
Appendix: In-Depth Survey Analysis

This document details the outcome of a survey concentrating on code review practices and
communication during code reviewing. The survey was conducted by Laura MacLeod, Michaela
Greiler, Christian Bird and Margaret-Anne Storey and was online in March 2015. 911
respondents shared their opinions about code reviewing, the challenges and its benefits. This
section highlights aggregated data of all respondents who indicated to practice code reviewing.

Demographics
Job Title. Most of the respondents (~75%) are either Software Engineers (~20%), Software
Engineers 2 (~34%) or Senior Software Engineers (~21%). The rest consist mostly of Principal
Software Engineers, SE Leads, SE Managers as well as Program Managers (2 Principals).
Details are illustrated in Table 1.

Table 1 Job title of respondents to the code review survey

Most of the managers (~82%) indicate to regularly participate in code reviews. Only few of the
respondents manage other mangers (~7%).

The average team size is around 13 people, and the respondents indicate to work directly with 7
people on average.

Experience. 87% of the respondents indicate that they worked at least 2 years in the software
industry. 70% more than 6 years, and 40% indicate to have more than 10 years of experience.

34.10%

21.00%

20.10%
5.20%

3.80%

3.80% 3.00%2.40%

2.10%
1.70%

1.50%
1.30%Job Title

Software Engineer 2 Senior Software Engineer

Software Engineer All Other

Principle Software Engineer Program Manager 2

Senior Software Engineering Lead Principal Software Engineering Lead

Principal Software Engineering Manager Other (enter below)

Principle PM Manager Principal Program Manager

Similar, 72% indicate to work for Microsoft for at least 2-5 years, whereby 43% work at MS for
at least 6-10 years. 17% indicate to work at MS longer than 10 years.

Most of the respondents (~80.3%) who indicate to practice code reviewing have at least 2-5
years of experience, whereby almost 22% indicate more than 10 years of code review
experience.

Interestingly, many of the respondents who report not to practice code reviews are managers
with a long experience in the industry.

Co-location. Most teams are completely co-located (73%). Only 11% of the respondents indicate
that less than half or none of their team mates are close enough to get a coffee with them.

When it comes to the people respondents interact with during code reviews, we see that code
review teams are more distributed than the actual team of the respondents (see Table 2 and Table
3). Still, most respondents indicate to be collocated with at least half of their peers who they
interact on code reviews (86%), whereby roughly half of all respondents have all their peers
close enough to get a coffee with them (48%). Only 4% indicate to have none of their peers they
interact during code review near them.

Table 2 Co-location of team: Of the people you work with
on a daily bases what percentage of those people work
near you?

Table 3 Table 2 Co-location of code review team: Of the
people you work with on code reviews what percentage of
those people work near you?

Technical set-up
SourceDepot is still the predominant version control system within the selected population
(64%), followed by TFS (41%), and Git with 29%. Other version control systems only account
for 4%.1

1 Percentages don’t add up to 100% as many respondents use more than one source control
solution.

3, 3% 7, 7%

17, 17%

73, 73%

None Less than half More than half All

4, 4%
11, 11%

37, 37%

48, 48%

None Less than half More than half All

Code review tool usage. A large majority of the respondents (89%) indicate to use CodeFlow as
their code reviewing tool. This is followed by Email used as code review tool (15%) and the
CodeFlow extension (13%) in Visual studio. Details are illustrated in Table 4. In the category of
Other: 2% use Collaborator from SmartBear, and 5% use one of the 30 other named tools.

Table 4 Code review tool usage

Development practices
A majority of the respondents indicate to use an agile development process (77%) or to practice
Scrum (69%). Also, 68% indicate to use automated tool support for code checkins like Checkin
Wizard.

On the other hand, only 16% indicate to practices pair programming, and even fewer (8%) say
they have a formal training on code review practices.

Code reviews
Frequency of performing code reviews. Most respondents indicate to review changes of others
at least once a day (39%), whereby 21% review even multiple changes per day. The other large
group indicates to review changes a couple of times during the week (36%). The rest indicated to
review changes once during the week (12%), or that they did not act as a review during the last
week (13%).

Naturally, respondents indicate to author code reviews less often than they act as reviewer. Here,
17% indicate to author code reviews at least once a day, and of those only 5% says they author
several code reviews per day. Almost half (48%) say they author code reviews couple of times
during the week, and the rest either indicates to have authored a review once during the week
(21%) or that they did not act as a review author in the last week (14%).

Importance of code reviews. 88% indicate that code reviewing is seen by their team as
important or even very important (43%). Only 3% say that their team perceives code review as
unimportant or very unimportant.

89

13
6 6 5 1

15
4 2 7

0
10
20
30
40
50
60
70
80
90

100

CodeFlowCodeFlow
plug-in in

Visual
Studio

Code
review

feature in
Visual
Studio

GitHub
pull

requests

VSO pull
requests

Atlassian Email Odd No tool Other

If they reflect on their own attitude towards code review, respondents paint an even more
positive picture. 94% of the respondents indicate that they perceive code reviewing as very
important (57%) or important (37%). Only 6% are either neutral (3%) or perceive code review as
unimportant or very unimportant.

