is often optimized carefully for special cases that 
occur frequently, such as setting a lock that conflicts with no other locks, and 
releasing all of a transaction’s locks at once. 

The lock table is usually implemented as a hash table with the data item 
identifier as key, because hash tables are especially fast for content-based 
retrieval. An entry in the table for data item x contains a queue header, which 
points to a list of locks on x that have been set and a list of lock requests that 
are waiting. Each lock or lock request contains a transaction-id and a lock 
mode. Since a very large number of data items can potentially be locked, the 
LM limits the size of the lock table by only allocating entries for those data 
items that actually are locked. When it releases the last lock for a data item X, 
it deallocates the entry for X. 

Since the TM normally releases all of a transaction’s read locks as soon as 
the transaction terminates, releasing a transaction’s read locks should be a 
basic LM operation. Similarly, if the scheduler is strict, the TM releases a 
transaction’s write locks as soon as the DM acknowledges committing the 
transaction. So releasing write locks should also be a basic LM operation. To 
make these operations fast, a common practice is to link together in the lock 
table all of the read lock entries and all of the write lock entries of each transac- 
tion. If the Commit operation is very efficient, then it may not be cost effective 
to release read locks before the Commit and write locks afterwards. Instead, it 
may be satisfactory to release write and read locks after the Commit. This 
saves the overhead of one call to the LM, at the expense of some lost concur- 
rency by holding read locks a little longer than necessary. 

4This is the transaction identifier discussed in Section 1.1. 
50ne could add another parameter to Lock that specifies whether, in the event that the lock 
request cannot be granted, the request should be queued or cancelled (i.e., return immediately 
to the caller). 
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The lock table should be protected. It should only be accessed by the 
programs that implement Lock and Unlock, so that it cannot be easily 
corrupted. Clearly, a stray update to memory that compromises the integrity of 
the lock table’s data structures is likely to cause the entire system to malfunc- 
tion (by executing in a non-SR manner) or die. This goal of protection may be 
accomplished by making the LM part of the operating system itself, thereby 
providing strong protection against corruption by user programs. Alterna- 
tively, it might be implemented as a monitor or device driver. The latter tech- 
nique is a common workaround in systems that do not support shared memory 
between processes. 

Blocking and Aborting Transactions 

When the LM releases a lock for x, it may be able to grant other lock requests 
that are waiting on x’s lock queue. If there are such waiting requests, then the 
LM must,,schedule them “fairly”; otherwise, it runs the risk of delaying some 
forever. 

For example, suppose there is a queue of lock requests [rL,[x], rl,[x], 
wl,[x], r/,[x]] waiting for ~jl,[x] to be released, where rl,[x] is at the head of the 
queue. After it releases wl,[x], the LM can now set rl,[x] and r!;[xJ. It can also 
set rl,[x]. This is unfair, in the sense that rl,[x] has jumped ahead of u/14[x]. It 
can also lead to the indefinite postponement of ~~i,[r], since a steady stream of 
read lock requests may continually jump ahead of wl,[x], preventing it from 
being set. This danger of indefinite postponement can be avoided by servicing 
the queue first-come-first-served, thereby never letting a read lock request 
jump ahead. Or, the LM can allow read lock requests to jump ahead only if no 
write lock request has been waiting too long, where the maximum waiting 
time is a tunable parameter. 

The mechanism by which the LM causes transaction 7, to wait and later 
unblocks it depends on the process synchronization primitives provided by the 
operating system, and on the way transactions and DBS modules are struc- 
tured. For example, suppose each transaction executes as a process, and the 
DBS is also a process. The DBS receives Read and Write requests as messages. 
For each such message, it invokes its LM to set the appropriate lock. By not 
responding to a transaction T,‘s message, the DBS has effectively blocked T,, if 
T, is waiting for the response. It eventually unblocks T, by sending the response 
message. Alternatively, suppose T, calls the DBS as a procedure (e.g., a moni- 
tor) that executes in T,‘s process context. Then the DBS can block T, simply by 
blocking the process in which T, is executing (e.g., by waiting on a condition 
that is assigned uniquely to T,). When the LM executing (in the DBS) in 
another transaction’s context releases the relevant lock, it can signal the event 
for T, (e.g., by signaling TJ’s condition), thereby unblocking T, and allowing it 
to complete the lock request. 
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Similar issues arise in aborting the victim of a detected deadlock. The TM 
must be informed of the forced abortion, so it can either notify the transaction 
or automatically restart it. When processing an Abort (for deadlock or any 
other reason), the TM must delete the transaction’s legacy from the lock table. 
Performing such activities outside the normal flow of control of the transaction 
again depends on several factors: how transactions, the TM, the LM, and the 
deadlock detector are structured as processes; if and how they share memory; 
and what synchronization and process control primitives they can exercise on 
each other. 

System dependencies are often paramount in designing solutions to these 
control problems. The quality of those solutions can be among the most 
important factors affecting the robustness and performance of the concurrency 
control implementation. 

Atomicity of Reads and Writes 

A critical assumption in our model of histories is that every operation in the 
history is atomic. Since our correctness proof of 2PL is built on the history 
model, our implementation of 2PL must honor its assumptions. There are 
four operations that we used in histories to argue the correctness of 2PL: 
Lock, Unlock, Read, and Write. These four operations must be implemented 
atomically. 

To ensure that concurrent executions of Locks and Unlocks are atomic, 
accesses to the lock table must be synchronized using an operating system 
synchronization mechanism, such as semaphores or monitors. If accesses to 
the lock table are synchronized by a single semaphore (or lock, monitor, etc.), 
then a very high locking rate may cause that semaphore to become a bottle- 
neck. This bottleneck can be relieved by partitioning the lock table into several 
component tables, with a different semaphore serializing accesses to each 
component. To insert a lock entry, the Lock operation selects the appropriate 
component by analyzing its parameters (e.g., by hashing the data item name), 
and then requesting the semaphore that regulates access to that component. 

Since most databases are stored on disk, Reads and Writes on data items 
are usually implemented by Reads and Writes of fixed-size disk blocks. If the 
granularity of a data item is a disk block, then it is straightforward to imple- 
ment Read and Write atomically. Each Read or Write on a data item is imple- 
mented as an atomic Read or Write on a disk block. If the granularity of data 
items is not a disk block, then extra care is needed to ensure that Reads and 
Writes on data items execute atomically. 

For example, suppose the granularity of data items is a record, where 
many records fit on each disk block, but no record is spread over more than 
one disk block. A program that implements Read must read the disk block that 
contains the record, extract the record from that block, and return the record 
to the calling program. A program that implements Write must read the disk 
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FIGURE 3-1 
A Banking Database 

block that contains the record, update the relevant record in that block, and 
then write the block back to disk.” 

An uncontrolled concurrent execution of two of these operations may not 
be atomic. For example, suppose that two Writes execute concurrently on 
different records stored in the same block. Supposeeach Write begins by inde- 
pendently and concurrently reading a copy of the block into its local memory 
area. Each Write now updates the copy of irs record in its private copy of the 
disk block, and then writes that private copy back to disk. Since each Write 
was working on an independent copy of the block, one of the record updates 
gets lost. If the two Writes had executed serially (with their associated Reads), 
then neither update would have been lost. Therefore, the implementation is 
not atomic. 

A solution to this problem is to require that each block be locked while a 
Write is being applied to a record contained in that block. Depending on how 
Read and Write are implemented, Reads may need to lock disk blocks as well. 

Notice that these locks on blocks that make record operations atomic are 
generaIly not the same as the record locks that are used to make transactions 
serializable. A lock on a block can be released as soon as the operation 
that was using it completes. A lock on a record must follow the 2PL locking 
protocol. 

3.7 THE PHANTOM PROBLEM 

We have been modelling a database as a fixed set of data items, which can be 
accessed by Reads and Writes. Most real databases can dynamically grow and 
shrink. In addition to Read and Write, they usually support operations to 
Insert new data and Delete existing data. Does 2PL extend naturally to 
support dynamic databases? The answer is yes, but the following example 
would suggest no. 

‘As we will see in Chapter 6, the disk Writes do not have to take place phy,icaliy to complete 
the transaction. 
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Suppose we have two files representing banking information (see Fig. 3-l): 
an Accounts file that, for each account, gives the account number (Account#), 
the bank branch that holds the account (Location), and the amount of money 
in the account (Balance); and an Assets file that, for each bank branch (Loca- 
tion) gives the total assets of that branch (Total). 

We have two transactions to execute on this database. Transaction T, 
reads all of the accounts in Tyngsboro’ from the Accounts file, adds up their 
Balances, and compares that sum to the Total assets in Tyngsboro (in Assets). 
Transaction TL adds a new account [99, Tyngsboro, 501 by inserting a record 
into the Accounts file and then adding the Balance of that account to the Total 
assets in Tyngsboro. Here is one possible execution of these transactions: 

Read,(Accounts[339], Accounts[914], Accounts[22]); 

Insert,(Accounts[99, Tyngsboro, SO]); 

Read,(Assets[TyngsboroJ); / * returns 3858 ” / 

Write,(Assets[Tyngsboro]); 1” writes 3908 * / 

Read,(Assets[Tyngsboro]); / * returns 3908 ” / 

This execution could have resulted from an execution in which both T, and T2 
were two phase locked. T, begins by locking the three Accounts records that it 
wants to Read. (It has to read all of the Accounts records to determine which 
ones are in Tyngsboro.) Then T, locks the record it is about to insert and, after 
inserting the record, locks the Tyngsboro record in Assets. After finishing with 
its update to Assets, T, releases both of its locks. Now T, can finish up by 
locking the Tyngsboro record in Assets, reading the Total for that Branch, and 
terminating. 

Unfortunately, the execution is not SR. T, reads Accounts 339, 914, and 
22, but when it reads the Assets of Tyngsboro, it gets a Total that includes 
Account 99. If T, had executed serially before T,, then it would have correctly 
read the old Total for Tyngsboro, 3858. If T, had executed serially after T,, 
then it would have read all four Accounts records and the correct new Total for 
Tyngsboro. 

The problem is record 99 in Accounts. When T, first looks in Accounts, it 
doesn’t find that record. However, when it looks in Assets a little later, it finds 
a Total that reflects the insertion of record 99. Record 99 is called a phantom 
record, because it seems to appear and disappear like a ghost. 

The phantom problem is the concurrency control problem for dynamic 
databases. The example seems to show that 2PL does not guarantee correct 
execu.tions for dynamic databases. Fortunately, the example is misleading 
and 2PL actually is a good method for synchronizing accesses to dynamic 
databases. 

‘Rhymes with “Kingsborough.” 
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To see how the example is misleading, let’s return to first principles. A 
basic assumption of our model is that a transaction communicates with other 
transactions on/?1 through Reads and Writes, and that all such Reads and 
Writes are synchronized by the scheduler. In the example under discussion, 
there is a hidden conflict between a Read from I, and a Write from T,. Since T, 
read all of the records in Accounts, it must have read some control information 
that told it which records to read, and since Tz inserted a record into Accounts, 
it must have ~c~ritte~ that control information. These Read and Write opera- 
tions on the control information must be locked, just like any other accesses to 
shared data. 

Suppose we adopt a straightforward implementation that locks control 
information. For example, suppose each file has an end-of-file marker (EOF) 
after the last record. To determine which records to read, T, reads (and locks) 
records until it reads (and locks) EOF. To insert a record, Tl must move EOF, 
so it write locks it. T,‘s and T>‘s locks on EOF would prevent the incorrect 
execution under discussion: if T, reads EOF before T? tries to write it, then TL 
is unable to insert the new record until after T, reads Assets[Tyngsboro]; if T, 
writes EOF before T, tries to read it, then T, cannot finish scanning records in 
Accounts until after T2 adds the new record and updates Assets[Tyngsboro]. 

Unfortunately, this straightforward implementation may perform poorly 
Every transaction that inserts a record locks EOF, thereby preventing any 
other transaction from scanning or inserting into the file. In some cases this is 
unavoidable. For instance, in the example T, is scanning for Accounts records 
in Tyngsboro, and T2 is inserting such a record. However, if T2 were inserting a 
record into Marlboro instead of Tyngsboro, then T, and T2 would not be 
accessing any records in common, so their conflict between accesses to EOF 
would be unnecessary. We can exploit this observation by using a technique 
called index locking. 

index Locking 

Suppose each file has one or more indices associated with it. Each index is 
defined on exactly one field of the file, and contains a set of index entries. Each 
index entry has one value of the field on which it’s defined and a list of pointers 
to the records that have that field value. Indices are commonly used in DBSs to 
speed up access to sets of records whose fields have given values.x In the exam- 
ple database of Fig. 3-1, we might create an index on the Location field of 
Accounts for this purpose. 

When a transaction such as T, scans Accounts for records in Tyngsboro, it 
reads and locks the index entry for Tyngsboro. Since any transaction that 

*Section 3.13 describes locking schedulers that are specialized for synchronizmg access to tree- 
strucrured indices. 
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inserts a new record r in Tyngsboro must add a pointer to Y in the index entry 
for Tyngsboro, it will try to lock that index entry and thereby conflict with T, 
as desired. If a transaction inserts a record into any other Location, it will 
access a different index entry and therefore won’t conflict with T,. Thus, T, 
only conflicts with transactions that insert records that it wants to read. 

