
1 
THE PROBLEM 

1 .l TRANSACTIONS 

Concurrency control is the activity of coordinating the actions of processes 
that operate in parallel, access shared data, and therefore potentially interfere 
with each other. Recovery is the activity of ensuring that software and hard- 
ware failures do not corrupt persistent data. Concurrency control and recovery 
problems arise in the design of hardware, operating systems, real time systems, 
communications systems, and database systems, among others. In this book, 
we will explore concurrency control and recovery problems in database 
systems. 

We will study these problems using a model of database systems. This 
model is an abstraction of many types of data handling systems, such as data- 
base management systems for data processing applications, transaction 
processing systems for airline reservations or banking, and file systems for a 
general purpose computing environment. Our study of concurrency control 
and recovery applies to any such system that conforms to our model. 

The main component of this model is the transaction. Informally, a trans- 
action is an execution of a program that accesses a shared database. The goal 
of concurrency control and recovery is to ensure that transactions execute 
atomically, meaning that 

1. each transaction accesses shared data without interfering with other 
transactions, and 

2. if a transaction terminates normally, then ail of its effects are made 
permanent; otherwise it has no effect at all. 

The purpose of this chapter is to make this model precise. 
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In this section we present a user-oriented model of the system, which 
consists of a database that a user can access by executing transactions. In 
Section 1.2, we explain what it means for a transaction to execute atomically 
in the presence of failures. In Section 1.3, we explain what it means for a trans- 
action to execute atomically in an environment where its database accesses can 
be interleaved with those of other transactions. Section 1.4 presents a model of 
a database system’s concurrency control and recovery components, whose goal 
is to realize transaction atomicity. 

Database Systems 

A database consists of a set of named data items. Each data item has a value. 
The values of the data items at any one time comprise the state of the database. 

In practice, a data item could be a word of main memory, a page of a disk, 
a record of a file, or a field of a record. The size of the data contained in a data 
item is called the gratzularity of the data item. Granularity will usually be 
unimportant to our study and we will therefore leave it unspecified. When we 
leave granularity unspecified, we denote data items by lower case letters, typi- 
cally X, y, and Z. 

A database s~istenz (DSS)’ is a collection of hardware and software 
modules that support commands to access the database, called database opera- 
tions (or simply operations). The most important operations we will consider 
are Read and Write. Read(x) returns the value stored in data item X. Write(x, 
val) changes the value of x to val. We will also use other operations from time 
to time. 

The DBS executes each operation atomically. This means that the DBS 
behaves as if it executes operations sequentially, that is, one at a time. To 
obtain this behavior, the DBS might actual/y execute operations sequentially. 
However, more typically it will execute operations concurrently That is, there 
tnay be rimes when it is executing more than one operation at once. However, 
even if it executes operations concurrently, the final effect must be the same as 
some sequential execution. 

For example, suppose data items x and 4’ are stored on two different 
devices. The DBS might execute operations on x and y in this order: 

1. execute Read(x); 

2. after step (I) is finished, concurrently execute Write(x, 1) and Read(y); 

3. after step (2) is finished, execute Write(y, 0). 

AIthough Write(x, 1) and Read(y) were executed concurrently, they may 
be regarded as having executed atomically. This is because the execution just 

‘We use rhe abbreviation DBS, instead of the more conventional DBhfS, to emphasize thar a 
DBS in our sense maI- be much less than an integrated database management system. For exam- 
ple, it may only be a simple file system with transaction management capabllities. 
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given has the same effect as a sequential execution, such as Read(x), Write(x, 
l), Read(y), Write(y, 0). 

The DBS also supports transaction operations: Start, Commit, and Abort. 
A program tells the DBS that it is about to begin executing a new transaction 
by issuing the operation Start. It indicates the termination of the transaction by 
issuing either the operation Commit or the operation Abort. By issuing a 
Commit, the program tells the DBS that the transaction has terminated 
normally and all of its effects should be made permanent. By issuing an Abort, 
the program tells the DBS that the transaction has terminated abnormally and 
all of its effects should be obliterated. 

A program must issue each of its database operations on behalf of a partic- 
ular transaction. We can model this by assuming that the DBS responds to a 
Start operation by returning a unique transaction identifier. The program then 
attaches this identifier to each of its database operations, and to the Commit or 
Abort that it issues to terminate the transaction. Thus, from the DBS’s view- 
point, a transaction is defined by a Start operation, followed by a (possibly 
concurrent) execution of a set of database operations, followed by a Commit 
or Abort. 

A transaction may be a concurrent execution of two or more programs. 
That is, the transaction may submit two operations to the DBS before the DBS 
has responded to either one. However, the transaction’s last operation must be 
a Commit or Abort. Thus, the DBS must refuse to process a transaction’s data- 
base operation if it arrives after the DBS has already executed the transaction’s 
Commit or Abort. 

Transaction Syntax 

Users interact with a DBS by invoking programs. From the user’s viewpoint, a 
transaction is the execution of one or more programs that include database 
and transaction operations. 

For example, consider a banking database that contains a file of customer 
accounts, called Accounts, each entry of which contains the balance in one 
account. A useful transaction for this database is one that transfers money 
from one account to another. 

Procedure Transfer begin 
Start; 
input(fromaccount, toaccount, amount); 
/’ This procedure transfers “amount” from “fromaccount” into “toaccount.’ ” 
temp : = Read(Accounts[fromaccount]); 
if temp < amount then begin 

output( “insufficient funds”); 
Abort 

end 
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else begin 
Write(Accounts[fromaccount], temp - amount); 
temp : = Read(Accounts[toaccount]); 
WritefAccounts[toaccount], temp + amount); 
Commit; 
output( “transfer completed”); 

end; 
return 

end 

“Transfer’! illustrates the programming language we will use in examples. 
It includes the usual procedure declaration (Procedure procedure-name begin 
procedure-body end), assignment statement (variable : = expression), a condi- 
tional statement (if Boolean-expression then statement else statement), input 
(which reads a list of vaIues from a terminal or other input device and assigns 
them to variables), output (which lists values of constants or variables on a 
terminal or other output device), begin-end brackets to treat a statement list as 
a single statement (begin statement-list end), a statement to return from a 
procedure (return), and brackets to treat text as a comment (/ * comment * /). 
We use semicolons as statement separators, in the style of Algol and Pascal. 