Policies. It became very clear that most teams require a code review before a code change can be
checked in (94%). Also, 84.1% indicate that they have mechanisms in place to keep team
members aware of each other’s code reviews. On the other hand, respondents are split between
those that indicate that their team has rules or policies around code reviews (54%) and those that
indicate they have no policies or rules in place (46%). Similar 52% indicate that their team
reflects on their code review process, and 48% say they do not.

Code review impact. A large portion of the respondents indicate that the do not know or haven’t
thought about to what degree their performance in code reviews impacts their job evaluation
(42%) (see Table 5). Also, 29% indicate this has a minor impact, and even 17% think it has no
impact on their job evaluation. Only 12% think it plays a large impact for their job evaluation.

Table 5 Perceived impact of code reviewing on job evaluation

Reasons for code reviews. The respondents had to rank several reasons that are important to
them for performing code reviews as listed in detail in Table 6. The top ranked reasons were
code improvements, followed by increased knowledge transfer, and finding alternative solutions.

Table 6 Ranked reasons for code reviewing

Reason for code reviewing Score* Overall Rank
Code improvement 2835 1
Find defects 2749 2
Increase knowledge transfer 1528 3

11.96%

28.84%

17.13%

42.07%

Impact of CR on job evaluation

A large impact A minor impact No impact I don't know or I haven't thought about it

Find alternative solutions 1199 4
Improve the development process 979 5
Avoid breaking builds 957 6
Build team awareness 790 7
Lead to shared code ownership 717 8
Team assessment 235 9

Score is a weighted calculation. Items ranked first are valued higher than the following ranks, the score is

the sum of all weighted rank counts.

In the free text, several respondents added additional or slightly different from the pre-defined
reasons to review code. One of the reasons that came up most often for performing code reviews
is to teach junior or less experienced developers, and let them learn from more experienced
developers on the team. Slightly different but on the same track, several respondents indicated
that self-improvement, learning and improvement of coding skills is an important reason for code
reviewing. Another often named reason to perform code reviews is that code reviews allow the
team to develop a coding culture, be exposed to what is seen as best practice within the team, and
to learn new coding patterns and to avoid anti-patterns or detect issues. Code reviewing therefore
allows to build coherent solutions and code bases. Similarly, several respondents indicate the
need to enforce a quality bar, coding standards, enforce clean code and style guidelines. Also,
increasing maintainability and readability of the code was also among the often appearing
answers.

Another often expressed reason is to build awareness among the team, inform others as well as to
get subject matter or area experts’ opinions. Therefore, code reviews also help to put the change
into perspective, i.e., to get the bigger picture. Some respondents said that the effect of knowing
that others look at the changes increases code quality and accountability.

Code review as a tool to perform design, security and architecture reviews and therefore improve
the code with respect to those areas was also mentioned. Also testing, especially verifying test
coverage and supporting test planning was mentioned as reasons for code reviews. Few
respondents said that code reviewing helps them to transition from SDETs to SEs.

Skipping code reviews. More than 400 respondents answered this free text from question on
when code review can be skipped. Around 5-7% indicate in their answers that code reviews
should never be skipped. During the analysis of the answer for reasons to skip code reviews
several common opinions emerged. First, the most common reason respondents believe code
reviewing can be skipped is for small, trivial or minor changes. The definition of small or
minor deviates obviously, but a common understanding of a small, trivial or minor change is that
it does not change the logic of the code, but addresses things like typos in comments,
formatting issues, renames of local variables, removal of dead code, changes to string literals or
style issues. Others are more liberal with their definition of small and mainly go by lines of code
touches. Here very often respondents indicate that one line changes, or changes touching only
few lines can be checked in without prior code review. Others think that such small changes

should be code reviewed by over the shoulder reviewing, so less formally than through a tool
chain.

Another very frequent occurring reason for skipping code reviews are build breaks. Here, some
respondents explicitly mention the time pressure of the build break as an additional factor for
permitting skipping the code review, whereby others such focus on the size of the fix (i.e., if it is
small or well-defined then skipping a CR is okay). Also quite a few respondents talk about
emergency situation, including build breaks, hot fixes during odd times or issues with live sites
where the time aspect has priority and code reviews can be skipped. Some indicate to do after
the fact code reviews for changes that are related to time critical issues.

Integrations, FIs/RIs, merges without conflicts or code moves appear among the changes that
many respondents indicate as valid for skipping code review.

Also several respondents say that configuration changes do not necessarily have to be reviewed.
Here, some indicate general configuration changes, whereby others explicitly state that the
changes to the configuration must be small and/or well understood.

Other situations that several respondents feel permit skipping code review are changes to code
that is non-production code, private code, prototypes, internal tools or test code. Few also
talk about low-priority parts of the code base, and that changes in those areas might skip code
review.

Also code that has been developed during pair programming can be permitted into the code
base without additional code reviewing.

Another situation which permits skipping code review in the opinion of several respondents is if
the author of the change is the subject matter expert or the only person knowledgeable in the
area or with this part of the code base. Slightly related, some respondents think that code review
can be skipped if the change is small and the developer is confident that the change is low risk,
safe and does not break anything or that the fix is well known.

Another category of changes that allow skipping code review has to do with the type of the
change. Many respondents indicate that non code changes (like changes to binaries, packages,
markup or data) can skip a code review. A few respondents also think version number changes,
script changes, changes related to logging or build can be skipped. Also some indicate that
changes to the UI that cannot break the build can be skipped during code review.