Recall that data item names are not interpreted by the LM. Therefore, a 
transaction can set a lock on an index entry even though the index does not 
physically exist. Thus, we can obtain the benefit of index locking without 
requiring the indices to exist. Each transaction that scans records sets a lock on 
an index entry that “covers” all of the records it’s reading, and each transaction 
that inserts a record sets a lock on every index entry that would include the 
new record (if the index existed) and that may be locked by a scanning trans- 
action. The effect is the same as if the transactions were locking indices that 
physically exist. 

In a sense, a transaction that locks the Tyngsboro index entry is effectively 
locking all records that satisfy the predicate (Location = “Tyngsboro”). 

One can generalize index locking by allowing more complex predicates to 
be locked, such as conjunctions of such predicates. That is, the data item name 
stored in the lock table is actually a predicate. Two locks conflict if there could 
be a record that satisfies both predicates, that is, if the lock predicates are 
mutually satisfiable. This is called predicate locking. While more general than 
index locking, it is also more expensive, since it requires the LM to detect 
conflicts between arbitrary predicates. It is therefore not widely used. 

3.8 LOCKING ADDlTlONAL OPERATiONS 

In some applications, there are periods with heavy Write traffic on certain data 
items, called hot spots. For example, in the banking database of Fig. 3-1, 
every deposit and withdrawal transaction for Accounts at a given branch Loca- 
tion requires updating the Assets record for that Location; during periods of 
peak load, the Assets records may become hot spots. When hot spots are 
present, many transactions may be delayed waiting for locks on hot spot data 
items. This performance problem can often be avoided by adding other types 
of operations to the standard repertoire of Read and Write. 

For example, in deposits and withdrawals, Writes are used to add and 
subtract from the Total assets of Locations. If we implement Increment and 
Decrement as atomic operations, then most Writes can be replaced by these 
operations. Since Increment and Decrement commute, they can set weaker 
locks than Write operations, which do not commute. These weaker locks 
allow transactions to execute concurrently in situations where ordinary write 
locks would have them delay one another, thereby helping to relieve the bottIe- 
neck created by the hot spot. A version of this scheme is implemented in the 
Main Storage Data Base (MSDB) feature of IBM’s IMS Fast Path. 
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The generalized locking scheme has four types of operations: Read, Write, 
Increment, and Decrement. It therefore has four types of locks: read locks, 
write locks, increment locks, and decrement locks. To define the conflict rela- 
tion between lock types, we examine the corresponding operation types to 
determine which ones commute. To determine this, we have to be precise 
about what Increment and Decrement actually do. Let us define them this way: 

Increment(x, z&J: add val to data item x. 

Decrement(x, val): subtract val from data item x. 

We ass~ume that data item values can be arbitrary positive or negative 
numbers. To ensure that Increment and Decrement commute, we assume that 
neither operation returns a value to the transaction that issued it. Therefore, 
for any data item x and values val, and valD, the sequence of operations 
[Increment(x, ~a/,), Decrement(x, vale)] produces exactly the same result as 
the sequence [Decrement(x, valD), Increment(x, vail)]. That is, each operation 
returns the same result (i.e., nothing) and the two operations leave x in the 
same final state, independent of the order in which they execute. Since they 
commute independent of the value of vu/, and valD, we drop the val parameters 
in what follows. 

Increment(x) and Decrement(x) do conflict with Read(x) and Write(x). For 
example, Read(x) returns a different value of x depending on whether it 
precedes or follows Increment(x). Increment(x) produces a different value 
depending on whether it precedes or follows Write(x). Lock types should be 
defined to conflict in the same way that their corresponding operations conflict 
(we’ll explain why in a moment). Therefore, the compatibility matrix for the 
lock types is as shown in Fig. 3-2. A “y” (yes) entry means that two locks of 
the types specified by the row and column labels for that entry can be simulta- 
neously held on a data item by two different transactions, i.e., the two lock 
types do not conflict. An “n” (no) entry means that the two lock types cannot 
be concurrently held on a data item by distinct transactions, i.e., the lock types 
conflict. 

Since increment and decrement locks do not conflict, different transactions 
can concurrently set these locks, most importantly on hot spot data items. 
Transactions that use these new lock types will therefore be delayed less 
frequently than if they had only used write locks, which do conflict. 

This technique requires that Increment(x) and Decrement(x) be imple- 
mented atomically. Each of these operations must read x, update the value 
appropriately, and then write the result back into x. To ensure that this read- 
update-write process is atomic, no other operation can access the data item 
while the process is going on. Thus, while an Increment or Decrement is oper- 
ating on a data item, the data item is effectively locked (against any other oper- 
ations on that data item). This lock is only held for the duration of the 
Increment or Decrement operation. Once the operation is completed, this lock 
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fii~~~t i, 

FIGURE 3-2 
A Compatibility Matrix 

can be released. However, the increment or decrement lock must be held until 
the transaction commits to satisfy the two phase rule and strictness. 

To understand why this generalized form of 2PL works correctly, we need 
to revisit the proof of correctness, Lemmas 3.4 and 3.5 and Theorem 3.6. 
Relative to this issue, the critical step in the proof is: If Ti -+ Tj is in SG(H), 
then T; and Tj had conflicting accesses to some data item, and T; unlocked that 
data item before Tj locked it. As long as every pair of conflicting (i.e., noncom- 
mutative) operation types have associated lock types that conflict, then this 
argument is valid. Since we defined the lock types so that this property holds, 
this generalized form of 2PL is correct. We don’t even need to modify the proof 
to handle this case, since it is expressed in terms of arbitrary conflicting opera- 
tions, such as p and q. 

So, we can easily add new operation types by following these simple rules: 

1. Ensure that the implementation of each new operation type is atomic 
with respect to all other operation types. 

2. Define a lock type for each new operation type. 

3. Define a compatibility matrix for the lock types (for both the old and 
new operations) so that two lock types conflict iff the corresponding 
operation types on the same data item do not commute. 

3.9 MULTIGRANULARITY LQCKlNG 

So far we have viewed the database as an unstructured collection of data items. 
This is a very abstract view. In reality a data item could be a block or page of 
data, a file, a record of a file, or a field of a record. The granularity of a data 
item refers to that item’s relative size. For instance, the granularity of a file is 
coarser, and the granularity of a field finer, than that of a record. 

The granularity of data items is unimportant as far as correctness is 
concerned. The granularity is important, however, when it comes to perfor- 
mance. Suppose, for instance, that we use some version of 2PL. Using coarse 
granules incurs low overhead due to locking, since there are fewer locks to 
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A Lock Type Graph 

manage. At the same time, it reduces concurrency, since operations are more 
likely to conflict. For example, if we lock files, two transactions that update 
the same file cannot proceed concurrently even if they access disjoint sets of 
records. Fine granularity locks improve concurrency by allowing a transaction 
to lock only those data items it accesses. But fine granularity involves higher 
locking overhead, since more locks are requested.’ 

Selecting a granularity for locks requires striking a balance between lock- 
ing overhead and amount of concurrency. We can do even better than choosing 
a uniform “optimal” granule size for all data items by means of multi- 
grandarit~ locking (MGL). MGL allows each transaction to use granule sizes 
most appropriate to its mode of operation. Long transactions, those that 
access many items, can lock coarse granules. For example, if a transaction 
accesses many records of a file, it simply locks the entire file, instead of locking 
each individual record. Short transactions can lock at a finer granularity. In 
this way, long transactions don’t waste time setting too many locks, and short 
transactions don’t block others by locking large portions of the database that 
they don’t access. 

MGL requires an LM that prevents two transactions from setting conflict- 
ing locks on two granules that overlap. For example, a file shouId not be read 
locked by a long transaction if a record of that file is write locked by a short 
transaction. An unsatisfactory solution would be to require that the long trans- 
action look at each record of the file to find out whether it may lock the file. 
This would defeat the very purpose of locking at coarse granularity - namely, 
to reduce locking overhead. 

A better solution is possible by exploiting the natural hierarchical relation- 
ship between locks of different granularity. We represent these relationships by 

‘There are other factors that could ~duse concurrency to actually decrease when finer granular- 
ity is used. For a more detailed discussion of the effects of granularity on performance, see 
Section 3.12. 
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FIGURE 3-5 
A Compatibility Matrix for Multigranularity Locking 

a lock type graph. Each edge in the graph connects a data type of coarser gran- 
ularity to one of finer granularity. For example, in Fig. 3-3 areas (i.e., regions 
of disks) are of coarser granularity than files, which are of coarser granularity 
than records. 

A set of data items that is structured according to a lock type graph is 
called a lock instance graph (see Fig. 3-4). The graph represents an abstract 
structure that is used only by the scheduler to manage locks of different 
granularities. It need not correspond to the physical structure of the data items 
themselves. 

We’ll assume that the lock instance graph is a tree. (Later we’ll consider 
more general types of lock instance graphs.) Then a lock on a coarse granule x 
explicitly locks x and implicitly locks all of x’s proper descendants, which are 
finer granules “contained in” x. For example, a read lock on an area implicitly 
read locks the files and records in that area. 
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It is also necessary to propagate the effects of fine granule locking activity 
to the coarse granules that “contain” them. To do this, each lock type has an 
associated intention lock type. So, in addition to read and write locks, we have 
itftention read (ir) locks and intention write (iw) locks. Before it locks x, the 
scheduler must ensure that there are no locks on ancestors of x that implicitly 
lock x in a conflicting mode. To accomphsh this, it sets intention locks on those 
ancestors. For exampIe, before setting rl[x] on record x, it sets ir locks on x’s 
database, area, and file ancestors (in that order). For any y, irl[y] and wl[y] 
conflict. Thus, by setting irl[y] on every ancestor y of X, the scheduler ensures 
that there is no wl[y] that implicitly write locks X. For the same reason, iwl[x] 
conflicts with rl[x] and wl[x] (see Fig. 3-5). 

Suppose a transaction reads every record of a file and writes into a few of 
those records. Such a transaction needs both a read lock on the file (so it can 
read all records) and an iw lock (so it can write lock some of them). Since this 
is a common situation, it is useful to define an riw lock type. An riwl[x] is 
logically the same as owning both rl[x] and iwl[x] (see Fig. 3-5). 

For a given lock instance graph G that is a tree, the scheduler sets and 
releases locks for each transaction T, according to the following MGL pro- 
tocol: 

1. If x is not the root of G, then to set rl,[x] or irl,[x], T, must have an ir or 
iw lock on x’s parent. 

2. If x is not the root of G, then to set wl,[x] or iwl,[x], T, must have an iw 
lock on x’s parent. 

3. To read (or write) x, T, must own an r or w (or w) lock on some ances- 
tor of x. A lock on x itself is an explicit lock for x; a lock on a proper 
ancestor of x is an implicit lock for x. 

4. A transaction may not release an intention lock on a data item X, if it is 
currently holding a lock on any child of x. 

Rules (1) and (2) imply that to set rl,[x] or wl,[x], T, must first set the 
appropriate intention locks on all ancestors of X. Rule (3) implies that by lock- 
ing X, a transaction has implicitly locked all of x’s descendants in G. This 
implicit locking relieves a transaction from having to set explicit locks on x’s 
descendants, which is the main reason for MGL. Rule (4) says that locks 
should be released in leaf-to-root order, which is the reverse of the root-to-leaf 
direction in which they were obtained. This ensures that a transaction never 
owns a read or write lock on x without owning the corresponding intention 
locks on ancestors of x. 

For example, referring to Fig. 3-4, suppose that transaction T, wants to 
set rl,[F3]. It must first set irl,[DBl], then irl,[Al], and finally rl,[F3]. Now 
suppose Tj tries to set wlJR3.21. It must set iwl,[DBl], iwl,[Al], and iwl,[F3]. 
It can obtain the first two locks, but not iwlJF3], because it conflicts with 
rl,[F3]. After T, releases rl,[F3], T, can set iwl,[F3] and wl,[R3.2]. Now 



3.9 MULTIGRANULARITY LOCKING 73 

suppose T3 comes along and tries to set rl,[Al]. It must set irl,[DBl], which it 
can do immediately, and then set rl,[Al]. It cannot do this before T, releases 
iwl,[Al]. 

Correctness 

The goal of the MGL protocol is to ensure that transactions never hold 
conflicting (explicit or implicit) locks on the same data item (i.e., node of the 
lock instance graph). 

Theorem 3.7: Suppose all transactions obey the MGL protocol with 
respect to a given lock instance data graph, G, that is a tree. If a transac- 
tion owns an explicit or implicit lock on a node of G, then no other trans- 
action owns a conflicting explicit or implicit lock on that node. 

Proof: It is enough to prove the theorem for leafnodes. For, if two trans- 
actions held conflicting (explicit or implicit) locks on a nonleaf node x, 
they would be holding conflicting (implicit) locks on all descendants and, 
in particular, all leaf descendants of X. Suppose then that transactions Tj 
and Tj own conflicting locks on leaf x. There are seven cases: 

transaction T; transaction Tj 

1. implicit r lock explicit w lock 

2. implicit Y lock implicit w lock 

3. explicit r lock explicit w lock 

4. explicit Y lock implicit w lock 

5. implicit w lock explicit w lock 

6. implicit w lock implicit w lock 

7. explicit w lock explicit w lock 

Case 1. By rule (3) of the MGL protocol, Ti owns rl;[y] for some 
ancestor y of X. By rule (2) of the MGL protocol (and induction), Tj must 
own an iw lock on every ancestor of X. In particular, it owns iw&[y], which 
is impossible because the lock types iw and r conflict. 