The choice of language for expressing transactions is not important to our 
study of concurrency control and recovery. In practice, the language could be a 
database query language, a report writing language, or a high level program- 
ming language augmented with database operations. No matter how the trans- 
action is expressed, it must eventualIy be translated into programs that issue 
database operations, since database operations are the only way to access the 
database. We therefore assume that the programs that comprise transactions 
are written in a high level language with embedded database operations. 

Transfer is an unrealistic program in that it doesn’t perform any error 
checking, such as testing for incorrect input. Although such error checking is 
essential if application programs are to be reliable, it is unimportant to our 
understanding of concurrency control and recovery probIems. Therefore, to 
keep our example programs short, we will ignore error checking in those 
programs. 

Commit and Abort 

After the DBS executes a transaction’s Commit (or Abort) operation, the trans- 
action is said to be committed (or aborted). A transaction that has issued its 
Start operation but is not yet committed or aborted is called active. A transac- 
tion is uncommitted if it is aborted or active. 

A transaction issues an Abort operation if it cannot be completed correctly, 
The transaction itself may issue the Abort because it has detected an error from 
which it cannot recover, such as the “insufficient funds” condition in Transfer. 



1.1 TRANSACTIONS 5 

Or the Abort may be “imposed” on a transaction by circumstances beyond its 
control. 

For example, suppose a system failure interrupts the execution of a Trans- 
fer transaction after it debited one account but before it credited the other. 
Assuming Transfer’s internal state was lost as a consequence of the failure, it 
cannot continue its execution. Therefore, when the system recovers, the DBS 
should cause this execution of Transfer to abort. In such cases, we still view the 
Abort to be an operation of the transaction, even though the DBS actually 
invoked the operation. 

Even in the absence of system failures, the DBS may decide unilaterally to 
abort a transaction. For example, the DBS may discover that it has returned an 
incorrect value to transaction T in response to T’s Read. It may discover this 
error long after it actually processed the Read. (We’ll see some examples of 
how this may happen in the next section.) Once it discovers the error, it’s too 
late to change the incorrect value, so it must abort T. 

When a transaction aborts, the DBS wipes out all of its effects. The pros- 
pect that a transaction may be aborted calls for the ability to determine a point 
in time after which the DBS guarantees to the user that the transaction will not 
be aborted and its effects will be permanent. For example, in processing a 
deposit through an automatic teller machine, a customer does not want to 
leave the machine before being assured that the deposit transaction will not be 
aborted. Similarly, from the bank’s viewpoint, in processing a withdrawal the 
teller machine should not dispense any money before making certain that the 
withdrawal transaction will not be aborted. 

The Commit operation accomplishes this guarantee. Its invocation 
signifies that a transaction terminated “normally” and that its effects should be 
permanent. Executing a transaction’s Commit constitutes a guarantee by the 
DBS that it will not abort the transaction and that the transaction’s effects will 
survive subsequent failures of the system. 

Since the DBS is at liberty to abort a transaction T until T commits, .the 
user can’t be sure that T’s output will be permanent as long as T is active. 
Thus, a user should not trust T’s output until the DBS tells the user that T has 
committed. This makes Commit an important operation for read-only transac- 
tions (called queries) as well as for transactions that write into the database 
(called update transactions or updaters). 

The DBS should guarantee the permanence of Commit under the weakest 
possible assumptions about the correct operation of hardware, systems soft- 
ware, and application software. That is, it should be able to handle as wide a 
variety of errors as possible. At least, it should ensure that data written by 
committed transactions is not lost as a consequence of a computer or operating 
system failure that corrupts main memory but leaves disk storage unaffected. 
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Messages 

We assume that each transaction is self-contained, meaning that it performs its 
computation without any direct communication with other transactions. 
Transactions do communicate indirectly, of course, by storing and retrieving 
data in the database. However, this is the only way they can affect each other’s 
execution. 

To ensure transaction atomicity, the DBS must control all of the ways that 
transactions interact. This means that the DBS must mediate each transaction’s 
operations that can affect other transactions. In our model, the only such oper- 
ations are accesses to shared data. Since a transaction accesses shared d,lta by 
issuing database operations to the DBS, the DBS can control all such actions, 
as required. 

In many systems, transactions are allowed to communicate by sending 
messages. We allow such message communication in our model, provided that 
those messages are stored in the database. A transaction sends or receives a 
message by writing or reading the data item that holds the message. 

This restriction on message communication only applies to messages 
hetuwn transactions. Tvvo or more processes that are executing on behalf of 
the same transaction can freely exchange messages, and those messages need 
not be stored in the database. In general, a transaction is free to control its 
internal execution using any available mechanism. Only interactions between 
different transactions need to be controlled by the DBS. 

1.2 RECOVERABILITY 

The recovery system should make the DBS behave as if the database contains 
all of the effects of committed transactions and none of the effects of uncom- 
mitted ones. If transactions never abort, recovery is rather easy. Since ail trans- 
actions eventually commit, the DBS simply executes database operations as 
they arrive. So to understand recovery, one must first look at the processing of 
,\borts. 

When a transaction aborts, the DBS must wipe out its effects. The effects 
of a transaction Tare of two kinds: effects on data, that is, values that Twrote 
in the database; and effects on other transactions, namely, transactions that 
read values written by T. Both should be obliterated. 

The DBS should remove T’s effects by restoring, for each data item x 
updated by T, the value x would have had if T had never taken place. W’e say 
that the DBS undoes T’s Write operations. 

The DBS should remove T’s effects by aborting the affected transactions. 
Aborting these transactions may trigger further abortions, a phenomenon 
called cascading abort. 

For example, suppose the initial values of x and 4’ are 1, and suppose 
transactions 7, and T? issue operations that the DBS executes in the following 
order: 
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Write,(x, 2); Read?(x); Write,(y, 3). 

The subscript on each Read and Write denotes the transaction that issued it. 
Now, suppose T, aborts. Then the DBS undoes Write,(x, 2), restoring x to the 
value 1. Since T1 read the value of x written by T,, T, must be aborted too, a 
cascading abort. So, the DBS undoes Write,& 3), restoring y to 1. 