Changes that only roll back or revert a previous change can also be skipped according to the
opinion of some respondents.

Some respondents talk about that changes that have been discussed before with team member
or the team lead or that were reviewed otherwise can skip the formal code review process.

Also time constraints like deadlines and tight schedules might lead to a skip of code reviewing
practices.

Less frequent named reasons for skipping code reviews are if the code is well covered with and
verified by automated tests, if the change happens in legacy code, the code is the same between
several platforms or branches.

Very few indicate to only perform code reviews for very complex or large changes.

Challenges. The five main challenges developers face during code reviewing are receiving
feedback in a timely manner, the review size, managing time constraints and understanding the
code’s purpose (see Table 7). Other higher ranked challenges are understanding the motivation
for the change, obtaining insightful feedback and disputing minor issues while more serious ones
are overlooked.

Table 7 Ranked challenges faced during code review

Challenges faced during code reviewing Score* Overall Rank

Receiving feedback in a timely manner 1944 1

Review size 1406 2

Managing time constraints 1250 3

Understanding the code's purpose 1243 4

Understanding the motivations for the change 962 5

Obtaining insightful feedback 917 6

Bikeshedding (disputing minor issues while more
serious ones are overlooked)

883 7

Understanding how the change was implemented 687 8

Maintaining code quality 686 9

Reaching consensus 548 10

Finding relevant documentation 501 11

Managing multiple communication channels 315 12

Identifying who to talk to 286 13

Score is a weighted calculation. Items ranked first are valued higher than the following ranks, the score is

the sum of all weighted rank counts.

When it comes to acting as a reviewer, the majority of respondents (73%) indicate that
reviewing changes of others improves their confidence as programmers, as can be seen from
Table 8. Also 80% believe that they are thorough when looking through changes of others and
89% say that the feel their feedback is respected and that the author considers the feedback.

A less clear picture emerges from answers regarding relationships and judgmental behavior
during code reviewing. Here, around half of the respondents (53%) indicate that they do not
worry about others judging their abilities as programmers during reviewing. 20% are neutral,

22% agree and 5% strongly agree that they worry about having their abilities judged during code
reviewing.

Respondents are split between whether or not the personal relationships with those involved in
review have an impact on the code review. 44% believe this is not the case, whereby 34%
believe that their personal relationships do impact code reviews, and 22% are undecided2.

Table 8 Acting as a reviewer: Perception results

 Strongly disagree
or disagree Neutral

Agree or strongly
agree

When reviewing, I worry about others judging
my abilities as a programmer. 52.50% 20.20% 27.40%

It improves my confidence as a programmer
when I review the changes of others. 6.00% 21.00% 73.10%

I am thorough when I review the work of
others. 2.20% 18.00% 79.80%

As a code reviewer I feel that my feedback is
respected. 1.70% 9.60% 88.70%

My personal relationships with those involved
in a review have an impact on my code review. 43.70% 22.40% 33.80%

I am confident that the author considers my
feedback. 2.10% 9.30% 88.70%

As a review author, almost all respondents (96%) indicate that they appreciate the feedback of
the reviewers, as depicted in Table 9. Also, the majority of the respondents claim to express
appreciation to reviewers (85%), indicate that reviewing improves their confidence (83%) and
that they learn a lot when others review their code (78%). Also, 76% indicate that they are more
thorough because they know that the code will be reviewed. On the other hand, a less clear
picture emerges when respondents are asked about whether they worry about being judged by
others and whether or not the personal relationships impact the code review process. Here, 34%
of the respondents indicate to worry about being judged, and 31% indicate that the personal
relationships impact the code review process3.

We can observe that respondents indicate that the appreciate feedback they receive as authors
more positive, as they perceive that their feedback is respected during performing code reviews.

2 Detailed results about respondents’ perceptions as reviewer can be found in the appendix Table
20 Acting as a reviewer: Detailed perception resultsTable 20.
3 Detailed results about respondents’ perceptions as authors can be found in the appendix Table
21.

Also as review authors, respondents indicate a slight higher concern about judgments of their
skills then when acting as reviewers. Nevertheless, the observed differences are indeed small.

Table 9 Acting as an author: Perception results

 Strongly disagree
or disagree Neutral

Agree or strongly
agree

As a review author, I appreciate the feedback I
receive from reviewers. 0.70% 3.20% 96.10%

When others review my changes, I worry about
them judging my abilities as a programmer. 44.00% 22.50% 33.50%

It improves my confidence when others review
my changes 2.80% 13.90% 83.30%

I feel that I am more thorough because I know
my code will be reviewed. 8.90% 15.20% 75.90%

My personal relationship to reviewers has an
impact when I author a code review. 42.00% 27.30% 30.70%

I express thankfulness to those who review my
code. 3.10% 12.00% 84.90%

 I learn a lot when other developers review my
code. 3.90% 17.60% 78.40%

Additional resources. To gather additional information relevant to code reviews, respondents
indicate to use the following three resources most often: contact the review author (49% often,
10% always, 33% sometimes), look at the source code history in the repository (32% often, 39%
sometimes and 7% always), and look at source code not in the code review (40% sometimes,
30% often, and 6% always).