Case 2. By rule (3) of the MGL protocol, Ti owns rl;[y] for some 
ancestor y of x, and Tj owns Wlj[y’] for some ancestor y’ of X. There are 
three subcases: (a) y = y’, (b) y is an ancestor of y’, and (c) y’ is an ances- 
tor of y. Case (a) is impossible, because Ti and Tj are holding conflicting 
read and write locks (respectively) on y = y’. Case (b) is impossible 
because Tj must own iwljy], which conflicts with rli[y]. And case (c) is 
impossible because Ti must own irlJy’], which conflicts with wl,[y’]. Thus, 
the assumed conflict is impossible. 
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Cases (3) and (7) are obviously impossible. Cases (4) and (5) foIlow 
the same argument as case (I), and (6) follows the argument of (2). q 

implementation Issues 

Theorem 3.7 says that the MGL protocol prevents transactions from owning 
conflicting locks. However, this is not sufficient for serializability. To ensure 
serializability, a scheduIer that manages data items of varying granularities 
must use the MGL protocol in conjtinction with 2PL. One way of framing the 
relationship between these two techniques is to say that 2PL gives rules for 
when to lock and unlock data items. The MGL protocol tells bow to set or 
release a lock on a data item, given that data items of different granularities are 
being locked. For example, for a transaction T, to read a record, 2PL requires 
that T, set a read lock on the record. To set that read lock, MGL requires 
setting ir locks on the appropriate database, area, and file, and setting an r 
lock on the record. 

Using MGL, the LM services commands to set and release locks in a 
conventional manner. When it gets a lock request, it checks that no other 
transaction owns a conflicting lock on the same data item, where the data item 
could be a database, area, file, or record. If no conflicting locks are set, then it 
grants the lock request by setting the lock. Otherwise, it blocks the transaction 
until either the lock request can be granted or a deadlock forces it to reject the 
request, thereby causing the transaction to abort. The LM need not know 
about the lock type graph, the lock instance graph, the MGL protocol, or 
implicit locks. Its only new feature is that it handIes more lock types (namely, 
intention locks) using the expanded compatibility matrix. 

Given the larger number of lock types, there are more types of lock conver- 
sion than simply converting a read lock to a write lock. For example, one 
might convert irl,[x] to rl,[x] or riwl,[x]. To simplify this lock conversion activ- 
ity, it is helpful to define the strength of lock types: lock type p is stronger than 
lock type 4 if for every lock type o, oli[x] conflicts with ql,[x] implies that ol,[x] 
conflicts with p&[x]. For example, riw is stronger than r, and Y is stronger than 
ir, but r and iw have incomparable strengths. 

If a transaction owns p&[x] and requests ql,[x], then the LM should 
convert pl,[x] into a lock type that is at least as strong as both p and q, For 
example, if p = I and q = iw, then the LM should convert rl,[x] into riwl,[x]. 
The strengths of lock types and the lock conversion rules that they imply can 
be derived from the compatibility matrix. However, this is too inefficient to 
do at run-time for each lock request. It is better to derive the lock conversion 
rules statically, and store them in a table that the LM can use at run-time (see 
Fig. 3-6). The lock conversion problems of deadlocks (cf. Section 3.2) and fair 
scheduling (cf. Section 3.6) must also be generalized to this expanded set of 
lock types. 
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Lock Conversion Table 
If a transaction has a lock of “old lock type” and requests a lock of “requested lock type,” 
then the table entry defines the lock type into which the “old lock type” should be 
converted. 

Lock Escalation 

A system that employs MGL must decide the level of granularity at which a 
given transaction should be locking data items. Fine granularity locks are no 
problem. The TM or scheduler simply requests them one by one as it receives 
operations from the transaction. Coarse granularity locks are another matter. 
A decision to set a coarse lock is based on a prediction that the transaction is 
likely to access many of the data items covered by the lock. A compiler may be 
able to make such predictions by analyzing a transaction’s program and 
thereby generating coarse granularity lock requests that will be explicitly 
issued by the transaction at run-time. If transactions send high level (e.g., rela- 
tional) queries to the TM, the TM may be able to tell that the query will gener- 
ate many record accesses to certain files. 

The past history of a transaction’s locking behavior can also be used to 
predict the need for coarse granularity locks. The scheduler may only be able 
to make such predictions based on the transaction’s recent behavior, using a 
technique called escalation. In this case, transactions start locking items of fine 
granularity (e.g., records). If a transaction obtains more than a certain number 
of locks of a given granularity, then the scheduler starts requesting locks at the 
next higher level of granularity (e.g., files), that is, it escalates the granularity 
of the locks it requests. The scheduler may escalate the granularity of a trans- 
action’s lock requests more than once. 

In Section 3.2, we showed that a deadlock results when two transactions 
holding read locks on a data item try to convert them to write locks. Lock 
escalation can have the same effect. For example, suppose two transactions are 
holding iw locks on a file and are setting w locks on records, one by one. If 
they both escalate their record locking activity to a file lock, they will both try 
to convert their iw lock to a w lock. The result is deadlock. 
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FIGURE 3-7 
A Dag Structured Lock Type Graph 

In some applications, lock escalations have a high probability of leading to 
lock conversions that cause deadlocks. In such cases lock escalation may be 
inappropriate. Instead, if a transaction gets too many fine granularity locks, it 
should be aborted and restarted, setting coarser granularity locks in its second 
incarnation. This may be less expensive than lock escalation, which may cause 
a deadlock. 

Generalized Locking Graph 

So far, we have assumed that the lock type graph is a tree. This is too restrictive 
for some applications. In particular, if we use indices, then we would like to be 
able to lock records of a file by locking indices, index entries, the file, or 
records. Thus, we are led to the locking type graph of Fig. 3-7, which is a 
rooted dag,l” not a tree. 

However, we cannot use the MGL protocol’s rules for w and iw locks, as 
illustrated by the following example. Consider the banking database of 
Fig. 3-1, structured using the lock type graph of Fig. 3-7. Suppose there is an 
index on Location in Accounts, and that the Location index and the Accounts 
file are stored in area Al. Suppose T, has an ir lock on the database, on Al, 
and on the Location index for Accounts, and an r lock on the Tyngsboro index 

‘“See Appendix, Section A.3, for the definition of rooted dag. 
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entry, Suppose another transaction T, has an iw lock on the database and Al 
and a w lock on the Accounts file. This is an error, because T, has implicitly 
read locked all records pointed to by the Tyngsboro index entry and T, has 
implicitly write locked those very same records. 

One solution to this problem is to require a transaction to set a w or iw 
lock on x only if it owns an iw lock on all parents of X. For example, to obtain 
a write lock on record 14, a transaction must have an iw lock on (say) the 
Tyngsboro index entry alzd the Accounts file. To implicitly write lock X, a 
transaction must explicitly or implicitly write lock all parents of x. So, to 
implicitly write lock the records in the Accounts file, it is not enough to set a 
write lock on the Accounts file. One must also write lock the Location index 
(or all of the index’s entries). This prevents the problem of the last paragraph; 
if T, has an ir lock on the Location index, then T, cannot obtain a w lock on 
that index and therefore cannot implicitly lock any of the records in the 
Accounts file. 

For a given lock instance graph G that is a dag, the scheduler sets and 
releases locks for each transaction Ti as follows: 

1. If x is not the root of G, then to set rl;[x] or irli[x], Ti must have an ir or 
iw lock on some parent of X. 

2. If x is not the root of G, then to set w&[x] or iwli[x], Ti must have an iw 
lock on all of x’s parents. 

3. To read x, Ti must own an r or w lock on some ancestor of x. To write 
x, Ti must own, for every path from the root of G to x, a w lock for 
some ancestor of x along that path (i.e., it may own different locks for 
different paths). A lock on x itself is an explicit lock for X; locks on 
proper ancestors of x are implicit locks for X. 

4. A transaction may not release an intention lock on a data item x if it is 
currently holding a lock on any child of x. 

The proof that this protocol prevents transactions from owning conflicting 
(explicit or implicit) locks is similar to that of Theorem 3.7 (see Exercise 3.23). 

3.10 DlSTRlBUTED TWO PHASE LOCKlNG 

Two phase locking can also be used in a distributed DBS. Recall from Section 
1.4 that a distributed DBS consists of a collection of communicating sites, each 
of which is a centralized DBS. Each data item is stored at exactly one site. We 
say that the scheduler manages the data items stored at its site. This means that 
the scheduler is responsible for controlling access to these (and only these) 
items. 

A transaction submits its operations to a TM. The TM then delivers each 
Read(x) or Write(x) operation of that transaction to the scheduler that 
manages 3~. When (and if) a scheduler decides to process the Read(x) or 
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Write(x), it sends the operation to its local DM, which can access x and return 
its value (for a Read) or update it (for a Write). The Commit or Abort opera- 
tion is sent to all sites where the transaction accessed data items. 

The schedulers at all sites, taken together, constitute a distributed sched- 
uler. The task of the distributed scheduler is to process the operations submit- 
ted by the TMs in a (globally) serializable and recoverable manner. 

We can build a distributed scheduler based on 2PL. Each scheduler main- 
tains the locks for the data items stored at its site and manages them according 
to the 2PL rules. In 2PL, a Read(x) or Write(x) is processed when the appropri- 
ate lock on x can be obtained, which only depends on what other locks on x 
are presently owned. Therefore, each local 2PL scheduler has all the informa- 
tion it needs to decide when to process an operation, without communicating 
with the other sites. Somewhat more problematic is the issue of when to release 
a lock. To enforce the two phase rule, a scheduler cannot release a transaction 
Tl’s lock until it knows that T, wiI1 not submit any more operations to it OY any 
other scheduler. Otherwise, one scheduler might release Ti’s lock and some 
time later another scheduler might set a lock for r,, thereby violating the two 
phase rule (see Exercise 3.26). 

It would appear that enforcing the two phase rule requires communication 
among the schedulers at different sites. However, if schedulers use Strict 2PL, 
then they can avoid such communication. Here is why. As we said previously, 
the Thl that manages transaction T, sends Ti’s Commit to all sites where 
T, accessed data items. By the time the TM decides to send T,‘s Commit to all 
those sites, it must have received acknowledgments to all of TI’s operations. 
Therefore, T, has surely obtained all the locks it will ever need. Thus, if a 
scheduler releases T,‘s locks after it has processed Tz’s Commit (as it must under 
Strict 2PL), it knows that no scheduler will subsequently set any locks for T,. 

To prove that the distributed 2PL scheduler is correct we simply note that 
any history H it could have produced satisfies the properties of 2BL histories 
described in Propositions 3.1-3.3. By Theorem 3.6 then, H is SR. Moreover if 
the local schedulers use Strict 2PL, H is STand therefore RC.” 

The simplicity of this argument is a consequence of the fact that histories 
model centralized and distributed executions equally well. Since we’ll typicaIly 
specify the properties of histories generated by a scheduler without referring to 
whether it is a centralized or distributed one, the proof of correctness will 
apply to both cases. 

IlOne may question the legitimacy of this argument, gwen that the Commit or Abort of a 
distributed transaction is processed by several sites, yet is represented as a single atomic event in 
a history For the time being, we can view cl or a, as the atomic event corresponding to the 
moment T,‘s TM received acknowledgments of the processing of T,‘s Commit or Abort by all 
sites where T, accessed data items. In Chapter 7 we’ll have a lot more to say about why (and 
how) the commitmpnt and abortion of a distributed transaction can be viewed as an atomic 
event. 
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3.11 DISTRMJTED DEADLOCKS 

As in the centralized case, a distributed 2PL scheduler must detect and resolve 
deadlocks. Timeouts can be used to guess the existence of deadlocks. Or we 
can explicitly detect deadlocks using WFGs. 

The scheduler at site i can maintain a local waits-for graph, WFGi, record- 
ing the transactions that wait for other transactions to release a lock on data 
items managed by that scheduler. Each WFGi is maintained as described for 
centralized 2PL. The global waits-for graph, WFG, is the union of the local 
WFG,s. 

Unfortunately, it is possible that WFG contains a cycle, and therefore the 
system is deadlocked, even though each WFG; is acyclic. For example, 
consider a distributed scheduler consisting of two 2PL schedulers: scheduler A 
manages x and scheduler B manages y. Suppose that we have two transactions: 

T, = YI[Xl + W,[Yl + Cl T, = rAyI -+ w,[xl * cz 
Now consider the following sequence of events: 

1. Scheduler A receives T~[x] and sets rl,[x]. 

2. Scheduler B receives ~;[y] and sets rl,[y]. 

3. Scheduler B receives w,[y]. Since wI,[y] conflicts with rl,[y], the sched- 
uler makes w,[y] wait and adds the edge T,-+T, to WFGB. 

4. Scheduler A receives w,[x]. That scheduler delays w,[x] and adds T,+T, 
to WFGA. 

The union of WFGA and WFGB contains the cycle T, + TL+ T,, and we 
therefore have a deadlock. But this deadlock is not detected by either sched- 
uler’s local WFG, since both WFGA and WFGB are acyclic. Such a deadlock is 
called a distributed deadlock. To discover such deadlocks, all the schedulers 
must put their local WFGs together and check the resulting global WFG for 
cycles. 