Recall that by committing a transaction, the DBS guarantees that it will 
not subsequently abort the transaction. Given the possibility of cascading 
aborts, the DBS must be careful when it makes that guarantee. Even if a trans- 
action T issues its Commit, the DBS may still need to abort T, because T may 
yet be involved in a cascading abort. This will happen if Tread a data item 
from some transaction that subsequently aborts. Therefore, T cannot commit 
until all transactions that wrote values read by Tare guaranteed not to abort, 
that is, are themselves committed. Executions that satisfy this condition are 
called recoverable. 

This is an important concept so let’s be more precise. We say a transaction 
Tj reads x from transaction T, in an execution, if 

2. Tj reads x after Ti has written into it; 

2. T, does not abort before T1 reads x; and 

3. every transaction (if any) that writes x between the time Tj writes it and 
Tj reads it, aborts before Tj reads it. 

A transaction Tj reads from Ti if Tj reads some data item from T;. An execu- 
tion is recoverable if, for every transaction T that commits, T’s Commit 
follows the Commit of every transaction from which Tread. 

Recoverability is required to ensure that aborting a transaction does not 
change the semantics of committed transactions’ operations. To see this, let’s 
slightly modify our example of cascading aborts: 

Write,(x, 2); Read,(x); Write,(y, 3); Commit,. 

This is not a recoverable execution, because TL read x from T, and yet the 
Commit of T, does not follow the Commit of T, (which is still active). The 
problem is what to do if T, now aborts. We can leave T, alone, which would 
violate the semantics of T,‘s Read(x) operation; Read,(x) actually returned the 
value 2, but given that T, has aborted, it should have returned the value that x 
had before Write,(x, 2) executed. Alternatively, we can abort T?, which would 
violate the semantics of T2’s Commit. Either way we are doomed. However, if 
the DBS had delayed Commit,, thus making the execution recoverable, there 
would be no problem with aborting T2. The system, not having processed TL’s 
Commit, never promised that it would not abort Tz. In general, delaying the 
processing of certain Commits is one way the DBS can ensure that executions 
are recoverable. 
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Terminal l/O 

Intuitively, an execution is recoverable if the DBS is always able to reverse the 
effects of an aborted transaction on other transactions. The definition of 
recoverable relies on the assumption that all such effects are through Reads 
and Writes. Without this assumption, the definition of recoverable does not 
correspond to its intuition. 

There is one other type of interaction between transactions that calls the 
definition into question, namely, interactions through users. A transaction can 
interact with a terminal or other user-to-computer I / 0 device using input and 
output statements, Since a user can read the output of one transaction and, 
using that information, select information to feed as input to another transac- 
tion, input and output statements are another method by which transactions 
can indirectly communicate. 

For example, suppose a transaction T, writes output to a terminal before it 
commits. Suppose a user reads that information on the terminal screen, and 
based on it decides to enter some input to another transaction T1. Now 
suppose T, aborts. Indirectly, T2 is executing operations based on the output of 
T, Since T, has aborted, T2 should abort too, a cascading abort. Unfortu- 
narely, the DBS doesn’t know about this dependency between T, and T1, and 
therefore isn’t in a position to ensure automatically that the cascading abort 
takes place. 

In a sense, the error here is really the user’s. Until the DBS writes the 
message “Transaction T, has committed” on the user’s terminal, the user 
should not trust the output produced by T,. Until that message appears? the 
user doesn’t know whether T, will commit; it may abort and thereby invalidate 
its terminal output. In the previous paragraph, the user incorrectly assumed 
T,‘s terminal output would be committed, and therefore prematurely propa- 
gated T,‘s effects to another transaction. 

The DBS can prevent users from prematurely propagating the effects of an 
uncommitted transaction T by deferring T’s output statements until after T 
commits. Then the user wil1 onIy see committed output. 

It is often acceptable for the DBS to adopt this deferred output approach. 
In particular, it works well if each transaction requests all of its input from the 
user before it produces any output. But if a transaction T writes a message to 
a terminal and subsequently requests input from the user, deferring output puts 
the user in an untenable position. The user’s response to T’s input request may 
depend on the uncommitted output that he or she has not yet seen. In this case, 
the DBS must release the output to the terminal before T commits. 

Suppose the DBS does release T’s output and the user then responds to T’s 
input request. Now suppose T aborts. Depending on the reason why T 
aborted, the user may choose to try executing Tagain. Since other transac- 
tions may have executed between the time T aborted and was restarted, T’s 
second execution may be reading a different database state than its first execu- 
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tion. It may therefore produce different output, which may suggest to the 
user that different input is required than in T’s first execution. Therefore, in 
reexecuting T, the DBS cannot reuse the terminal input from T’s first 
execution. 

Avoiding Cascading Aborts 

Enforcing recoverability does not remove the possibility of cascading aborts. 
On the contrary, cascading aborts may have to take place precisely to guaran- 
tee that an execution is recoverable. Let’s turn to our example again: 

Write,(x, 2); Read,(x); Write,(y, 3); Abort,. 

This is a recoverable execution. T, must abort because if it ever committed, the 
execution would no longer be recoverable. 

However, the prospect of cascading aborts is unpleasant. First, they 
require significant bookkeeping to keep track of which transactions have read 
from which others. Second, and more importantly, they entail the possibility of 
uncontrollably many transactions being forced to abort because some other 
transaction happened to abort. This is very undesirable. In practice, DBSs are 
designed to avoid cascading aborts. 

We say that a DBS avoids cascading aborts (or is cascadeless) if it ensures 
that every transaction reads only those values that were written by committed 
transactions. Thus, only committed transactions can affect other transactions. 

To achieve cascadelessness, the DBS must delay each Read(x) until all 
transactions that have previously issued a Write(x, val) have either aborted or 
committed. In doing so, recoverability is also achieved: a transaction must 
execute its Commit after having executed all its Reads and therefore after all 
the Commits of transactions from which it read. 