On the other hand, the following three resources are not used or are used sparingly: 1) mailing
lists (43% never, 29% rarely), 2) style guides (29% never, 33% rarely) and 3) design
documentation (27% never, 33% rarely). More details can be found in the appendix in Table 22.

Table 10 Additional resources used during code review

Resources
Never or
rarely Sometimes

Often or
always

Bug reports 49.00% 32.10% 18.90%

Contacting the review author 8.00% 33.20% 58.90%

Contacting subject experts (besides the author) 47.10% 35.30% 17.70%

Source code not in the review 23.90% 40.20% 35.90%

Design documentation 60.00% 27.30% 12.60%

Mailing lists 71.70% 20.50% 7.80%

Style guides 62.00% 25.80% 12.10%

Source code history in the repository 23.10% 38.50% 38.40%

Communication channel choices per task. For getting a fast response, F2F discussions (44%)
and IM (38%) are the tool of preference for the respondents. Details are shown in Table 11.
Especially if there are issues that might reflect badly on someone, F2F communication is
preferred by 61% or the respondents compared with all other options. Whereby the code review
tool is the tool of choice ([38%-48%]) for asking questions, either about the code change, its
history or the reason for the change. The second ranked choice for asking questions is the F2F
discussion [24-26%]. To reach a consensus, negotiate a change or find alternative solutions,
respondents chose to use F2F discussions ([33-36%]) as well as the code review tool ([27-38%]).
Email is the tool of choice for coordination tasks such as scheduling a meeting (72%) or
coordinating with other teams (65%). Voice or video chat as well as telephone are almost never
used by respondents.

Table 11 Communication channel choice for certain tasks

Code
review
tool

F2F
discussi
on

F2F
discussi
on at a
whitebo
ard

Video or
voice
chat

Telepho
ne Email IM Respons

es

Get a fast response 7.20% 43.60% 3.70% 1.80% 2.00% 4.20% 37.60% 764

Explore alternative
approaches 27.30% 32.50% 23.60% 1.20% 0.30% 11.10% 4.10% 758

Communicate
issues that may
reflect badly on
someone

8.60% 61.00% 5.70% 1.10% 0.50% 12.00% 11.20% 753

Reach a consensus 33.60% 32.80% 14.30% 2.20% 0.80% 12.20% 4.10% 760

Schedule a meeting 1.90% 11.10% 3.50% 2.50% 0.70% 71.90% 8.50% 750

Coordinate with
other teams 13.30% 8.50% 4.30% 2.50% 0.50% 65.30% 5.60% 645

Negotiate changes 38.10% 35.80% 11.10% 1.70% 0.00% 8.60% 4.80% 651

Ask questions
about the code in
general

44.20% 25.80% 4.30% 0.60% 0.00% 13.50% 11.50% 651

Ask questions
about the history of
the code

38.40% 26.30% 2.60% 1.20% 0.20% 16.80% 14.50% 649

Ask questions to
understand a
change

48.10% 24.20% 6.40% 1.40% 0.20% 8.40% 11.30% 653

Ask questions to
understand the
reasons for a
change

45.60% 25.90% 4.40% 0.90% 0.50% 9.40% 13.30% 652

Not all tasks are faced equally often as highlighted in Table 12. Regarding which tasks the
respondents face most often during code reviews, the most often ask a question about the change
(45% often, 8% always), reach a consensus (37% often, 10% always) and get a fast response
(39% often, 5% always). On the other hand, the rarely or never schedule a meeting (28% never,
52% rarely), communicate issues that may reflect badly (15% never, 51% rarely), and coordinate
with other teams (40% rarely, 10% never). More details can be found in Table 23.

Table 12 Frequency of tasks faced during code reviewing

 Tasks Never or rarely Sometimes Often or always

Get a fast response 12.70% 43.10% 44.30%

Explore alternative approaches 14.60% 58.60% 26.80%

Communicate issues that may reflect badly on
someone 65.90% 28.20% 5.90%

Reach a consensus 14.50% 39.10% 46.40%

Schedule a meeting 79.80% 17.10% 3.10%

Coordinate with other teams 50.20% 37.90% 12.00%

Negotiate changes 22.50% 50.50% 27.00%

Ask questions about the code in general 15.90% 42.90% 41.10%

Ask questions about the history of the code 44.80% 40.00% 15.20%

Ask questions to understand a change 7.60% 39.50% 52.90%

Ask questions to understand the reasons for a
change 9.80% 45.60% 44.70%

Before sending out a code review, the majority of the respondents (65%) indicate to always
read through their changes looking for errors, and 48% also always run the tests. In total, 92%
indicate to always or often read through changes, 79% run tests often or always before sending

out the review, and about half indicate to often or always write tests for a change. Even though
respondents indicate the importance of writing a detailed description about the change, only 26%
of them indicate to always follow this practice. Still, roughly half of the respondents indicate to
write a detailed description either often or sometimes. 17% indicate to never or rarely write such
a description. Respondents are split almost evenly on whether or not they give their peers a
heads-up on the change to review (35% sometimes, 33% rarely or never, and 32% often or
always). The practice less often used is to run static analysis. Here, 44% indicate that the never
(25%) or rarely (19%) run static analysis before sending out a code review. The results are
highlighted in Table 13and more details can be found in the appendix in Table 24.