Global Deadlock Detection 

A simple way to do this is for each scheduler to send changes to its WFG, to a 
special process, the global deadlock detector. The global deadlock detector 
keeps the latest copy of the local WFG that it has received from each scheduler. 
It periodically takes the union of these local WFGs to produce a global WFG, 
and checks it for cycles. 

Since the global WFG is only periodically analyzed for cycles, deadlocks 
may go undetected for a while. As in centralized DBSs, the main penalty for 
the delay in detecting deadlocks is that deadlocked transactions are holding 
resources that they aren’t using and won’t use until the deadlock is broken. 
The communications delays in shipping around the local WFGs contribute to 
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the delay of distributed deadlock detection, so this delay may be longer than in 
a centralized DBS. 

Once the global deadlock detector finds a deadlock, it must select a victim 
to abort. This is done based on the same considerations as centralized dead- 
locks. Therefore, in addition to receiving local WFGs, the global deadlock 
detector needs information from each site to help it make good victim selec- 
tions. Moving this information around costs more messages. A technique 
called piggybacking can be used to reduce this message cost. 

In piggybacking, n messages that originate at one sire and that are all 
addressed to a common other site are packaged up in one large message. Thus, 
the number of messages is reduced by a factor of n. Since communication cost 
is generally a function of the number of messages exchanged (as well as the 
amount of information), reducing the number of messages in this way can 
significantly reduce communication cost. 

This technique can be applied to global deadIock detection. Each site has 
its local WFG to send to the global deadlock detector. It also has information 
for victim selection to send, such as each transaction’s resource consumption 
or abortion cost. Combining this information into one message reduces the 
cost of sending it to the global deadlock detector. 

Phantom Deadlocks 

Another problem with distributed deadlock detection relates again to the delay 
in detecting deadlocks. Clearly, every deadlock will eventually be detected. It 
may take a while before all of the edges in the deadlock cycle are sent to the 
global deadlock detector. But since deadlocks don’t disappear spontaneously, 
eventually aI of the edges in the cycle will propagate to the deadlock detector, 
which will then detect the deadlock. 

But what about edges in the global WFG that are out-of-date, due to the 
deIay in sending local WFGs to the global deadlock detector? Might the global 
deadlock detector find a WFG cycle that isn’t really a deadlock? Such incor- 
rectly detected deadlocks are called phantom deadlocks. 

For example, suppose a scheduler sends its local WFG containing some 
edge T, --t Tl to the global deadlock detector. Suppose that shortly after this 
local WFG is sent, TJ releases its locks, thereby unblocking T,. Since the sched- 
uler only sends its local WFG periodicaIly, the global detector may use the copy 
of the graph containing T, -+ T, to look for cycles. If it finds a cycle containing 
that edge, it may believe it has found a genuine deadlock. But the deadlock is a 
phantom deadlock. It isn’t real, because one edge in the cycle has gone away, 
unknown to the global deadlock detector. 

Phantom deadlocks can surely happen if a transaction that was involved in 
a real deadlock spontaneously aborts. For example, a deadlocked transaction 
might be aborted because some hardware resource (e.g., a terminal) being 
used by the transaction failed. Although the deadlock wasn’t detected, it was 
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broken by the spontaneous abortion. If the global deadlock detector finds the 
deadlock before it learns of the abortion, it may unnecessarily abort another 
transaction. 

It is interesting that phantom deadlocks can only occur due to spontaneous 
abortions, as long as all transactions are two phase locked. To see this, assume 
that each lock operation corresponds to a database operation (i.e., no inten- 
tion locks), and no transaction spontaneously aborts. Suppose the global dead- 
lock detector found a cycle, T, + T2 + * * * -+ T, -+ T,, but there really is no 
deadlock. Since no transaction spontaneously aborts, and there is no dead- 
lock, all transactions eventually commit. In the resulting execution, since each 
lock operation corresponds to a database operation, for each edge Ti -+ T;,, in 
this WFG cycle, there must be an edge Ti+l + 7’; in the SG of the execution. 
This is true even if the deadlock cycle is a phantom cycle; each edge in the cycle 
existed at some time, so the conflict between the database operations for each 
edge is real and must produce an SG edge. However, that means that the SG 
has the same cycle as the WFG, but in the opposite direction. This is impossi- 
ble, because all transactions were two phase locked. We leave the extension of 
this argument for intention locks as an exercise (Exercise 3.25). 

Distributed Cycle Detection 

Most WFG cycles are of length two. To see why, consider how a WFG grows. 
Suppose we start with all active transactions waiting for no locks, so the WFG 
has no edges. As transactions execute, they become blocked waiting for locks, 
so edges begin to appear. Early in the execution, most transactions are not 
blocked, so most edges will correspond to a transaction’s being blocked by a 
lock owned by an unblocked transaction. But as more transactions become 
blocked, there is an increased chance that a transaction Ti will be blocked by a 
lock owned by a blocked transaction Tie Such an event corresponds to creating 
a path of length two (i.e., Ti waits for Tj, which is waiting for some other 
transaction). 

Suppose all transactions access the same number of data items, and all 
data items are accessed with equal probability. Then it can be shown that, on 
the average, blocked and unblocked transactions own about the same number 
of locks. This implies that if transactions randomly access data items, then all 
transactions (both blocked and unblocked ones) are equally likely to block a 
given unblocked transaction. So the probability that an edge creates a path of 
length two (or three, four, etc.) is proportional to the fraction of blocked trans- 
actions that are on the ends of paths of length one (or two, three, etc.). Since 
initially there are no paths, this must mean that short paths predominate. That 
is, most transactions are unblocked, many fewer are blocked at the ends of 
paths of length two, many fewer still are at the ends of paths of length three, 
and so forth. Hence, an edge that completes a cycle has a much higher chance 
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of connecting an unblocked transaction to one-at the end of a path of Iength 
one than to one at the end of longer paths. Therefore, most WFG cycles 
are of length two. For typical appIications, over 90% of WFG cycles are of 
length two. 

This observation that cycles are short may make global deadlock detection 
a less attractive choice than it first appears to be. With global deadlock detec- 
tion there may be a significant delay and overhead in assembling all of the local 
WFGs at the global deadlock detector. Thus, a distributed deadlock might go 
undetected for quite a while. This is especially annoying because most dead- 
locks involve only two transactions. If the two sites that participate in the 
deadlock communicate directly, they can detect the deadlock faster by 
exchanging WFGs with each other. But if every pair of sites behaved this way, 
then they would all be functioning as global deadlock detectors, leading to 
much unnecessary communication. 

Path pushing is a distributed deadlock detection algorithm that allows all 
sites to exchange deadlock information without too much communication. 
Using path pushing, each site looks for cycles in its local WFG iznd lists all 
paths in its WFG. It selectively sends portions of the list of paths to other sites 
that may need them to find cycles. Suppose site A has a path T, -+ * * * -+ T,. It 
sends this path to every site at which T, might be blocked, waiting for a lock. 
When a site, say B, receives this path, it adds the path’s edges to its WFG. Site 
B’s WFG may now have a cycle. If not, B still may find some new and longer 
paths that neither A nor B had seen before. It lists these paths and sends them 
to sites that may have more edges to add to the paths. 

Every cycle in the global WFG can be decomposed into paths, each of 
which exists in one local WFG. Using this algorithm, each site sends its paths 
to other sites that may be able to extend them, by concatenating them with 
paths that (only) it knows about. Eventually, each path in a cycle will be 
“pushed” all the way around the cycle and the cycle will be detected by some 
site. 

For example, suppose sites A, B, and C have the following WFGs. 

WFGA = T, -+ T, --) T, 

WFGB = T, --f T, 
WFGc = T, -, T, 

Site A sends the one and only path in WFGA to site B, whose graph is now 

WFGB = T, -+ T, --f T, -+ T, 

Since WFGB has changed, site B sends its one and only path to C, whose WFG 
becomes 

WFGc = T, -+ Ts -+ T3 -+ T, -+ T, 

which contains a cycle. 
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This method usually detects short cycles faster than global deadlock detec- 
tion. If T, is waiting for T, at site A and T, is waiting for T, at site B, then as 
soon as either A or B sends its paths to the other site, the receiving site will 
detect the deadlock. By contrast, using global deadlock detection, both A and 
B would have to wait until both of them send their WFGs to the global dead- 
lock detector, which then has to report the deadlock back to both A and B. 

Path pushing sounds fine, as long as each site knows where to send its 
paths. It could send them to all sites, and in some cases that is the best it can 
do. But this does involve a lot of communication. The communications cost 
could easily overshadow the benefit of detecting short cycles more quickly. 

One can avoid some of the communication by observing that not all paths 
need to be sent around. Consider a deadlock cycle that is a concatenation of 
paths, pi, . . . . pti, each of that is local to one site’s WFG, say site,, . . . . site, 
(respectively). So far, we have been pushing all of those paths around the cycle. 
So to start, site, sends p1 to site,, site1 sends pZ to site3, etc. Now each site 
knows about longer paths, so site, sends [pn, p,] to site 2, site 2 sends [p,, pJ to 
site,, etc. Using this approach, every site will end up detecting the deadlock, 
which is clearly more than what’s necessary, Even worse, two sites that detect 
the same deadlock might choose different victims. 

To reduce the traffic, suppose that (1) each transaction, T,, has a unique 
name, Id( Ti), which identifies it, and (2) Ids are totally ordered. In every cycle, 
at least one path Ti + * * * + T; has Id(Ti) < Id(T,). (If no path had this 
property, then Ti + * 9 * + Ti implies Id( T;) > Id( T;), a contradiction.) If we 
only send around paths that have this property, we will still find every cycle. 
But on average, we will only be sending half as many paths. Therefore, after a 
site produces a list of paths, it should only send those that have the property, 

Communications traffic can be controlIed further if each transaction is 
only active at one site at a time. Suppose that when a transaction Tj executing 
at site A wants to access data at another site B, it sends a message to B, stops 
executing at A, and begins executing at B. (EssentiaIly, Tj is making a remote 
procedure call from A to B.) It does not continue executing at A until B replies 
to A that it is finished executing its part of the transaction. 

When site A finds a path in its WFG from T; to Tj, it need only send it to B. 
A knows that B is the only place where Tj could be executing and thereby be 
blocked waiting for a lock. Of course, Tj at B may have sent a message to C, 
and so may be stopped at B and now executing at C. But then B will send the 
path Ti + * * * + Tj to C the next time it performs deadlock detection. Even- 
tually, the path T, -+ - - 9 + Tj will make its way to every site at which Tj 
could be waiting for a lock. 

In the resulting algorithm, each site, say A, performs the following steps, 
Site A periodically detects cycles in its local WFG. For each cycle, it selects a 
victim and aborts it. It then lists all paths not in cycles. For each such path, Tj 
-+a * * + Tj, if 
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1. Id(T;) < Id(T,), and 

2. T, was formerly active at site A, but is now stopped, waiting for a 
response from another site B, 

then A sends the path to B. When a site receives a list of paths from another 
site, it adds those edges to its WFG and performs the above steps. 

We explore additional simplifications to this algorithm in Exercises 3.27 
and 3.28. 

Timestamp-based Deadlock Prevention 

Deadlock prevention is a cautious scheme in which the scheduler aborts a 
transaction when it determines that a deadlock might occur. In a sense, the 
timeout technique described earlier is a deadlock prevention scheme. The 
system doesn’t know that there is a deadlock, but suspects there might be one 
and therefore aborts a transaction. 

Another deadlock prevention method is to run a test at the time that the 
scheduler is about to block T, because it is requesting a lock that conflicts with 
one owned by T1. The test should guarantee that if the scheduler allows T, to 
wait for T,, then deadlock cannot result. Of course, one could never let T, wait 
for T,. This trivially prevents deadlock but forces many unnecessary abortions. 
The idea is to produce a test that allows waiting as often as possible without 
ever allowing a deadlock. 

A better test uses a priority that TMs assign to each transaction. Before 
allowing T, to wait for T1, a scheduIer compares the transactions’ priorities. If 
T, has higher priority than T],, then T, is allowed to wait; otherwise, it is 
aborted. In this scheme, T, waits for T1 only if T, has higher priority than T), 
Therefore, for each edge T, -+ T, in WFG, T, has higher priority than Tie The 
same is true of longer paths rhat connect T, to T,. If there were a cycle in the 
WFG connecting T, to itself, then T, would have a priority higher than itself, 
which is impossible because each transaction has a single priority. Thus, dead- 
lock is impossible. 

However, this scheme may be subject to a different misfortune that pre- 
vents a transaction from terminating. If priorities are not assigned carefully, it 
is possible that every time a transaction tries to lock a certain data item, it is 
aborted because its priority isn’t high enough. This is called livelock or cyclic 
restart. 

For example, suppose each TM uses a counter to assign a priority to each 
transaction when it begins executing or when it restarts after being aborted. 
Suppose a TM supervises the execution of T, and T, as follows. 

1. The TM assigns T, a priority of 1. 

2. T, issues w,[x], causing it to set u//,[x], 

3. The TM assigns T,, a priority of 2. 
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4. Tj issues wj[y], causing it to set w~,[Y]. 

5. T; issues wi[y]. Since Tj has set wl,[y], we have to decide whether to 
allow T; to wait. Since Tts priority is lower than Tj’S, T, is aborted. 

6. The TM restarts T,, assigning it a priority of 3. 

7, Ti issues wi[x], causing it to set wl;[x]. 