Strict Executions 

Unfortunately, from a practical viewpoint, avoiding cascading aborts is not 
always enough. A further restriction on executions is often desirable. To moti- 
vate this, consider the question of undoing a transaction’s Writes. Intuitively, 
for each data item x that the transaction wrote, we want to restore the value x 
would have had if the transaction had never taken place. Let’s make this more 
precise. Take any execution involving a transaction T that wrote into x. 
Suppose Taborts. If we assume that the execution avoids cascading aborts, no 
other transaction needs to be aborted. Now erase from the execution in ques- 
tion all operations that belong to T. This results in a new execution. “The value 
that x would have had if T had never occurred” is precisely the value of x in 
this new execution. 

For example, consider 

Write,(x, 1); Write,(y, 3); Write,(y, 1); Commit,; Read,(x); Abort,. 
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The execution that resuIts if we erase the operations of Tz is 

Write,(x, 1); Write,(y, 3); Commit,. 

The value of y after this execution is obviously 3. This is the value that should 
be restored for y when T, aborts in the original execution. 

The before image of a Write(x, val) operation in an execution is the value 
that ?c had just before this operation. For instance, in our previous example the 
before image of Write>(y, 1) is 3. It so happens that this is also the value that 
should be restored for y when T, (which issued Write,(y, 1)) aborts. It is very 
convenient to implement Abort by restoring the before images of all Writes of a 
transaction. Many DBSs work this way. Unfortunately, this is not always 
correct, unIess some further assumptions are made about executions. The 
following example illustrates the problems. 

Suppose the initial value of x is 1, Consider the execution 

Write,(x, 2); WriteJx, 3); Abort,. 

The before image of Write,(x, 2) is 1, the initial value of x. Yet the value of x 
that should be “restored” when T, aborts is 3, the value written by r,. This is a 
case where aborting T, should not really affect x, because x was overwritten 
after it was written by T,, Notice that there is no cascading abort here, because 
T? wrote x without having previously read it. 

To take the example further, suppose that TL now aborts as well. That is, 
we have 

Write,(x, 2); Write,(x, 3); Abort,; Abort,. 

The before image of Write,(x, 3) is 2, the value written by ir,. However, the 
value of x after Write,(x, 3 j is undone should be 1, the initial value of x (since 
both updates of x have been aborted). In this case the problem is that the 
before image was written by an aborted transaction. 

This example illustrates discrepancies between the values that should be 
restored when a transaction aborts and the before images of the Writes issued 
by that transaction. Such discrepancies arise when two transactions, neither of 
which has terminated, have both written into the same data item. Note that if 
T, had aborted before TL wrote x (that is, if Abort, and Write,(x, 3) were inter- 
changed in the previous example) there would be no problem, The before 
image of Write:(x, 3) would then be 1, not 2, since the transaction that wrote 2 
wouid have already aborted. Thus when T, aborts, the before image of 
Write,(x, 3) would be the value that should be restored for x. Similarly if 7, 
had committed before T? wrote x, then the before image of Write,(x, 3) would 
be 2, again the value that should be restored for x if Tz aborts. 

We can avoid these problems by requiring that the execution of a Write(x, 
val) be delayed until all transactions that have previously written x are either 
committed or aborted. This is similar to the requirement that was needed to 
avoid cascading aborts. In that case we had to delay all Read(x) operations 
until all transactions that had previously written x had either committed or 
aborted. 
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Executions that satisfy both of these conditions are called strict. That is, a 
DBS that ensures strict executions delays both Reads and Writes for x until all 
transactions that have previously written x are committed or aborted. Strict 
executions avoid cascading aborts and are recoverable. 

The requirement that executions be recoverable was born out of purely 
semantic considerations. Unless executions are recoverable, we cannot ensure 
the integrity of operation semantics. However, pragmatic considerations have 
led us to require an even stronger condition on the executions, namely, strict- 
ness. In this way cascading aborts are eliminated and the Abort operation can 
be implemented using before images.Z 

1.3 SERBAQlZABlElTY 

Concurrency Control Problems 

When two or more transactions execute concurrently, their database opera- 
tions execute in an interleaved fashion. That is, operations from one program 
may execute in between two operations from another program. This interleav- 
ing can cause programs to behave incorrectly, or interfere, thereby leading to 
an inconsistent database. This interference is entirely due to the interleaving. 
That is, it can occur even if each program is coded correctly and no component 
of the system fails. The goal of concurrency control is to avoid interference and 
thereby avoid errors. To understand how programs can interfere with each 
other, let’s look at some examples. 

Returning to our banking example, suppose we have a program called 
Deposit, which deposits money into an account. 

Procedure Deposit begin 
Start; 
input( account#, amount); 
temp : = Read(Accounts[account#]); 
temp : = temp + amount; 
Write(Accounts[account#], temp); 
Commit 

end 

Suppose account 13 has a balance of $1000 and customer 1 deposits $100 
into account 13 at about the same time that customer 2 deposits $100,000 into 
account 13. Each customer invokes the Deposit program thereby creating a 
transaction to perform his or her update. The concurrent execution of these 
Deposits produces a sequence of Reads and Writes on the database, such as 

21n [Gray et al. 7.51, strict executions are called degree 2 consistent. Degree I consistency means 
that a transaction may not overwrite uncommitted data, although it may read uncommitted 
data. Degree 3 consistency roughly corresponds to serializability, which is the subject of the 
next section. 
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Read,(Accounts[ 131) returns the value $1000 

Read,(Accounts[l3]) returns the value $1000 

Write,(Accounts[l3], $101,000) 

Commit, 
Write,(Accounts[l3], $1100) 
Commit, 

The result of this execution is that Accounts[l3] contains $1100. 
Although customer 2’s deposit was successfully accomplished, its interference 
with customer l’s execution of Deposit caused customer 2’s deposit to be lost. 
This lost updczte phenomenon occurs whenever two transactions, while 
attempting to modify a data item, both read the item’s old value before either 
of them writes the item’s new value. 

Another concurrency control problem is illustrated by the following 
program, called PrintSum, which prints the sum of the balances of two 
accounts. 

Procedure PrintSum begin 
Start; 
input(account1, account2); 
templ : = Read( Accounts[ accountl]); 
output(temp1); 
temp2 : = Read(Accounts[account2]); 
output(temp2); 
templ := templ + temp2; 
output(temp1); 
Commit 

end 

Suppose accounts 7 and 86 each have a balance of $200, and customer 3 
prints the balances in accounts 7 and 86 (using PrintSum) at about the same 
time that customer 4 transfers $100 from account 7 to account 86 (using 
Transfer, discussed previously under Transaction Syntax). The concurrent 
execution of these two transactions might lead to the following execution of 
Reads and Writes. 