Table 13 Tasks performed before sending out a code review

Before sending out a review Never or
rarely Sometimes Often or Always

Read through the changes looking for mistakes 2.80% 5.10% 92.20%

Write a detailed description of the code to be
reviewed 17.00% 28.30% 54.60%

Get advice from subject matter experts 21.70% 40.40% 37.90%

Give reviewers a heads-up about the review 32.70% 35.40% 31.90%

Run static analysis 44.30% 16.20% 39.50%

Run tests 8.70% 12.50% 78.80%

Create tests 17.80% 28.90% 53.30%

Increase feedback speed. Almost 500 developers used the free text format to express their
opinion on how to increase the feedback speed for code reviews. Among the many answers, few
very clear categories emerged. The most common suggestion of respondents was to contact the
code reviewers. Here, they either mentioned to ping or remind the reviewers about the review
either F2F, or by IM, email or phone. The also suggested to organize a short code review
meeting, and/or to let the reviewers know in advance that they are needed for a code review.
Several said that you have to ping early and often or/and set reminders.

Another very frequent occurring suggestion is to improve the code review or the code review
package. Improvement suggestions include to do small, incremental code reviews, to be rigorous
about providing a good description, title, and eventually add comments to explain some code
changes. In general, respondents highlighted the need to explain the reason, the background and
the motivation for the change to the reviewers.

Another coherent category is the need to build the right team culture and perception about
code reviews. Respondents stress that code review must be an essential part of the development
process, and this includes that it can account for time and also is rewarded. Several respondents

say that code review must be seen as top priority and acted upon (i.e., code reviews are done
immediately).

Several respondents also expressed the need to ask the right reviewers to review the code. This
means to include people that are knowledgeable about the area, but also that have a stake or
interest in the code change. Also several respondents stress that it is important to only include
few reviewers on the code review and avoid sending out to whole teams or mailing lists.

The last very frequent occurring suggestion was to review fast yourself (i.e., be part of the
solution not the problem).

Appendix: Survey Slices

Distributed teams versus collocated teams
Remote respondents are slightly more experienced with code reviewing i.e., they indicate less
often to have less than 2 years of experience and to not practice code reviewing. Also, they
indicate to have worked slightly longer in software industry, but appear to have similar working
times at MS.

Remote respondents said that specific practices are used less often, in particular practices like
scrum or agile methods. Remote managers indicate to participate less often in code reviews, than
their collocated counterparts (68% vs. 81%).

Regarding the importance of code reviews, the remote respondents rate the importance of code
reviews slightly less high in their teams’ perception than collocated respondents. The same is
true for their own opinion on code review importance.

Also, remote participants say less often that a code review is needed before checking in (86.7%
versus 94.1%).

Respondents that work remote from their team say that they use email more often as code
reviewing tool than the overall population (27% versus 15%).

Interestingly, even though less than half or even none of the immediate team works near the
respondents, 10% say that more than half of the people the interact with during code review are
near them, and another 5% say that all people the code review with are near them.

Distributed respondents rank “Understanding the motivations for the change” as the second most
occurring challenge during code review. For collocated teams this seems less troublesome and
only appears on rank 7. Also, distributed respondents rank “Understanding the code's purpose”
higher than “managing time constraints” – differing from collocated teams.

Naturally, when choosing the “tool” of choice for several tasks related to code review, remote
participants count more on IM, the Code review tool and Email than on F2F discussions. F2F
discussions are only the main tool to communicate issues that may reflect badly on others. To
reach a consensus most participants use the code review tool, and also 13% of the participants
use video conversation. Remote respondents also indicate to use IM (22-23%) and Email (20-

29%) much more frequent to ask questions about a code review than collocated teams which
prefer the code review tool (40-50%) and F2F conversations (25-28%).

Interestingly, remote respondents indicate to worry less about others judging their abilities as
programmers when reviewing other people changes (64% remote respondents disagree to worry
vs. 51% that are collocated) and also indicate that they are less worried about others judging their
ability as programmers when sending out code review (59% remote respondents disagree versus
43% or collocated) (see Table 14 and Table 15).

Remote respondents also indicate to more frequently express thankfulness than their collocated
counterparts (93% vs. 84%).

Remote respondents believe less that code reviewing makes them more thorough during coding
(64% vs. 77% agree to be more thorough).And they also indicate to be less thorough when
reviewing changes of others (68% vs 81% agree).

We tested the effects of remoteness for both, either the team of the respondent is not near or the
people that are on code reviews are not near the respondent. We could see similar effects for both
populations.

Table 14 Distributed versus Collocated respondents’ perception about reviewing others changes

Distributed Respondents Collocated Respondents

Strongly
disagree
or
disagree

Neutral

Agree
or
strongly
agree

When reviewing,
I worry about
others judging my
abilities as a
programmer.

63.51% 17.57% 18.92%

It improves my
confidence as a
programmer
when I review the
changes of others.

4.11% 13.70% 82.19%

I am thorough
when I review the
work of others.

1.37% 30.14% 68.49%

As a code
reviewer I feel
that my feedback
is respected.

0.00% 9.59% 90.41%

Strongly
disagree
or
disagree

Neutral
Agree or
strongly
agree

When reviewing,
I worry about
others judging
my abilities as a
programmer.

51.27% 20.54% 28.19%

It improves my
confidence as a
programmer
when I review
the changes of
others.