8. Tj issues wj[x]. Since T; has set wlJx] and has a higher priority than Tj, 
Tj is aborted. 

9. The TM restarts Tj, assigning it a priority of 4. 

10. Tj issues wj[y], causing it to set wb[y]. 

We are now in exactly the same situation as step (4). If the transactions 
follow the same sequence of requests that they did before, they will each cause 
the other one to abort as before, perhaps forever. They are in a livelock. 

Livelock differs from deadlock because it doesn’t prevent a transaction 
from executing. It just prevents the transaction from completing because it is 
continually aborted. One way to avoid livelock is to ensure that each transac- 
tion eventually has a high enough priority to obtain all of the locks that it 
needs without being aborted. This can be accomplished by using a special type 
of priority called timestamps. 

Timestamps are values drawn from a totally ordered domain. Each trans- 
action T; is assigned a timestamp, denoted ts(TJ, such that if Ti + Tj then 
either ts( Ti) < ts(Tj) or ts(Tj) < ts(Ti). 

Usually, TMs assign timestamps to transactions. If there is only one TM in 
the entire system, then it can easily generate timestamps by maintaining a 
counter. To generate a new timestamp, it simply increments the counter and 
uses the resulting value. If there are many TMs, as in distributed DBSs, then a 
method is needed to guarantee the total ordering of timestamps generated by 
different TMs. It is desirable to find a method that doesn’t require the TMs to 
communicate with each other, which would make the timestamp generation 
activity more expensive. 

The following technique is usually used to make this guarantee. Each TM 
is assigned a unique number (its process or site identifier, for example). In 
addition, each TM maintains a counter as before, which it increments every 
time it generates a new timestamp. However, a timestamp is now an ordered 
pair consisting of the current value of the counter followed by the TM’s unique 
number. The pairs are totally ordered, first by their counter value and second, 
in case of ties, by their unique TM numbers. 

The local counter used by each TM can be an actual clock. If a clock is 
used, then the TM obviously should not increment it to guarantee uniqueness. 
Instead, it should simply check that the clock has ticked between the assign- 
ment of any two timestamps. 

Since timestamps increase monotonically with time and are unique, if a 
transaction lives long enough it will eventually have the smallest timestamp 
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(i.e., will be the oldest) in the system. We can use this fact to avoid livelock by 
using a rule for priority-based deadlock prevention that never aborts the oldest 
active transaction. Every transaction that is having trouble finishing due to 
livelock will eventually be the oldest active transaction, at which point it is 
guaranteed to finish. 

Suppose we define a transaction’s priority to be the inverse of its times- 
tamp. Thus, the older a transaction, the higher its priority, We can then use 
timestamps for deadlock prevention, without risking livelock, as follows. 
Suppose the scheduler discovers that a transaction T, may not obtain a lock 
because some other transaction Ti has a conflicting lock. The scheduler can use 
several strategies, two of which are: 

Wait-Die: if ts( T,) < ts( Ti) then T, waits else abort T,. 

Wound-Wait: if ts( T,) < ts( T,) then abort Tj else T, waits. 

The words wound, wait, and die are used from T,‘s viewpoint; T, wounds T,, 
causing T, to abort; T, waits; and T, aborts and therefore dies. In both 
methods, only the younger of the two transactions is aborted. Thus, the oldest 
active transaction is never aborted by either method. 

To ensure these methods are not subject to livelock, two other restrictions 
are needed. First, the timestamp generator must guarantee that it only gener- 
ates a finite number of timestamps smaller than any given timestamp. If this 
were not true, then a transaction could remain in the system indefinitely with- 
out ever becoming the oldest transaction. Second, when an aborted transac- 
tion is restarted, it uses its old timestamp. If it were reassigned a new 
timestamp every time it was restarted, then it might never become the oldest 
transaction in the system. 

Notice that wounding a transaction might not cause it to abort. The defi- 
nition of Wound-Wait should really be: 

if ts(T,) < ts(T]) then try to abort T, else T, waits. 

The scheduler can only try to abort T, because T, may have already terminated 
and committed before the scheduler has a chance to abort it. Thus, the abort 
may be ineffective in killing the transaction. That’s why it’s called wound and 
not kill; the scheduler wounds T,, in a (possibly unsuccessful) attempt to kill it. 
But this still avoids the deadlock, because the wounded transaction releases its 
locks whether it commits or aborts. 

Wound-Wait and Wait-Die behave rather differently. In Wound-Wait, an 
old transaction T, pushes itself through the system, wounding every younger 
transaction T, that it conflicts with. Even if T, has nearly terminated and has 
no more locks to request, it is still vulnerable to T,. After T, aborts T, and Ti 
restarts, T, may again conflict with T,, but this time T, waits. 

By contrast, in Wait-Die an old transaction T, waits for each younger 
transaction it encounters. So as T, ages, it tends to wait for more younger 
transactions. Thus, Wait-Die favors younger transactions while Wound-Wait 
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favors older ones. When a younger transaction Tj conflicts with T,, it aborts. 
After it restarts, it may again conflict with T, and therefore abort again - a 
disadvantage relative to Wound-Wait. However, once a transaction has 
obtained all of its locks, it will not be aborted for deadlock reasons - an 
advantage over Wound-Wait. 

Comparing Deadlock Management Techniques 

Each approach to deadIock management has its proponents. Many centralized 
DBSs, such as IBM’s DB2 and RTI’s INGRES, use WFG cycle detection. Each 
of the distributed techniques we have described is implemented in a commer- 
cial product, and each putatively works well: Tandem uses timeout; Distrib- 
uted INGRES uses centralized deadlock detection; IBM’s System R* prototype 
uses path pushing; and GE’s MADMAN uses timestamp-based prevention. 

3.12 LOCKING PERFORMANCE” 

To accept published guidelines on locking performance requires a leap of faith, 
because the results are derived with simplistic assumptions and the state-of- 
the-art is unsettled. Nevertheless, an understanding of locking performance is 
pivotal to quality system design. This section should be read as preliminary 
results of an immature field. 

Throughout this section, we will assume that all transactions require the 
same number of locks, all data items are accessed with equal probability, and 
all locks are write locks. The transactions use Strict 2PL: data items are locked 
before they are accessed, and locks are released only after the transactions 
commit (or abort). The DBS is centralized, so there is no communication cost. 
However, the DBS may be running on a machine with two or more tightly 
coupled processors. 

Resource and Data Contention 

In any multiprogramming system, the amount of work done on the system 
cannot increase linearly with the number of users. When there is resource 
contention over memory space, processor time, or I/O channels, queues form 
and time is wasted waiting in the queues. In DBSs that use locking, queues also 
form because of delays due to lock conflicts, called data contention. 

Locking can cause thrashing. That is, if one increases the number of trans- 
actions in the system, throughput will increase up to a point, then drop. The 

‘ZWritten by Dr. Y.C. Tay, Mathemathics Department, National University of Singapore. Unlike 
other sections, this section mentions results that are not derived in the book. For adequate justi- 
fications of these conclusions, we refer the reader to the bibliographic notes. 
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user usually observes this as a sudden increase in response time. This phenom- 
enon is similar to thrashing in operating systems. There, the throughput drops 
due to time wasted in page faults when too many processes each have too little 
space. It is the result of resource contention - too many processes fighting 
over main memory. In DBSs, thrashing can be caused by data contention 
alone. In an idealized system with unlimited hardware resources, so that trans- 
actions queue only for data and never for resources, thrashing may still occur. 

We distinguish two forms of thrashing: RC-thrashing, which occurs in 
systems with resource contention and no data contention, and DC-thrashing, 
which occurs in an idealized system with data contention and no resource 
contention. Although all systems have some resource contention, DC- 
thrashing is a useful concept. 

Thrashing 

Resource and data contention produce rather different forms of thrashing. 
With RC-thrashing, the system is busy transferring pages in and out of 
memory, so user processes make little progress. This suggests that DC- 
thrashing may be caused by transaction restarts induced by deadlocks. If the 
deadlock rate is high, then transactions are busy being repeatedly restarted, so 
transactions make little progress. However, DC-thrashing is in fact not caused 
by restarts, but by blocking. 

Measurements of experimental and commercial DBSs indicate that dead- 
locks are much rarer than conflicts. Simulations also show that, up to the DC- 
rhrashing point, transactions spend much more time waiting in lock queues 
than in being restarted. Moreover, the restart rate can be as low as l-2% of 
throughput when DC-thrashing happens. But the most conclusive evidence is 
that beyond the DC-thrashing point, increasin, 0 the number of transactions 
actually decreases the number of transactions that are not blocked. That is, 
adding one more transaction causes more than one transaction (on average) to 
be blocked. Thus, whereas RC-thrashing happens because the system is busy 
doing wasteful work, DC-thrashing happens because too many transactions 
are tied up in lock queues, thus reducing system utilization. 

It does not even take much blocking to cause DC-thrashing. At the DC- 
thrashing point, the average length of a lock queue could be less than one, and 
the average depth of a tree in the waits-for graph less than two. (The latter 
implies that, up to the DC-thrashing point, most deadlock cycles have only 
two transactions.) Hence, if half the transactions are blocked, the system is 
probably thrashing. 

Although blocking is the dominant performance factor up to the DC- 
thrashing point, the effect of deadlocks does increase at a much faster rate than 
blocking. Beyond the thrashing point, restarts rapidly overtake blocking as the 
dominant factor. 
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Blocking and Restarts 

Locking resolves conflicts either by blocking a transaction or by aborting and 
restarting it. Restarts are obviously undesirable, since work is wasted. The 
way blocking degrades performance is more subtle. Blocking lets a transaction 
hold locks without doing anything with them, even while other transactions 
are waiting to acquire those locks. Through DC-thrashing, we have seen how 
seriously this can affect performance. 

Both restarts and blocking are bad for performance. But which is worse? 
Since Strict 2PL may be thrashing and yet have a very low deadlock rate, it 
resolves almost all conflicts by blocking. Therefore, let us call Strict 2PL a 
blocking policy, Alternatively, a pure restart policy simply aborts a transaction 
whenever it requests a lock that is already held by another transaction, and 
restarts the aborted transaction when the other releases the lock. Thus, a pure 
restart policy resolves all conflicts by restarts. Comparing these two policies is 
a way of comparing the performance effect of blocking and restarts. 

Intuitively, a pure restart policy is very severe. One might expect it to 
perform badly compared with a blocking policy. Surprisingly, this is not neces- 
sarily so. Let the multiprogramming level (MPL) refer to the number of active 
transactions. Since aborted transactions waiting to restart consume minimal 
resources, we exclude them from MPL. However, since transactions blocked in 
lock queues by a blocking policy consume resources (mainly, memory space) as 
transactions in resource queues do, we include them in MPL. 

Given the same MPL and under two conditions (see the next paragraph), a 
pure restart policy has a throughput that is only slightly lower than that of a 
blocking policy before the latter’s DC-thrashing point. Furthermore, when 
DC-thrashing sets in for the blocking policy, the pure restart policy has a 
higher throughput. (See Fig. 3-8. Note that this comparison does not take 
resource contention into account yet; if there were no conflicts, the throughput 
would increase linearly with MPL in this figure.) 

The two tiequired conditions are quick transaction abortion and low 
resource contention. If abortions take too long, they will slow down the 
throughput of a pure restart policy, thus making it inferior to a blocking policy, 
which is only marginally affected by abort time since it has a low deadlock 
rate. Resource contention also hurts a pure restart policy more than a blocking 
policy. With the latter, some transactions are blocked in lock queues, so fewer 
transactions compete for resources. (Thus, data contention alleviates resource 
contention for a blocking policy.) Since resource contention causes transactions 
to waste time waiting in resource queues, it degrades the throughput of a 
blocking policy less than that of a pure restart policy. This too can make a pure 
restart policy consistently inferior (see Fig. 3-9). 

Therefore, our intuition that a pure restart policy has worse throughput 
than a blocking policy is based on the assumption that restarts either take a 
long time or add too much resource contention. However, both assumptions 



90 CHAPTER 3 I TWO PHASE LOCKfNG 

Pure restart 
policy 

Blocking 

Number of transactions 
that have begun execution 

* 
MPL 

FIGURE 3-8 
Throughput of Blocking and Pure Restart Policies with No Resource Contention 

Throughput 

t 
MPL = Number of transactions 

that have begun execution 

- Blocking 
policy 

Pure restart 
policy 

L---e 
MPL 

FIGURE 3-9 
Possible Effect of Resource Contention on Fig. 3-8 



3.12 LOCKING PERFORMANCE 91 

could be violated. A clever implementation can make transaction abortion 
fast. And resource contention can perhaps be minimized by giving each trans- 
action a dedicated microprocessor, so there is no contention for CPU cycles. 
Hence, a pure restart policy may be feasible. 

Still, a pure restart policy has a longer response time than a blocking 
policy, even when their throughputs are similar. This is because an aborted 
transaction must wait for the conflicting transaction to release the lock before 
restarting, thus increasing its response time. 

Therefore, except for the response time difference, blocking a transaction 
for a conflict may not be better than restarting it. Blocking is selfish. A blocked 
transaction can preserve what it has done, and prevent transactions that need 
its locks from making progress. Restarting is self-sacrificing. Since a conflict 
prevents a transaction from proceeding, restarting it frees its locks, so that it 
will not hinder others. When data contention becomes intense, altruism is the 
better policy, This is why a pure restart policy has a higher throughput than a 
blocking policy when the latter suffers from DC-thrashing, provided the two 
conditions hold. One may therefore consider restarts as a means of overcom- 
ing the upper bound that blocking imposes on the throughput through DC- 
thrashing. 