Read,(Accounts[7]) returns the value $200 
Write,(Accounts[7], $100) 
Read,(Accounts[7]) returns the value $100 
Read,(Accounts[86]) returns the value $200 

Read,(Accounts[86]) returns the value $200 
Write,(Accounts[86], $300) 
Commit4 
Commit, 
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Transfer interferes with PrintSum in this execution, causing PrintSum to print 
the value $300, which is not the correct sum of balances in accounts 7 and 86. 
Printsum did not capture the $100 in transit from account 7 to 86. Notice that 
despite the interference, Transfer still installs the correct values in the database. 

This type of interference is called an inconsistent retrieval. It occurs when- 
ever a retrieval transaction reads one data item before another transaction 
updates it and reads another data item after the same transaction has updated 
it. That is, the retrieval only sees some of the update transaction’s results. 

Serializable Executions 

In the preceding examples, the errors were caused by the interleaved execution 
of operations from different transactions. The examples do not exhaust all 
possible ways that concurrently executing transactions can interfere, but they 
do illustrate two problems that often arise from interleaving. To avoid these 
and other problems, the kinds of interleavings between transactions must be 
controlled. 

One way to avoid interference problems is not to allow transactions to be 
interleaved at all. An execution in which no two transactions are interleaved is 
called serial. More precisely, an execution is serial if, for every pair of transac- 
tions, a11 of the operations of one transaction execute before any of the opera- 
tions of the other. From a user’s perspective, in a serial execution it looks as 
though transactions are operations that the DBS processes atomically. Serial 
executions are correct because each transaction individually is correct (by 
assumption), and transactions that execute serially cannot interfere with each 
other. 

One could require that the DBS actually process transactions serially. 
However, this would mean that the DBS could not execute transactions 
concurrently, for concurrency means interleaved executions. Without such 
concurrency, the system may make poor use of its resources, and so might be 
too inefficient. Only in the simplest systems is serial execution a practical way 
to avoid interference. 

We can broaden the class of allowabIe executions to include executions 
that have the same effect as serial ones. Such executions are called serializable. 
More precisely, an execution is serializable if it produces the same output 
and has the same effect on the database as some serial execution of the same 
transactions. Since serial executions are correct, and since each serializable 
execution has the same effect as a serial execution, serializable executions are 
correct too. 

The executions illustrating lost updates and inconsistent retrievals are not 
serializable. For example, executing the two Deposit transactions serially, in 
either order, gives a different result than the interleaved execution that lost an 
update, so the interleaved execution is not serializable. Similarly, the inter- 
leaved execution of Transfer and PrintSum has a different effect than every 
serial execution of the two transactions, and so is not serializable. 
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Although these two interleaved executions are not serializable, many 
others are. For example, consider this interleaved execution of Transfer and 
PrintSum. 

Read,(Accounts[7]) returns the value $200 

Write,(Accounts[7], $100) 

Read,(Accounts[7]) returns the value $100 

Read,( Accounts[ 861) returns the value $200 
Write,(Accounts[86], $300) 

Commit, 

Read,(Accounts[86]) returns the value 5300 

Commit, 

This execution has the same effect as serially executing Transfer followed by 
PrintSum. In such a serial execution, Read,(Accounts[‘i]) immediately follows 
Write,(Accounts[86], 5300). Although the order of execution of operations in 
this serial execution is different from the interleaved execution, the effect of 
each operation is exactly the same as in the interleaved execution. Thus, the 
interleaved execution is serializable. 

Serializability is the definition of correctness for concurrency control in 
DBSs. Given the importance of the concept, let us explore its strengths and 
weaknesses. 

Most importantly, a DBS whose executions are serializable is easy to 
understand. To its users, it looks like a sequential transaction processor. A 
programmer can therefore write each transaction as if it will execute all by 
itself on a dedicated machine. Potential interference from other transactions is 
precluded and hence can be ignored. 

A DBS that produces serializable executions avoids the kind of interference 
illustrated by the earlier examples of lost updates and inconsistent retrievals. A 
lost update occurs when two transactions both read the old value of a data 
item and subsequently both update that data item. This cannot happen in a 
serial execution, because one of the transactions reads the data item value writ- 
ten by the other. Since every serializable execution has the same effect as a 
serial execution, serializable executions avoid lost updates. 

An inconsistent retrieval occurs when a retrieval transaction reads some 
data items before an update transaction updates them and reads some other 
data items after the update transaction updates them. This cannot happen in a 
serial execution, because the retrieval transaction reads al1 of the data items 
either before the update transaction performs any updates, or after the update 
transaction performs all of its updates. Since every serializable execution has 
the same effect as some serial execution, serializable executions avoid inconsis- 
tent retrievals too. 
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Consistency Preservation 

The concept of consistent retrieval can be generalized to apply to the entire 
database, not just to the data items retrieved by one transaction. This general- 
ization provides another explanation of the value of serializability, 

Assume that some of the states of the database are defined to be consistent. 
The database designer defines consistency predicates that evaluate to true for 
the consistent states and false for the other (inconsistent) states. For example, 
suppose we augment the banking database of Accounts to include a data item, 
Total, which contains the sum of balances in all accounts. A consistency predi- 
cate for this database might be “Total is the sum of balances in Accounts.” The 
database state is consistent if and only if (iff) the predicate is true. 

As part of transaction correctness, we then require that each transaction 
preserve database consistency. That is, whenever a transaction executes on a 
database state that is initially consistent, it must leave the database in a consis- 
tent state after it terminates. For example, Transfer preserves database consis- 
tency, but Deposit does not, because it does not update Total after depositing 
money into an account. To preserve database consistency, Deposit needs to be 
modified to update Total appropriately. 

Notice that each Write in Transfer, taken by itself, does not preserve data- 
base consistency. For example, Write(Accounts[oldaccount], temp - amount) 
unbalances the accounts temporarily, because after it executes, Accounts and 
Total are inconsistent. Such inconsistencies are common after a transaction has 
done some but not all of its Writes. However, as long as a transaction fixes 
such inconsistencies before it terminates, the overall effect is to preserve consis- 
tency, and so the transaction is correct. 