6.37% 21.81% 71.81%

I am thorough
when I review
the work of
others.

2.26% 16.69% 81.05%

As a code
reviewer I feel

1.84% 9.75% 88.42%

My personal
relationships with
those involved in
a review have an
impact on my
code review.

44.59% 28.38% 27.03%

I am confident
that the author
considers my
feedback.

1.35% 9.46% 89.19%

that my feedback
is respected.

My personal
relationships
with those
involved in a
review have an
impact on my
code review.

43.79% 21.75% 34.46%

I am confident
that the author
considers my
feedback.

2.13% 9.22% 88.65%

Table 15 Distributed versus Collocated respondents’ perception as author

Distributed Respondents Collocated Respondents

Strongly
disagree
or
disagree

Neutral

Agree
or
strongly
agree

As a review
author, I
appreciate the
feedback I
receive from
reviewers.

0.00% 1.43% 98.57%

When others
review my
changes, I worry
about them
judging my
abilities as a
programmer.

59.42% 21.74% 18.84%

It improves my
confidence when
others review
my changes

0.00% 13.04% 86.96%

I feel that I am
more thorough
because I know
my code will be
reviewed.

11.59% 24.64% 63.77%

Strongly
disagree
or
disagree Neutral

Agree
or
strongly
agree

As a review
author, I
appreciate the
feedback I
receive from
reviewers.

0.74% 3.27% 95.99%

When others
review my
changes, I
worry about
them judging
my abilities as
a programmer.

42.56% 22.62% 34.82%

It improves my
confidence
when others
review my
changes

3.27% 13.82% 82.91%

I feel that I am
more thorough
because I
know my code

8.59% 14.37% 77.04%

My personal
relationship to
reviewers has an
impact when I
author a code
review.

40.00% 31.43% 28.57%

I express
thankfulness to
those who
review my code.

0.00% 7.14% 92.86%

I learn a lot
when other
developers
review my code.

0.00% 21.43% 74.29%

will be
reviewed.

My personal
relationship to
reviewers has
an impact
when I author
a code review.

42.35% 26.89% 30.76%

I express
thankfulness to
those who
review my
code.

3.56% 12.46% 83.98%

 I learn a lot
when other
developers
review my
code.

4.30% 17.36% 78.34%

Impact in the job evaluation
Respondents that say that code review has no impact on their job evaluation are also less likely
to practice some software methodologies such as scrum (63% vs. 73%), or agile development
(70% vs. 80%) compared with respondents that think code reviewing has a large impact on their
job evaluation. They also use less frequently automated tool support for checkins (62% vs. 71%).

Respondents that think CR has no impact on their job evaluation (Respondentsno) also indicate
that code reviewing is seen as less important than the respondents that think CR has a large
impact (Respondentslarge). 78% of the Respondentsno say that code reviewing is important (51%)
or very important (27%), versus 94% of the Respondentslarge say that CR is very important
(67.3%) or important (26.5%) in their teams perspective.

Similarly, when judging their own attitude torwards code reviewing, we see a significant shift in
perceived importance between Respondentsno and Respondentslarge. 73% of the Respondentslarge
say that code reviewing is very important, compared to 43.5% of Respondentsno. Most other
Respondentsno (47%) say it is important, compared to 21% of Respondentslarge.

As to be expected, respondents that say code review has no impact on their job evaluation also
report less rigorous practices around code reviews (as highlighted in Table 1Table 16).

Table 16 Slice Impact on Job evaluation: differences between code review process

CR has a large impact on job evaluation CR has no impact on job evaluation
 Yes No Yes No

Does your team subscribe to
rules or policies for
conducting code reviews?

61.90% 38.10%

Does a code change
normally require a code
review before it can be
checked in?

95.90% 4.10%

Does your team have
mechanisms to keep team
members aware of each
other's reviews?

89.70% 10.30%

Does your team review and
reflect on their code review
process?

69.10% 30.90%

Does your team subscribe to
rules or policies for
conducting code reviews?

50.40% 49.60%

Does a code change
normally require a code
review before it can be
checked in?

84.80% 15.20%

Does your team have
mechanisms to keep team
members aware of each
other's reviews?

77.50% 22.50%

Does your team review and
reflect on their code review
process?

35.80% 64.20%

Respondentsno also participated less frequently in code reviews during the last week, both as
authors and as reviewers. Whereby 32% of the Respondentslarge say the reviewed multiple times a
day, only 17% of the Respondentsno indicated to do so, and 10% of Respondentslarge acted as a
author compared with 3% Respondentsno. Also 19% of Respondentsno say they did not act as a
reviewer compared with 9% of Respondentslarge. 20% Respondentsno say they did not act as an
author compared to 12% Respondentslarge.

Respondents who indicate that code review does not have an impact on job evaluation, also are
less likely to experience that their confidence is improved when the review changes of others
(63% vs. 82%), they are less thorough when reviewing the work of others (63% vs. 82%), and
slightly feel that their feedback is less respected (83% vs. 89%). See Table 17 for more details.
Also, they indicate to learn less during code reviewing, to express thankfulness less often and are
less likely to indicate that it improves their confidence when others review their changes (for
details see Table 18).