Predeclaration 

Another way to exceed the throughput limit that blocking imposes is to replace 
Basic 2PL, where a transaction sets locks as it needs them, by Conservative 
2PL, where it obtains them before it begins. As the number of transactions 
increases, the throughput under Basic 2PL is initially higher than under 
Conservative 2PL, but eventually becomes lower. However, resource conten- 
tion can change this. Under light data contention, Basic 2PL delays fewer 
transactions, and so suffers more resource contention. Its throughput is there- 
fore reduced more, and may become consistently lower than Conservative 
2PL. 

Resource contention aside, how can Conservative 2PL have a higher 
throughput than Basic 2PL? Intuitively, since Basic 2PL only sets locks as they 
are needed, it should have more concurrency and therefore higher throughput 
than Conservative 2PL. This is true when data contention is light. But when it 
becomes heavy, as when DC-thrashing sets in, Basic 2PL in fact causes transac- 
tions to hold locks longer than under Conservative 2PL, thereby lowering 
throughput. 

Conservative 2PL is sometimes favored because it avoids deadlocks. 
However, DC-thrashing occurs even if deadlocks are rare. Conservative 2PL 
should therefore be first considered as a means of bringing throughput above 
the limit set by blocking through DC-thrashing. Its advantage in deadlock 
avoidance is secondary. 
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A Bound on Workload 

We have said little about performance beyond the DC-thrashing point. Indeed, 
we have assumed that a system will not be driven beyond that point, since 
there is no performance gain to be had. DC-thrashing thus defines an operat- 
ing regimen for the combination of parameters that affect the performance. 
What is this region? 

Suppose N is the MPL, k the number of locks a transaction requires, and 
D the number of data items, where data item is the locking granularity. (Note 
that, in general, k is less than the number of data accesses a transaction makes. 
For instance, if a data item is a file, two writes on one particular file would 
require only one lock.) Then a measure of the data contention is the DC- 
workload W = k?N/D. DC-thrashing occurs at about W = 1.5, so the operat- 
ing region is roughly bounded by k’N/D < 1.5. (This number 1.5 was nu- 
merically obtained from a performance modeI, and confirmed through 
simulations. It is not known why DC-thrashing occurs at this particular value 
of W) 

The value 1.5 is almost surely optimistic, It is based on the assumption 
that accesses are uniform over the database. In reality, access patterns are 
skewed, which causes DC-thrashing to occur earlier. Furthermore, DC- 
thrashing does not account for resource contention, which further reduces the 
throughput. Therefore, real DBSs thrash. before the DC-thrashing point. 
Hence, the value 1.5 only indicates the order of magnitude of the bound on the 
DC-workload. 

MPL, Transaction Length, and Granularity 

Bearing the caveat in mind, MPL should therefore be less than l.SD/k’ for 
given k and D. This bound should only act as a guide in planning a system. 
The true bound will quickly reveal itself once the system is built. 

Other than thrashing, there is another constraint on the MPL. Although 
throughput increases with N (up to the thrashing point), the deadlock rate 
increases- even faster. If restarts are expensive, they may further reduce the 
number of active transactions that can be handled. 

As expected, increasing the number of locks per transaction reduces the 
throughput. It also increases the number of deadlocks per transaction comple- 
tion. Transactions should therefore be kept short. Long transactions should be 
broken into smaller ones, if possible. For a quantitative but simplistic argu- 
ment, suppose N transactions requiring k locks each are broken into 2N trans- 
actions requiring k? locks each. The DC-workload then drops from k?N/D to 
(k/2j2(2N)l D = kzN/2D, thus reducing the data contention. 

Besides the number of transactions and the number of locks they need, 
another parameter’in the DC-workload is the number of data items D. A small 
D (coarse granularity) implies more data is covered by each lock. A large D 
(fine granularity) implies the opposite. 
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FIGURE 3-10 
The General Granularity Curve 

Three factors determine the effect of granularity on performance. One is 
locking overhead. The finer the granularity, the more locks a transaction must 
set, thus incurring more overhead. 

Another factor is data contention. Intuitively, the finer the granularity, the 
more potential concurrency, so the better the performance. Actually, this intu- 
ition is not entirely correct. Finer granularity does reduce the probability of 
conflict per request. However, more locks are needed too, so the number of 
conflicts a transaction encounters may increase. One can see this from the DC- 
workload k*N/D. If an increase in D causes a proportionate increase in k, then 
the DC-workload increases, so there is more data contention. 

The third factor is resource contention. Recall that data contention allevi- 
ates resource contention by blocking some transactions. Refining the granular- 
ity may therefore release so many transactions from lock queues that they end 
up spending even more time in resource queues. 

These three factors combine to shape the granttlarity curve in Fig. 3-10. 
The initial drop in throughput as granularity is refined is caused by an increase 
in k when D is increased, leading to increased locking overhead and data 
contention. As granules shrink, the number of locks a transaction requires 
approaches the maximum of one new lock per data access. Now k becomes 
insensitive to D, the DC-workload decreases, and throughput picks up if gran- 
ularity is further refined. The final drop in the granularity curve is caused by 
resource contention. Suppose there are enough transactions in the system to 
cause RC-thrashing if some transactions are not blocked in lock queues. Then 
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FIGURE 3-i 1 
Possible Granularity Curve for Long Transactions 

refining granularity reduces the data contention, unblocks the transactions, 
and causes a drop in throughput through RC-thrashing. 

A given system may not see the entire granularity curve. For instance, for 
long transactions, which access a significant portion of the database, even the 
finest granularity may not bring the throughput above the initial drop, as in 
Fig. 3-11. Each transaction should then lock the entire database, thus using 
the coarsest granularity. For short transactions, k may quickly become insensi- 
tive to D, so the initial drop in the granularity curve is minimal. If, in addition, 
N is not excessive, then the final drop in the granularity curve will not occur, 
so the curve may look like Fig. 3-12. In this case, the curve suggests that the 
granularity should be as fine as possible. 

Read Locks and Nonuniform Access 

We have so far assumed that all locks are write locks. Suppose now that a frac- 
tion s of the lock requests are for read locks, and the rest are for write locks. 
Then the DC-workload drops from ,&N/D to (14) kLN/D. Equivalently, it is 
as if the granules have been refined, with D increased to D/(1-P). 

Contrary to our assumption, transactions do not really access all data with 
equal probability. In particular, a portion p of the database may contain high- 
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Possible Granularity Curve for Short Transactions 

traffic data that transactions access with a higher probability q than the rest of 
the database. For example, if e = 0.2 and q = 0.7, then 70% of a transaction’s 
requests fall within 20% of the database. If we assume uniform access among 
high-traffic data, and uniform access among the rest of the data as well, 
then this skewed access pattern increases the DC-workload from kZN/D to 
(1 + (q-~)zl~(l-p))(,4zN/D). Equivalently, it is as if the number of granules 
has been reduced from D to D/(1 + (q-p)*lp(l-e). 

3.13 TREE LOCKING 

Suppose data items are known to be structured as nodes of a tree, and transac- 
tions always access data items by following paths in the tree. The scheduler 
can exploit the transactions’ predictable access behavior by using locking 
protocols that are not two phase. That is, in certain cases, a transaction can 
release a lock and subsequently obtain another lock. This can lead to better 
performance. 

To simplify the discussion we shall not distinguish between Reads and 
Writes. Instead we have just one type of operation, “transaction T; accesses 
data item x,” denoted ai[x]. The Access operation a;[~] can read and/or write 
into x. Hence, two Access operations on the same data item conflict. 
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We associate a lock type a with the operation type a. We use al,[x] to 
denote an access lock on x by transaction T,. Since two Access operations on x 
conflict, two access locks on x also conflict. 

In tree locking (TL), we assume that a hierarchical structure has been 
imposed on the set of data items. Ii That is, there is a tree DT, called the data 
tree, whose nodes are labelled by the data items. The TL scheduler enforces 
the following rules: 

1. Before submitting a,[x] to the DM, the scheduler must set al,[x]. 

2. The scheduler can set al,[x] only if no al,[x] is set, for all j # i. 

3. If x is not the root of DT, then the scheduler can set ali[x] only if ai,[y] is 
already set, where ~1 is x’s parent in DT. 

4. The scheduler must not release al,[x] until at least after the DM has 
acknowledged that al[x] has been processed. 

5. Once the scheduler releases a lock on behalf of T,, it may not subse- 
quently obtain that same lock again for ri. 

Rules (3) and (5) imply that the scheduler can release aL,[x] only after it has 
obtained the locks T, needs on x’s children. This handshake between locking 
children and unlocking their parent is called lock coupling. Notice that lock 
coupling implies that locks are obtained in root-to-leaf order. 

This leads to the key fact about TL: If T, locks x before T,, then for every 
descendant II of x in DT, if T, and T1 both lock V, then T, locks u before T1. To 
see this, let (x, z,, . . . . z,, V) be the path of nodes connecting x to v (n 2 0). By 
rules (3) and (5), T, must lock z, before releasing its lock on x. Since T, locks x 
before T,, that means T, must lock z, before T,. A simple induction argument 
shows that the same must be true for every node on the path. This gives us the 
following proposition. 

Proposition 3.8: If T, locks x before T,, then for every descendant P of x 
in DT, if T, and TI both lock v, then T, locks LJ before 7j. [7 

Consider any edge T, -+ T, in the SG of some history produced by TL. By the 
definition of SG, there is a pair of conflicting operations a,[x] < a,[x]. By rules 
(1), (2), and (4), T, unlocked x before q locked x. By Proposition 3.8, it imme- 
diateIy follows that T, Iocked the root before T,, since x is a descendant of the 
root and, by rule (3), all transactions must lock the root. By rule (2), this 
implies that T, unlocked the root before T, locked the root. A simple induction 
argument shows that this property also holds for paths in the SG. That is, if 
there is a path from T, to T, in SG, then T, unlocked the root before T, locked 
the root. 

“This should not be confused with the lock instance graph, used in connection with muiti- 
granularity locking. 
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Suppose the SG has a cycle T, s . * * -+ T, + T,. By the previous para- 
graph, it follows that T, unlocked the root before T, locked the root. This 
violates rule (5), so the cycle cannot exist. Thus, we have proved the following 
theorem. 

Theorem 3.9: The tree locking scheduler produces serializable execu- 
tions. 0 

TL scheduling is reminiscent of a scheduling policy used to avoid dead- 
locks in operating systems where processes must obtain resources in a 
predefined linear order. TL schedulers share the property of deadlock freedom 
with this policy, To see this, first note that if T; is waiting to lock the root, it 
can’t be involved in a deadlock (since it has no locks and therefore no transac- 
tion could be waiting for it). Now, suppose Ti is waiting for a lock currently 
held by Tj on a node other than the root. By the argument just given, Tj 
unlocks the root before T; locks it. Thus, by induction, if the WFG has a cycle 
containing Ti, Ti unlocks the root before it locks the root, a contradiction. So, 
TL schedulers are not prone to deadlocks. 

In addition to deadlock avoidance, another benefit of TL is that locks can 
be released earlier than in 2PL. For any data item X, once a transaction has 
locked all of x’s children that it will ever lock, it no longer needs ali[x] to satisfy 
rule (3), and can therefore release it. The problem is, how does the scheduler 
know that T; has locked all of x’s children that it needs? Clearly, if Ti has 
locked all children of X, then it has locked all those that it needs. However, 
other than this special case, the scheduler cannot determine that T, no longer 
needs ali[x] unless it receives some advice from Tts TM. Without this help, it 
can only safely release a transaction Ti’s locks when the transaction terminates. 
In this case transactions are (strictly) two phase locked and there is little point 
in enforcing the additional restriction of tree locking - except that we also get 
deadlock freedom. Therefore, TL only makes sense in those cases where the 
TM knows transactions’ access patterns well enough to tell the scheduler when 
to release locks. 

Releasing locks earlier than the end of the transaction is valuable for 
performance reasons. By holding locks for shorter periods, transactions block 
each other less frequently. Thus transactions are delayed less often due to lock- 
ing conflicts, and thereby have better response time. 

However, this benefit is only realized if transactions normally access nodes 
in DT in root-to-leaf order. If they don’t, then TL is imposing an unnatural 
ordering on their accesses, thereby forcing them to lock nodes before they’re 
ready to use them or to lock nodes that they don’t use at all. In this sense, TL 
could be reducing the concurrency among transactions. 

In addition, we may need to strengthen TL to ensure recoverability, strict- 
ness, or avoidance of cascading aborts. For example, to avoid cascading 
aborts, a transaction should hold its lock on each data item it writes until it 
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commits, which is more than what TL requires. For internal nodes, holding 
locks for longer periods can have a serious performance impact, since transac- 
tions must lock an internal node x to access any of x’s descendants. Fortu- 
nately, in many practical applications, most updates are to leaves of DT, which 
transactions can lock until commitment with little performance impact, We’ll 
look at one such application, B-trees, later in the section. 

Variations of Tree Locking 

TL can be generalized in several ways. First, we need not restrict a transaction 
to set its first lock on the root of DT. It is safe for it to begin by locking any 
data item in DT However, once it sets its first lock on some data item X, rule 
(3) implies that it can subsequently only lock data items in the subtree rooted 
at x (see Exercise 3.39). 