Consistency preservation captures the concept of producing database 
states that are meaningful. If each transaction preserves database consistency, 
then any serial execution of transactions preserves database consistency. This 
follows from the fact that each Bansaction leaves the database in a consistent 
state for the next transaction. Since every serializable execution has the same 
effect as some serial execution, serializable executions preserve database 
consistency too. 

Ordering Transactions 

All serializable executions are equally correct. Therefore, the DBS may execute 
transactions in any order, as long as the effect is the same as that of some serial 
order. However, not all serial executions produce the same effect. Sometimes a 
user may prefer one serial execution of transactions over another. In such a 
case, it is the user‘s responsibility to ensure that the preferred order actually 
occurs. 

For example, a user may want her Deposit transaction to execute before 
her Transfer transaction. In such a case, she should not submit the transactions 
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at the same time. If she does, the DBS can execute the transactions’ operations 
in any order (e.g., the Transfer before the Deposit). Rather, she should first 
submit the Deposit transaction. Only after the system acknowledges that the 
Deposit transaction is committed should she submit the Transfer transaction, 
This guarantees that the transactions are executed in the desired order.3 

We will be constructing schedulers that only guarantee serializability. If 
users must ensure that transactions execute in a particular order, they must 
secure that order by mechanisms outside the DBS. 

Limitations of Serializability 

In many types of computer applications, serializability is not an appropriate 
goal for controlling concurrent executions. In fact, the concept of transaction 
may not even be present. In these applications, methods for attaining 
serializability are simply not relevant. 

For example, a statistical application may be taking averages over large 
amounts of data that is continually updated. Although inconsistent retrievals 
may result from some interleavings of Reads and Writes, such inconsistencies 
may only have a small effect on the calculation of averages, and so may be 
unimportant. By not controlling the interleavings of Reads and Writes, the 
DBS can often realize a significant performance benefit - at the expense of 
serializability. 

As another example, process control programs may execute forever, each 
gathering or analyzing data to control a physical process. Since programs 
never terminate, seria1 executions don’t make sense. Thus, serializability is not 
a reasonable goal. 

A common goal for concurrency control in systems with nonterminating 
programs is mutual exclusion. Mutual exclusion requires the section of a 
program that accesses a shared resource to be executed by at most one 
program at a time. Such a section is called a critical section. We can view a 
critical section as a type of transaction. Mutual exclusion ensures that critical 
sections (i.e., transactions) that access the same resource execute serially. This 
is a strong form of serializability. 

‘If two transactions do not interact, then it is possible rhat the user cannot control their effec- 
tive order of execution. For example, suppose the user waits for I, to commit before submit- 
ting TL, and suppose no data item is accessed by both transactions. If other transactions were 
executing concurrently with T1 and i-2, it is still possible thar the oniy serial execution equiva- 
lent to the interleaved execution that occurred is one in which Tz precedes T,. This is odd, but 
possibly doesn’t matter since 7, and Tz don’t interact. However, consider the discussion of 
Terminal I/O in Section 1.2. If the user uses the output of T, to construct the input to T,, then 
iT, must effectively execute before r,. This incorrect behavior is prevented by rhe most popular 
concurrency control method, two phase locking (see Chapter 3), but not by all methods, This 
rather subtle point is explored further in Exercises 2.12 and 3.4. 
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Many techniques have been developed for solving the mutual exclusion 
problem, including locks, semaphores, and monitors. Given the close relation- 
ship between mutual exclusion and serializability, it is not surprising that some 
mutual exclusion techniques have been adapted for use in attaining 
serializability, We will see examples of these techniques in later chapters. 

I .4 DATABASE SYSTEM MODEL 

In our study of concurrency control and recovery, we need a model of the inter- 
nal structure of a DBS. In our model, a DBS consists of four modules (see Fig. 
l-l): a transaction manager, which performs any required preprocessing of 
database and transaction operations it receives from transactions; a scheduler, 
which controls the relative order in which database and transaction operations 
are executed; a recovery manager, which is responsible for transaction 
commitment and abortion; and a cache manager, which operates directly on 
the database.4 

Database and transaction operations issued by a transaction to the DBS 
are first received by the transaction manager. The operations then move down 
through the scheduler, recovery manager, and cache manager. Thus, each 
module sends requests to and receives replies from the next lower level 
module. 

We emphasize that this model of a DBS is an abstract model. It does not 
correspond to the software architecture of any DBS we know of. The modules 
themselves are often more tightly integrated, and therefore less clearly separa- 
ble, than the model would suggest. Still, for pedagogical reasons, we believe it 
is important to cleanly separate concurrency control and recovery from other 
functions of a DBS. This also makes the model a good tool for thought. In later 
chapters, we will discuss more realistic software architectures for performing 
the functions of the model. 

For most of this section, we will assume that the DBS executes on a 
centralized computer system. Roughly speaking, this means the system 
consists of a central processor, some main memory, secondary storage devices 
(usually disks), and I/O devices. We also consider any multiprocessor configu- 
ration in which each processor has direct access to all of main memory and to 
all I/O devices to be a centralized system. A system with two or more proces- 
sors that do not have direct access to shared main memory or secondary stor- 
age devices is called a distributed computer system. We extend our model of a 
centralized DBS to a distributed environment in the final subsection. 

4[Gray 781 uses “transaction manager” to describe what we call the scheduler and recovery 
manager, and “database manager” to describe what we call the transaction manager and cache 
manager. 
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FIGURE 1-l 
Centralized Database System 

The Cache Manager 

A computer system ordinarily offers both volatile and stable storage. I/olatile 
storage can be accessed very efficiently, but is susceptible to hardware and 
operating system failures. Due to its relatively high cost, it is limited in size. 
Stuble storage is resistanr to failures, but can only be accessed more slowly. 
Due to its relatively low cost, it is usually plentiful. In today’s technology, vola- 
tile storage is typically implemented by semiconductor memory and stabIe 
storage is implemented by disk devices. 
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Due to the limited size of volatile storage, the DBS can only keep part of 
the database in volatile storage at any time. The portion of volatile storage set 
aside for holding parts of the database is called the cache. Managing the cache 
is the job of the cache manager (CM). The CM moves data between volatile 
and stable storage in response to requests from higher layers of the DBS. 