Table 17 Slice impact on job evaluation: perception as reviewer

CR has a large impact on job evaluation CR has no impact on job evaluation

Strongly
disagree
or
disagree

Neutral

Agree
or
strongly
agree

When
reviewing, I
worry about
others judging
my abilities as a
programmer.

56.52% 14.13% 29.35%

It improves my
confidence as a

4.35% 14.13% 81.52%

Strongly
disagree
or
disagree

Neutral

Agree
or
strongly
agree

When
reviewing, I
worry about
others judging
my abilities as a
programmer.

53.03% 21.21% 25.76%

It improves my
confidence as a

10.69% 26.72% 62.60%

programmer
when I review
the changes of
others.

I am thorough
when I review
the work of
others.

1.09% 13.04% 85.87%

As a code
reviewer I feel
that my
feedback is
respected.

4.35% 6.52% 89.13%

My personal
relationships
with those
involved in a
review have an
impact on my
code review.

40.22% 18.48% 41.30%

I am confident
that the author
considers my
feedback.

4.35% 6.52% 89.13%

programmer
when I review
the changes of
others.

I am thorough
when I review
the work of
others.

4.55% 21.21% 74.24%

As a code
reviewer I feel
that my
feedback is
respected.

2.27% 14.39% 83.33%

My personal
relationships
with those
involved in a
review have an
impact on my
code review.

37.88% 28.79% 33.33%

I am confident
that the author
considers my
feedback.

3.08% 11.54% 85.38%

Table 18 Slice impact on job evaluation: perception as author

CR has a large impact on job evaluation CR has no impact on job evaluation

Strongly
disagree
or
disagree

Neutral
Agree or
strongly
agree

As a review
author, I
appreciate the
feedback I
receive from
reviewers.

1.15% 4.60% 94.25%

When others
review my
changes, I
worry about
them judging
my abilities as
a
programmer.

43.02% 27.91% 29.07%

Strongly
disagree or
disagree

Neutral
Agree or
strongly
agree

As a review
author, I
appreciate the
feedback I
receive from
reviewers.

1.60% 2.40% 96.00%

When others
review my
changes, I
worry about
them judging
my abilities
as a
programmer.

48.00% 23.20% 28.80%

It improves
my

4.00% 24.00% 72.00%

It improves
my
confidence
when others
review my
changes

2.30% 5.75% 91.95%

I feel that I
am more
thorough
because I
know my
code will be
reviewed.

4.65% 17.44% 77.91%

My personal
relationship to
reviewers has
an impact
when I author
a code review.

48.28% 21.84% 29.89%

I express
thankfulness
to those who
review my
code.

1.15% 6.90% 91.95%

I learn a lot
when other
developers
review my
code.

4.60% 11.49% 83.91%

confidence
when others
review my
changes

I feel that I
am more
thorough
because I
know my
code will be
reviewed.

12.90% 12.90% 74.19%

My personal
relationship
to reviewers
has an impact
when I author
a code
review.

34.68% 29.03% 36.29%

I express
thankfulness
to those who
review my
code.

7.32% 11.38% 81.30%

I learn a lot
when other
developers
review my
code.

6.45% 27.42% 66.13%

Respondents that do not see an impact of their performance during code review on their job
evaluation are less likely to write a thorough description of the change, to get advice from
subject matter experts, to give reviewers a heads-up about the review, or to create tests before
sending out the review (see for Table 19 details).

Table 19 Slice impact on job evaluation: tasks before sending code review

CR has a large impact on job evaluation CR has no impact on job evaluation

Never or
rarely

Some-
times

Often
or
always

Read through the
changes looking
for mistakes 2.38% 7.10% 90.48%

Never or
rarely

Some-
times

Often
or
always

Read through
the changes
looking for
mistakes 4.20% 5.90% 89.92%

Write a detailed
description of
the code to be
reviewed 14.29% 20.20% 65.48%

Get advice from
subject matter
experts 14.12% 40.00% 45.88%

Give reviewers a
heads-up about
the review 23.53% 36.50% 40.00%

Run static
analysis 37.65% 17.60% 44.71%

Run tests 7.06% 11.80% 81.18%

Create tests 14.12% 22.40% 63.53%

Build and run
changes 2.53% 3.80% 93.67%

Write a detailed
description of
the code to be
reviewed 20.17% 34.50% 45.38%

Get advice from
subject matter
experts 30.51% 33.10% 36.44%

Give reviewers a
heads-up about
the review 36.97% 38.70% 24.37%

Run static
analysis 47.06% 11.80% 41.18%

Run tests 10.92% 10.90% 78.15%

Create tests 18.49% 26.10% 55.46%

Build and run
changes 5.56% 1.10% 93.33%

Appendix: Raw Results

In this section, the interested reader can find more details on the raw results for many of the
discussed survey sections.

 Strongly
disagree

Disagre
e Neutral Agree Strongly

agree
Respons
es

When reviewing, I worry about others
judging my abilities as a programmer. 17.70% 34.80% 20.20% 22.00% 5.40% 779

It improves my confidence as a
programmer when I review the changes
of others.

1.50% 4.50% 21.00% 51.20% 21.90% 778

I am thorough when I review the work
of others. 0.10% 2.10% 18.00% 59.40% 20.40% 779

As a code reviewer I feel that my
feedback is respected. 0.50% 1.20% 9.60% 61.50% 27.20% 780

My personal relationships with those
involved in a review have an impact on
my code review.