TL can also be generalized to distinguish between read and write locks. If 
each transaction sets either only read locks or only write locks, then the ordi- 
nary conflict rules between these locks are satisfactory for producing SR execu- 
tions. However, if a transaction can set both read and write locks, then 
problems can arise, because read locks can allow transactions to “pass” each 
other while moving down the tree. For example, suppose x is the root of the 
tree, y is a child of X, and z is a child of y. Consider the following sequence of 
events:j4 

In this execution, T, write locked x before T2, but T2 write locked z before T,, 
producing a non-SR execution. This was possible because T2 “passed” T, when 
they both held read locks on y. A solution to this problem is to require that for 
every path of data items x,, . . ., x,, if T, sets write locks on X, and x,, and sets 
read locks on the other data items on the path, then it obtains locks on all data 
items on the path before it releases locks on any of them. By holding locks this 
long, a transaction ensures that other transactions cannot pass it along this 
path. Another solution is to require that Iocks set by a transaction along a path 
are of nondecreasing strength. (See Exercise 3.40.) 

A third generalization of tree locking is dag locking (DL), in which data 
items are organized into a partial order rather than a hierarchy. That is, there is 
a rooted dag whose nodes are labelled by the data items. The DL scheduler 
must enforce the same rules (1) - (S), the only difference being 

3. Unless x: is the root, to obtain a lock on X, T, must be holding (at that 
time) a lock on some parent of x, and there must have been a time at 
which T, held locks on all parents of X. 

“Reca11 that ri,[x], 2uIJx], TUJX] and ZLW,[X] mean that T, has set a read lock on x, set a write 
lock on x, released its read lock on x, and released its write lock on x, respectively. 
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FIGURE 3-13 
A B-tree 
In this example, there is room for up to three keys in each internal node and up to five keys 
in each leaf. 

As with TL, the DL scheduler produces SR executions and is not prone to 
deadlocks (see Exercise 3.41). The two previous generalizations apply to this 
case too. 

B-Tree LockingIs 

An important application of tree locking is to concurrency control in tree- 
structured indices. The most popular type of search tree in database systems is 
B-trees. There are several specialized tree locking protocols specifically 
designed for B-trees, some of which we will describe. These protocols can also 
be applied to other types of search structures, such as binary trees and dynamic 
hash tables. 

ISThis subsection assumes a basic knowledge of B-trees; see [Bayer, McCreight 721, and [Comer 
791. We use the B+-tree variation in this section, which ,is the variation of choice for commercial 
products, such as IBM’s VSAM. 
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FIGURE 3-14 
A B-tree Insertion Causing a Split 
(a) Before inserting key 153. 
(b) After splitting L to make room for key 153. 

A B-tree consists of a set of nodes structured as a tree. Its purpose is to 
index a set of records of the form [key, data], where the key values are totally 
ordered and may consist, for example, of numbers or alphanumeric strings. 

Each node of a B-tree contains a sorted list of key values. For internal 
nodes, each pair of consecutive field vaiues defines a range of key values 
between two keys, k, and k,+l (see Fig. 3-13). For each such pair of consecu- 
rive values, there is a pointer to a subtree that contains all of the records whose 
key values are in the range defined by that pair. For leaf nodes, each key has 
the data part of the record associated with that key value (but no pointer). 
Since the data portion of records is uninterpreted by the B-tree algorithms of 
interest to us, we will ignore them in the following discussion and examples. 

The two B-tree algorithms that are important for this discussion are 
Search and Insert. (Delete leads to problems similar to those of Insert, so we 
will not treat it here.) The search of a B-tree for a key value begins at the root. 
Each node has information that directs the search to the appropriate child of 
that node. The search proceeds down one path until it reaches a leaf, which 
contains the desired key value. For example, a search for key 134 in Fig. 3-13 
(1) finds the key range [127, 301) in the root R, (2) follows the pointer to P, 
(3) finds the key range [127, 221) in node P, (4) follows the pointer to L, and 
(5) finds the key 134 in L.16 

To insert a record R in a B-tree, a program first searches for the leaf L that 
should contain the record. If there is room for R in L, then it inserts R there 
(properly sequenced). Otherwise, it allocates another node L’, moves half of 
L’s records from L to L’, and adds the minumum key in L’ and a pointer to L’ 

16The notation [a, 6) means the range of values from a to b that includes the value a but not the 
value 6. 
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in L’s parent (see Fig. 3-14). If L’s parent has no room for the extra key and 
pointer, then the program splits L’s parent in the same way that it split L. This 
splitting activity continues recursively up the tree until it reaches a node that 
has room for the pointer being added, or it splits the root, in which case it adds 
a new root. 

We want to implement Search and Insert as transactions.” We could use 
2PL for this purpose. But since Search and Insert begin by accessing the root of 
the tree, each such operation would effectively lock the entire tree. 

We can do somewhat better by using tree locking. Since Search only reads 
nodes, it sets read locks. Since Insert writes into a leaf L, it should certainly set 
a write lock on L. If L was full before the Insert began, then Insert will also 
write into some of L’s ancestors, and must set write locks on them as well. 
Unfortunately, Insert cannot determine whether it will need to write into 
nonleaf nodes until it actually reads L to determine if L is full. Since this 
happens at the end of its search down the tree, it doesn’t know which nodes to 
write lock until it has read all the nodes it will read. Herein lies the critical 
problem of B-tree locking. 

Exactly which nodes does Insert have to write lock? If L isn’t full, then it 
only write locks L. If L is full, then it will write into L’s parent, l? If P is full, 
then it will write into P’s parent, and so on. In general, if L is full, then Insert 
should set write locks on the path P,, . ,. , P,, L of ancestors of L (n 2 1) such 
that P, is not full and P, through P, are full. 

One way for Insert to do this is to set write locks during its search down 
the tree. It releases each write lock when it realizes that the lock is not needed. 
Insert does this as follows. Before reading a node N, it sets a write lock on that 
node. If N is not full, then N won’t be split. It therefore releases all locks it 
owns on N’s ancestors, since the insertion will not cause any of them to be 
written. After it has read L, it has write locked the appropriate path, and can 
proceed with its updating activity. 

This approach requires setting write locks before they are actually known 
to be needed. If internal nodes are not full, as is often the case in B-trees, then 
all of the write locks on internal nodes will be released. These locks needlessly 
generate conflicts during the search, thereby delaying the transaction. For this 
reason, it is probably better to delay the acquisition of write locks until it is 
known that they are needed. This more aggressive approach can be accom- 
plished by doing lock conversions. 

r’A user may want to regard Search and Insert as atomic operations nested within a larger 
transaction. This means that a Search or Insert must be atomic with respect to other Searches 
or Inserts issued by the same or different transactions. In this sense, Search and Insert are inde- 
pendent transactions. However, larger transactions that invoke multiple Searches and Inserts 
have ocher synchronization requirements. This opens a broader collection of issues, that of 
nested transactions, which is not treated in this book. See the Bibliographic Notes in Chapter 1 
for references. 
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FIGURE 3-l 5 
Links in a B-tree 

During its initial search procedure, Insert only sets read locks on internal 
nodes. It concludes the search by setting a write lock on L. If it discovers that L 
is full, then it converts the necessary read locks into write locks. So, starting at 
the node closest to the root that it must write lock, it proceeds down the tree 
converting its read locks to write locks. In this way, it only sets write locks on 
nodes that actually have to be written. 

Unfortunately, this modified protocol can lead to deadlock. For instance, 
two transactions may both be holding a read lock on a node and wanting to 
convert it to a write lock - a deadlock situation. One can avoid such a dead- 
lock by introducing a new lock type, called might-write. A might-write lock 
conflicts with a write or might-write lock, but not with a read lock. Instead of 
obtaining read locks on its first pass down the tree, Insert obtains might-write 
locks. When it reaches a non-full node, it releases its ancestors’ locks as before. 
After it reaches the desired leaf, it converts the might-write locks that it still 
owns to Write locks. This prevents two Inserts from locking the same node, 
and therefore prevents deadlocks on lock conversion. 

B-Tree Locking Using Links 

Lock contention can be reduced even further by departing from the lock 
coupling requirement of TL. Insert can be designed to write into each B-tree 
node independently, without owning a lock on the node’s parent. 

This algorithm requires that each node N have a link to its right sibling, 
denoted link(N). That is, link(N) points to the child of N’s parent, P, that 
follows N, as in Fig. S-15. If N is P’s rightmost child, then link(N) points to 
the first child of P’s right sibling (or, if P has no right sibling, then link(N) 
points to the first grandchild of the right sibling of P’s parent, etc.), Thus, all 
of the nodes in each level are linked in key order through link(N). Only the 
rightmost node on each level has a null link. 
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FIGURE 3-16 
The B-tree of Fig. 3-15 after Inserting Key 153 

Insert keeps these links up-to-date by adjusting them when it splits a node. 
Suppose Insert obtains a lock on node N, is ready to insert a value into N, 
but discovers that N is full. Then it splits N by moving the rightmost half 
of its contents to a newly allocated node N’. It sets link(N’) : = link(N) and 
link(N) : = N’, and then releases its lock on N (see Fig. 3-16, where N = L 
and N’ = L’). Notice that at this point, Insert owns no locks at all. Yet it now 
can obtain a lock on N’s parent, P, and add a pointer to N’ in P If it can’t 
add this pointer because P is full, it repeats the splitting process just de- 
scribed. Otherwise, it can simply insert the pointer and release the lock on I? 

A Search proceeds down the tree as before, but without lock coupling. 
That is, after it reads an internal node N to obtain the pointer that directs it to 
the appropriate child C of N, it can release its read lock on N before obtaining 
its read lock on C. This obviously creates a window during which an Insert can 
come along and update both N and C, thereby appearing to both precede the 
Search (with respect to C) and follow it (with respect to N). Normally, this 
would be considered non-SR. However, by exploiting the semantics of B-trees 
and the link fields, we can modify the Search procedure slightly to avoid this 
apparent nonserializability. 

The only way that Insert can upset Search’s activity is to modify N in a 
way that would have caused Search to follow a different path than the one it is 
about to take to C. Any other update to N is irrelevant to Search’s behavior. 
This can only happen if Insert splits C, thereby moving some of C’s contents to 
a new right neighbor C’ of C, and updating N to include a pointer to C’. If this 
occurred, then when Search looks in C, it may not find what it was looking for. 
However, in that case Search can look at C’ by following link(C). For example, 
suppose a Search is searching for key 189 in Fig. 3-15. It reads P, and releases 
its locks. Now an Insert inserts 153, producing the B-tree in Fig. 3-16. Key 
189 is now no longer in the node L where Search will look for it, based on the 
state of P that it read. 
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We therefore modify Search as follows. If Search is looking for value v in a 
node N and discovers that v is larger than any value in N, then it reads link(N), 
releases its lock on N, locks the node N’ pointed to by link(N), and reads N’. It 
continues to follow links in this way until it reaches a node IL’ such that it either 
finds in N the value v it is looking for or determines that v is smaller than the 
largest value in hr and therefore is not present in the tree. In the example of the 
preceding paragraph, Search will discover that the largest key in L is 145, so it 
will follow link(L), just in case L split after Search read 1? It will thereby find 
189 in L’ as desired. 

Notice that since Search and Insert each requests a lock only when it owns 
no locks, it cannot be a party to a deadlock. 
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ing, as did [Carey, Stonebraker 841. Multiversion systems were studied in [Carey, 
Stonebraker 843, [Kiessling, Landherr 833, and [Peinl, Reuter 831 (see Chapter 5). 
Mixtures of queries and updaters were studied in [Lin, Nolte 82a]. 

The results we have presented about locking performance can be found in [Tap, Good- 
man, Suri 851, but most of them can be found elsewhere too. Some were previously 
known to other researchers, and some were corroborated by later work. (See [Tay, 



EXERCISES 105 

Goodman, Suri 841 for an account of the agreements and contradictions among the 
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effect of shared locks was evaluated in [Lavenberg 841 and [Mitra 851. The model of 
nonuniform access we have described was introduced in [Mum, Krenz 771, and used in 
[Lin, Nolte 821. 

Lock coupling protocols for tree locking appeared in [Bayer, Schkolnick 771, [Kedem, 
Silberschatz 811, [Samadi 761, and [Silberschatz, Kedem 761. The linking method 
appeared in [Kung, Lehman 801 for binary trees, and was extended for B-trees in 
[Lehman, Yao 811. Other work on locking protocols for dynamic search structures 
includes [Buckley, Silberschatz 841, [Ellis 821, [Ford, Schultz, Jipping 841, [Goodman, 
Shasha 851, [Kedem 831, [Kwong, Wood 821, and [Manber, Ladner 841. 

EXERCISES 

3.1 Give an example of a serializable history that could not have been 
produced by a 2PL scheduler. 

3.2 Give an example of a non-SR execution that is two phased locked, 
except for one transaction that converts a write lock to a read lock. 

3.3 Suppose all transactions that write into the database are two phase 
locked, but read-only transactions may violate the two phase rule. In what 
sense will the database be kept in a consistent state? Is there any sense in 
which it will be inconsistent? If we dropped all read-only transactions 
from a history, would the resulting history be SR? Do queries read consis- 
tent data? 