Specifically, the CM supports operations Fetch(x) and Flush(x). To process 
Fetch(x), the CM retrieves x from stable storage into volatile storage. To 
process Flush(x), the CM transfers the copy of x from volatile storage into 
stable storage. 

There are times when the CM is unable to process a Fetch(x) because there 
is no space in volatile storage for X. To solve this problem, the CM must make 
room by flushing some other data item from volatile storage. Thus, in addition 
to supporting the Flush operation for higher levels of the DBS, the CM some- 
times executes a Flush for its own purposes. 

The Recovery Manager 

The recovery manager (RM) is primarily responsible for ensuring that the 
database contains all of the effects of committed transactions and none of the 
effects of aborted ones. It supports the operations Start, Commit, Abort, 
Read, and Write. It processes these operations by using the Fetch and Flush 
operations of the CM. 

The RM is normally designed to be resilienr to failures in which the entire 
contents of volatile memory are lost. Such failures are called system failures. 
After the computer system recovers from a system failure, the RM must ensure 
that the database contains the effects of all committed transactions and no 
effects of transactions that were aborted or active at the time of the failure. It 
should eliminate the effects of transactions that were active at the time of fail- 
ure, because those transactions lost their internal states due to the loss of main 
memory’s contents and therefore cannot finish executing and commit. 

After a system failure, the only information the RM has available is the 
contents of stable storage. Since the RM never knows when a system failure 
might occur, it must be very careful about moving data between volatile and 
stable storage. Otherwise, it may be caught after a system failure in one of two 
unrecoverable situations: (1) stable storage does not contain an update by 
some committed transaction, or (2) stable storage contains the value of x writ- 
ten by some uncommitted transaction, but does not contain the last value of x 
that was written by a committed transaction. To avoid these problems, the RM 
may need to restrict the situations in which the CM can unilaterally decide to 
execute a Flush. 

The RM may also be designed to be resilient to failures of portions of 
stable storage, called media failures. To do this, it needs to keep redundant 
copies of data on at least two different stable storage devices that are unlikely 
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to fail at the same time. To cope with media failures, it again needs to be able 
to return the database to a state that contains all of the updates of committed 
transactions and none of the updates of uncommitted ones. 

It will frequently be useful to deal with the RM and CM as if it were a 
single module. We use the term data manager (D&I) to denote that module. 
The interface to this module is exactly that of the Rhl. That is, CM functions 
are hidden from higher levels. 

Schedulers 

A scheduler is a program or collection of programs that controls the concur- 
rent execution of transactions. It exercises this control by restricting the order 
in which the DM executes Reads, Writes, Commits, and Aborts of different 
transactions. Its goal is to order these operations so that the resulting execu- 
tion is serializable and recoverable. It may also ensure that the execution 
avoids cascading aborts or is strict. 

To execute a database operation, a transaction passes that operation to the 
scheduler. After receiving the operation, the scheduler can take one of three 
actions: 

1. Execute: It can pass the operation to the DM. When the DM finishes 
executing the operation, it informs the scheduler. Moreover, if the oper- 
ation is a Read, the DM returns the value(s) it read, which the scheduler 
relays back to the transaction. 

2. Reject: It can refuse to process the operation, in which case it tells the 
transaction that its operation has been rejected. This causes the transac- 
tion to abort. The Abort can be issued by the transaction or by the 
transaction manager. 

3. Delay: It can delay the operation by placing it in a queue internal to the 
scheduler. Later, it can remove the operation from the queue and either 
execute it or reject it. In the interim (while the operation is being de- 
layed), the scheduler is free to schedule other operations. 

Using its three basic actions - executing an operation, rejecting it, or 
delaying it - the scheduler can control the order in which operations are 
executed. When it receives an operation from the transaction, it usually tries to 
pass it to the DM right away, if it can do so without producing a 
nonserializable execution. If it decides that executing the operation may 
produce an incorrect result, then it either delays the operation (if it may be able 
to corre-ctly process the operation in the future) or reject the operation (if 
it will never be able to correctly process the operation in the future). Thus, 
it uses execution, delay, and rejection of operations to help produce correct 
executions. 
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For example, let’s reconsider from the last section the concurrent execu- 
tion of two Deposit transactions, which deposit $100 and $100,000 into 
account 13 : 

Read,(Accounts[ 131); 
Read,(Accounts[l3]); 
Write,(Accounts[l3], $101,000); 
Commit,; 
Write,(Accounts[l3], $1100); 
Commit,. 

To avoid this nonserializable execution, a scheduler might decide to reject 
Write,, thereby causing transaction T, to abort. In this case, the user or trans- 
action manager can resubmit T,, which can now execute without interfering 
with T,. Alternatively, the scheduler could prevent the above execution by 
delaying Read, until after it receives and processes Write,. By delaying Read,, it 
avoids having to reject Write, later on. 

The scheduler is quite limited in the information it can use to decide when 
to execute each operation. We assume that it can only use the information that 
it obtains from the operations that transactions submit. The scheduler does 
not know any details about the programs comprising the transactions, except 
as conveyed to it by operations. It can predict neither the operations that will 
be submitted in the future nor the relative order in which these operations will 
be submitted. When this type of advance knowledge about programs or opera- 
tions is needed to make good scheduling decisions, the transactions must 
explicitly supply this information to the scheduler via additional operations. 
Unless stated otherwise, we assume such information is not available. 

The study of concurrency control techniques is the study of scheduler algo- 
rithms that attain serializability and either recoverability, cascadelessness, or 
strictness. Most of this book is devoted to the design of such algorithms. 

Transaction Manager 

Transactions interact with the DBS through a transaction manager (TM). The 
TM receives database and transaction operations issued by transactions and 
forwards them to the scheduler. Depending on the specific concurrency control 
and recovery algorithms that are used, the TM may also perform other func- 
tions. For example, in a distributed DBS the TM is responsible for determining 
which site should process each operation submitted by a transaction. We’ll 
discuss this more in a moment. 