3.4* Prove that every 2PL history H has the following property: There 
exists a serial history H, such that for every two transactions T; and Tj in 
H, if T; and Tj are not interleaved (see Exercise 2.12) in H and 7’i precedes 
Tj in H, then T; precedes Tj in H,. 

3.5” Give a serializability theoretic proof that if each transaction is two 
phase locked, releases its read locks before it terminates, and releases its 
write locks after it commits, then the resulting execution is strict. 
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3.6* Define a locked point of a transaction to be any moment at which it 
owns all of its locks; that is, it is a moment after it has performed its last 
lock operation and before it has released any lock. Using serializability 
theory, prove that for every history H produced by a 2PL scheduler there is 
an equivalent serial history in which transactions are in the order of their 
locked points in H. 

3.7 Design an efficient algorithm that finds and lists all cycles in a WFG. 
(The algorithm should be efficient in the sense that its running time is poly- 
nomial in the size of the graph and in the number of cycles in the graph.) 

3.8 Suppose T, is waiting for a lock on x held by T,. Now suppose Tk 
requests that lock on x and it too must wait. In general, is it better to add 
Tk + T,, irk + T,, or both to the WFG? Discuss the effect of this decision 
on the algorithm that schedules waiting requests after a lock is released. 

3.9 Consider a centralized DBS that uses 2PL and in which all transactions 
are sequential programs. Thus, no transaction can have more than one 
ourstanding Read or Write request that is blocked. Could a transaction be 
involved in more than one deadlock? Prove your answer. 

3.10 Suppose that if a lock request for x cannot be granted immediately, 
edges are added to the WFG from the blocked transaction to every transac- 
tion that owns a conflicting lock on X. Deadlock detection is then 
performed. If no deadlock is detected, then the request is added to the end 
of x’s lock queue. The queue is serviced in a first-come-first-served 
manner. Show that this method does not detect ail deadlocks. Propose a 
modified method that does. 

3.11 Let T, -+ . . . + T,, -+ T, be a cycle in a WFG. An edge T, + Tl is a 
chord of the cycle if T, and T, are nodes of the cycle and T, -+ T, is not an 
edge of the cycle. A cycle is elementary if it has no chords. Suppose we use 
a deadlock detector that finds all of the elementary cycles in a WFG, and 
breaks each such deadlock by aborting a victim in the cycle. Prove that this 
breaks all cycles in the WFG. 

3.12 In our description of Conservative 2PL, we assumed that a transaction 
predeclares the set of data items it reads or writes. Describe a 2PL sched- 
uler that does not predeclare its readset and writeset, yet is not subject to 
deadlocks. 

3.13 Write a program that implements a Strict 2PL scheduler. Prove that 
your program satisfies all of the conditions in Propositions 3.1-3.3. 

3.14’ To prove the correctness of 2PL, in Propositions 3.1-3-3 stated condi- 
tions that every 2PL history must satisfy. State the additional conditions 
that must be satisfied by every 2PL history that represents an execution of 
a Strict 2PL scheduler and of a Conservative 2PL scheduler. 
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3.15 Suppose we partition the lock table, and we assign a distinct sema- 
phore to each partition to ensure it is accessed atomically. Suppose each 
lock is assigned to a partition based on its data item name, so each transac- 
tion may own locks in multiple partitions. To release a transaction’s locks, 
the LM must access more than one partition. Since the LM may acquire 
more than one semaphore to do this, it may deadlock if two transactions 
release their locks concurrently. Give an example of the problem, and 
propose a solution to it. 

3.16 Instead of using an end-of-file marker as in Section 3.7, suppose we 
use fixed length records and maintain a count of the number of records in 
a file F. Give an example of a non-SR execution where transaction T, scans 
F, TL inserts a record into F, T, reads some other data item x, T2 writes X, 
both transactions are two phase locked, and neither transaction locks 
count. Explain why this is an example of the phantom problem. 

3.17 Consider a database consisting of one file, F. Each transaction begins 
by issuing a command “getlock where Q,” where Q is a qualification (i.e., 
a Boolean formula) that’s true for some records and false for others. The 
scheduler processes the Getlock command by write locking the set of all 
records in F that satisfy Q. The transaction can only read and modify 
records that were locked by its Getlock command. The transaction can 
insert a new record, which the scheduler write locks just before it inserts it. 
The scheduler holds a transaction’s locks until it commits. Does this lock- 
ing algorithm prevent phantoms ? If so, prove it correct. If not, show a 
non-SR execution. 

3.18 Suppose we modify the MGL protocol for dags so that Ti can set 
iwli[x] as long as it owns an iw lock on some parent (rather than all 
parents) of x. Prove or disprove that the resulting protocol is correct. 

3.19 Suppose we reverse the MGL protocol for dags: to set r&[x] or irli[x], 
Ti must have an ir or iw lock on all parents of X, and to set wll[x] or 
iw1Jx], Ti must have an iw lock on some parent of X. Prove that the result- 
ing protocol is correct. Under what conditions would you expect this 
protocol to outperform the MGL protocol for dags in Section 3.9? 

3.20 The MGL protocol for lock instance graphs that are trees is limited to 
read and write locks. Generalize the protocol so that it will work for arbi- 
trary lock types (e.g., Increment and Decrement). 

3.21 Rule (2) of the MGL protocol requires that if a transaction has a w 
lock or iw lock on a data item X, then it must have an iw lock on x’s 
parent. Is it correct for it to hold a w lock on x’s parent instead? Is there a 
case in which it would be useful to set such a w lock if the lock instance 
graph is a tree? What about dags? 

3.22 In the dag lock type graph in Fig. 3-7, a lock on an index entry locks 
all fields of all records that the entry points to. Suppose we distinguish 
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indexed fields from non-indexed fields. A lock on an index entry should 
only lock the indexed field of the records it points to. Other fields of these 
records can be concurrently locked. Design a lock instance dag that imple- 
ments this approach and argue that it has the intended effect, assuming the 
dag MGL protocol. 

3.23 Prove that the MGL protocol for dag lock instance graphs is correct in 
the sense of Theorem 3.7. 

3.24 In the MGL protocol for lock instance graphs that are trees, suppose 
we allow a transaction to release a lock on a data item x before it releases 
its lock on some child of x. Assuming the scheduler uses Basic 2PL, give an 
example of an incorrect execution that can result from this. 

3.25 In Section 3.11, we argued that if no transaction spontaneously aborts 
and every lock obtained by a transaction corresponds to a database opera- 
tion (i.e., no intention locks), then there are no phantom deadlocks. Are 
phantom deadlocks possible if we allow intention locks? Prove your 
answer. 

3.26 Consider a distributed DBS. Give an example execution of two trans- 
actions which is not SR and satisfies the 2PL rules locally (i.e., at each site, 
considered individually) though not globally (i.e., considering all sites 
together). In your example, be sure to give the precise sequence in which 
locks are set and released by the schedulers as well as the sequence in 
which Reads and Writes are executed. 

3.27 In this problem, we will simplify the path pushing algorithm for 
distributed deadlock detection. Assume that each transaction is a sequen- 
tial process; thus, it is only active (unblocked) at one site at a time. 
Suppose we augment the WFG at each site, say A, with an additional node 
labelled EX for “external.” For each transaction T,, if T, was formerly 
executing at site A and now is stopped waiting for a response from some 
other site, then add an edge T, -+ EX. If T, is executing at A and was 
formerly executing at any other site, then add an edge EX -+ T,. 

We now modify the algorithm as follows. Site A periodically detects cycles 
in its WFG. If a cycle does not contain the node EX, then a transaction is 
aborted. For each cycle EX + T, -+ * * * + T, + EX, site A sends the path 
T,-+... -+ TT to the site from which T, is waiting for a response. When a 
site receives a list of paths from another site, it adds those edges to its WFG 
and performs the above steps. Prove that this algorithm detects all dead- 
lock cycles. 

3.28 Design an approach to deleting edges from each site’s WFG in the path 
pushing deadlock detection algorithm of Section 3.11. 

3.29 In timestamp-based deadlock detection, we assigned each transaction 
a unique timestamp. Suppose we do not require transactions’ timestamps 
to be unique. Do the Wait-Die and Wound-Wait methods still prevent 
deadlock? Do they prevent cyclic restart? 
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3.30 Suppose we alter the definition of Wait-Die as follows: 

if ts(T;) > ts(Tj) then Ti waits else abort Ti. 

Does this method prevent deadlock? Does it prevent cyclic restart? Back 
up your claims with proofs or counterexamples. Compare the dynamic 
behavior of this method with standard Wait-Die and Wound-Wait. 

3.31 Suppose a transaction is assigned a new timestamp every time it is 
aborted and restarted. Using Wound-Wait for deadlock detection, give an 
example of two transactions Ti and Tj that cyclically restart each other 
using this method. If possible, design them so they “self-synchronize” in 
the sense that even with small variations in transaction execution time and 
communications delay, they still experience cyclic restart. 

3.32 Design a hybrid deadlock detection and prevention algorithm that, to 
the extent possible, uses WFG cycle detection locally at each site, and uses 
timestamp-based prevention to avoid global deadlocks. 

3.33 In Wound-Wait timestamp-based deadlock prevention, suppose that 
when Ti wounds Tj, Tj aborts only if it is waiting, or later tries to wait, for 
another lock. Does this version of Wound-Wait prevent deadlock? Prove 
your answer. 

3.34 Suppose we partition the set of sites in a distributed DBS into regions. 
Each site has a local deadlock detector. Each region has a global deadlock 
detector to which its sites send their WFGs. There is also a system-wide 
deadlock detector to which all the regional deadlock detectors send their 
WFGs. This arrangement of deadlock detectors is called hierarchical dead- 
lock detection. Under what circumstances would you expect hierarchical 
deadlock detection to perform better or worse than a single global dead- 
lock detector? Is hierarchical deadlock detection subject to phantom dead- 
locks under different conditions than a single global deadlock detector? 

3.35 Suppose we modify the hierarchical deadlock detector of the previous 
problem as follows. Define a transaction to be local if it only accesses data 
at one site. Each site constructs a locally compressed WFG by taking the 
transitive closure of its WFG and then deleting all nodes corresponding to 
local transactions (along with edges that are incident with those nodes). 
Each site periodically sends its locally compressed WFG (not its full WFG) 
to its regional deadlock detector. Each regional deadlock detector also 
does “local” compression, where in this case “local” means local to the set 
of sites in the region. Each regional deadlock detector periodically sends 
its locally compressed WFG to the system-wide deadlock detector. Does 
this deadlock detection scheme detect all deadlocks? Might it detect a 
phantom deadlock? Prove your answers. 

3.36 Let k, N, and D be as defined in Section 3.12. If the deadlock rate is 
low, so that most transactions terminate without restarts, then a transac- 
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tion has k/2 locks on average. Assume all locks are write locks, and lock 
requests are uniformly distributed over the database. 

a. What is the probability of conflict per request? 
b. What is the probability that a transaction will encounter a conflict? 
c. Suppose k = 1 if D = 2, and k = 2 if D = 5. Let N = 2. Compute 

the probabilities in (a) and (b) for D = 2 and D = 5. Note that one 
probability decreases while the other increases. 

d. Show that, if kN/2D is small, then the probabiIity in (b) is kZN/2D 
approximately. Note the relationship with the DC-workload. 

3.37 Assume again the conditions in Exercise 3.37. Let R be the response 
rime of a transaction. If we assume that when a transaction is blocked, 
there is no other transaction waiting for the same lock, then the waiting 
time for the lock is R/2 on average (since the deadlock rate is low). Now 
let T be the response time of a transaction if the concurrency control were 
switched off. 

a. Show that (with the concurrency control switched on) 

where p is the probability of conflict per request, and iI k - r &k;r!!b 
k r. 

b. Using the identity 
c 0 

T F p’ (1 -P)~-’ = kp, and the probability of 
r=l 

conflict from Problem 3.37, deduce that R = T/ l- 
( s#J* 

c. Little’s Law from elementary queueing theory now implies that the 

throughput is N l- 
T( %I* 

Does this formula predict DC-thrashing? 

d. How does resource contention affect the formulas in (b) and (c)? 

3.38 Consider a DBS that uses a Strict 2PL scheduler. In the following, 
throughput (i.e., user demand) is the same before and after the change. 

a. The code of the transactions running on a particular system is 
changed, but the number of locks (all of which are write locks) 
required by a transaction is unaffected. The change results in an 
increase in response time. Give two possible reasons. 

6. A system is running a mixture of queries and updates. (Queries only 
set read locks, whereas updates set write locks.) Whenever the propor- 
tion of queries increases, overall response time becomes worse. Give 
three possible reasons. 
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c. A certain portion of a database is identified as a high contention area, 
so the granularity for this portion was refined. However, response 
time becomes worse. Give three possible reasons. 

3.39 Modify the TL protocol so that a transaction need not begin by lock- 
ing the root of DT. Prove that the modified protocol is correct. 

3.40 Extend the TL protocol to handle read locks and write locks. Prove 
the resulting protocol produces SR executions and is free of deadlocks. 

3.41 Prove that the DL protocol produces SR executions and is free of 
deadlocks. 

3.42 Do Exercise 3.41 for an arbitrary set of lock types with its associated 
compatibility matrix. 

3.43 Extend the various versions of B-tree locking in Secion 3.13 to handle 
the deletion of nodes. 
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