Ordering Operations 

Much of the activity of concurrency control and recovery is ensuring that oper- 
ations are executed in a certain order. It is important that we be clear and 
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precise about the order in which each module processes the operations that are 
presented to it. In the following discussion, we use the generic term modmle to 
describe any of the four DBS components: TM, scheduler, RM, or CM. 

At any time, a module is aIlowed to execute any of the unexecuted opera- 
tions that have been submitted to it. For example, even if the scheduler submits 
operation p to the RM before operation 4, the RM is allowed to execute q 
before p. 

When a module wants two operations to execute in a particuiar order, it is 
the job of the module that issues the operations to ensure that the desired order 
is enforced. For example, if the scheduler wants p to execute before 4, then it 
should first pass p to the RM and wait for the RM to acknowledge p’s execu- 
tion; after the acknowledgment, it can pass q, thereby guaranteeing that p 
executes before q. This sequence of events - pass an operation, wait for an 
acknowledgment, pass another operation - is called a handshake. We assume 
that each module uses handshaking whenever it wants to control the order in 
which another module executes the operations it submits. 

As an alternative to handshaking, one could enforce the order of execution 
of operations by having modules communicate through first-in-first-out 
queues. Each module receives operations from its input queue in the same 
order that the operations were placed in the queue, and each module is 
required to process operations in the order they are received. For example, if 
the CM were to use an input queue, then the RM could force the CM to 
execute p before 4 by placing p in the queue before 4. 

We do not use queues for intermodule communication for two reasons. 
Firsr, they unnecessarily force a module to process operations strictly sequen- 
tially. For example, even if the RM doesn’t care in what order p and 4 are 
executed, by placing them in the CM queue it forces the CM to process them in 
a particular order. In our model, if the RM doesn’t care in which order p and q 
are processed, then it would pass p and q without handshaking, so the CM 
could process the operations in either order. 

Second, when three or more modules are involved in processing opera- 
tions, queues may not be powerful enough to enforce orders of operations. For 
example, suppose two modules perform the function of data manager, say 
DM, and Dkl,. (DM, and DM, might be at different sites of a distributed 
system.) And suppose the scheduler wants DM, to process p before DML 
processes 4. The scheduler can enforce this order using handshaking, but not 
using queues. Even if DM, and DM, share an input queue, they need a hand- 
shake to ensure the desired order of operations. 

Except when we expiiciti>l state otherwise, we assume that handshaking is 
used for enforcing the order of execution of operations. 

Distributed Database System Architecture 

A distributed database system (or distributed DBS) is a collection of sites 
connected by a communication network (see Fig. l-2). We assume that two 
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Distributed Database System 

processes can exchange messages whether they are located at the same site or 
at different sites (in which case the messages are sent over the communication 
network). 

Each site is a centralized DBS, which stores a portion of the database. We 
assume that each data item is stored at exactly one sitea Each transaction 
consists of one or more processes that execute at one or more sites. We assume 
that a transaction issues each of its operations to whichever TM is most conve- 
nient (e.g., the closest). When a TM receives a transaction’s Read or Write that 
cannot be serviced at its site, the TM forwards that operation to the scheduler 
at another site that has the data needed to process the operation. Thus, each 
TM can communicate with every scheduler by sending messages over the 
network. 

BlBLlOGRABHlC NOTES 

Research publications on transaction management began appearing in the early to mid 
1970s [Bjork 72, Davies 721, [Bjork 731 [Chamberlin, Boyce, Traiger 741, and [Davies 
731, although the problem was probably studied even earlier by designers of the first 
on-line systems in the 1960s. By 1976, it was an active research area with a steady 
stream of papers appearing. Some of the early influential ones include [Eswaran et al. 
761, [Gray et al. 7.51, and [Stearns, Lewis, Rosenkrantz 761. 

Concurrency control problems had been treated in the context of operating systems 
beginning in the mid 1960s. [Ben-Ari 821, [Brinch Hansen 731, and [Holt et al. 781 
survey this work, as do most textbooks on operating systems. 

Recovery was first treated in the context of fault-tolerant hardware design, and later in 
general purpose program design. Elements of the transaction concept appeared in the 

‘In Chapter 8, on replicated data, we will allow a data item to be stored at multiple sites. 
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“recovery block” proposal of [Horning et al. 741. Atomic actions (transactions) in this 
context were proposed in [Lomet 77b]. Surveys of hardware and software approaches 
to fault tolerance appear in [Anderson, Lee 811, [Shrivastava 851, and [Siewiorek 821. 

An interesting extension of the transaction abstraction is to allow transactions to be 
nested as subtransactions within larger ones. Several forms of nested transactions have 
been implemented [Gray Sl], [Liskov, Scheifler 831, [Moss 851, [Mueller, Moore, 
Popek 831, and [Reed 781. Theoretical aspects of nested transactions are described in 
[Beeri et a1. 831, [Lynch 83b], and [Moss, Griffeth, Graham 861. We do not cover 
nested transactions in this book. 

EXERCISES 

1.1 For each of the example executions in Section 1.2, determine if it is 
serializable, assuming each active transaction ultimately commits. 

1.2 Explain why each example execution in Section 1.3 is or is not recov- 
erable, cascadeless, or strict. 

1.3 Suppose transaction T, reads x, then reads y, then writes x, and then 
writes y. Suppose T, reads y and then writes X. Give example executions of 
T, and Tz that are serializable and 

a. recoverable but not cascadeless; 
b. cascadeless but not strict; and 
c. strict. 

Now, give example executions that are not serializable and satisfy (a), 
(b), and (ci. 

1.4 We assumed that transactions only interact through their accesses to 
the database. We can weaken this assumption slightly by ahowing transac- 
tions to exchange messages that are not part of the database in the foliow- 
ing case: A transaction T, can receive a message from transaction T, 
provided that the DBS processed T,'s Commit before it processed T,‘s 
Read of T,‘s message. Explain why this weakened assumption is still satis- 
factory by analyzing its effects on recoverability and serializability. 

1.5 Using the banking database of this chapter, write a program that takes 
two account numbers as input, determines which account has the larger 
balance, and replaces the balance of the smaller account by that of the 
larger. What are the possible sequences of Reads and Writes that your 
program can issue? 

1.6 Give an example program for the banking application that, when 
executed as a transaction, has termina1 output that cannot be deferred. 
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