14.30% 29.40% 22.40% 26.10% 7.70% 781

Table 20 Acting as a reviewer: Detailed perception results

Table 21 Acting as a review author: Detailed perception results

 Strongly
disagree Disagree Neutral Agree Strongly

agree Responses

As a review author, I appreciate the
feedback I receive from reviewers. 0.30% 0.40% 3.20% 41.20% 54.90% 743

When others review my changes, I
worry about them judging my abilities
as a programmer.

14.20% 29.80% 22.50% 25.90% 7.60% 741

It improves my confidence when
others review my changes 0.80% 2.00% 13.90% 52.00% 31.30% 742

I feel that I am more thorough because
I know my code will be reviewed. 2.30% 6.60% 15.20% 47.30% 28.60% 744

My personal relationship to reviewers
has an impact when I author a code
review.

14.40% 27.60% 27.30% 24.60% 6.10% 743

I express thankfulness to those who
review my code. 0.80% 2.30% 12.00% 51.60% 33.30% 744

 I learn a lot when other developers
review my code. 0.70% 3.20% 17.60% 47.80% 30.60% 744

Table 22 Additional resources used during code review: Detailed results

 Resources Never Rarely Sometim
es Often Always Total

Bug reports 19.40% 29.60% 32.10% 17.00% 1.90% 100%
(747)

Contacting the review author 3.10% 4.90% 33.20% 49.10% 9.80% 100%
(754)

Contacting subject experts
(besides the author) 17.20% 29.90% 35.30% 16.20% 1.50% 100%

(746)

Source code not in the review 7.90% 16.00% 40.20% 29.70% 6.20% 100%
(744)

Design documentation 26.80% 33.20% 27.30% 10.70% 1.90% 100%
(746)

Mailing lists 42.80% 28.90% 20.50% 7.30% 0.50% 100%
(743)

I am confident that the author considers
my feedback. 0.40% 1.70% 9.30% 59.40% 29.30% 778

Style guides 29.40% 32.60% 25.80% 10.00% 2.10% 100%
(751)

Source code history in the
repository 6.70% 16.40% 38.50% 31.60% 6.80% 100%

(749)

Table 23 Frequency of tasks faced during code reviewing: Detailed results

 Tasks Never Rarely Sometime
s Often Always Responses

Get a fast response 1.90% 10.80% 43.10% 39.00% 5.30% 641

Explore alternative
approaches 1.10% 13.50% 58.60% 24.30% 2.50% 643

Communicate issues that
may reflect badly on
someone

15.30% 50.60% 28.20% 4.80% 1.10% 642

Reach a consensus 1.60% 12.90% 39.10% 36.60% 9.80% 644

Schedule a meeting 27.60% 52.20% 17.10% 2.80% 0.30% 644

Coordinate with other
teams 10.00% 40.20% 37.90% 11.20% 0.80% 642

Negotiate changes 1.70% 20.80% 50.50% 24.50% 2.50% 644

Ask questions about the
code in general 0.60% 15.30% 42.90% 34.70% 6.40% 645

Ask questions about the
history of the code 4.80% 40.00% 40.00% 14.10% 1.10% 645

Ask questions to
understand a change 0.60% 7.00% 39.50% 45.10% 7.80% 643

Ask questions to
understand the reasons for
a change

1.10% 8.70% 45.60% 38.30% 6.40% 643

Table 24 Tasks performed before sending out code review: Detailed results

Before sending out a review Never Rarely Sometim
es Often Always Total

Read through the changes
looking for mistakes 1.40% 1.40% 5.10% 27.20% 65.00% 725

Write a detailed description of
the code to be reviewed 4.50% 12.50% 28.30% 28.90% 25.70% 727

Get advice from subject matter
experts 8.10% 13.60% 40.40% 28.90% 9.00% 726

Give reviewers a heads-up
about the review 14.40% 18.30% 35.40% 21.30% 10.60% 727

Run static analysis 25.10% 19.20% 16.20% 16.80% 22.70% 728

Run tests 3.60% 5.10% 12.50% 30.40% 48.40% 727

Create tests 6.50% 11.30% 28.90% 32.30% 21.00% 727

Appendix: Complete Survey

For the purposes of completeness and replication, we provide the complete text from the survey
deployed for this study below.

We are researchers from the Tools for Software Engineers team and Microsoft Research
investigating the code review work practices of developers at Microsoft. We would be greatly
appreciative if you would be willing to answer the following questions. The survey shouldn't
take more than 15 minutes.

This survey is completely anonymous and all questions are optional. No personal information is
required for particpation in this survey. If you have any questions or if you'd rather not
participate and want no further contact, please email Laura MacLeod or Christian Bird.
For survey participation, we are also hosting a raffle for two $50 Amazon gift cards. Instructions
for the raffle appear after participants submit their responses.

We invited participants by randomly selecting employees at Microsoft that fit our demographic
criteria such as their role at Microsoft. We are interested in hearing from employees who have
experience with code reviews (as either an author of changes, a reviewer of changes or both). If
you do not participate in code reviews, we ask that you still complete the first two questions.

Demographics
The following questions ask about your background and role within Microsoft.

1) What is your title?

2) How many years have you practiced code reviewing?

() I do not practice code review () Less than 2 () 2-5 years

() 6-10 years () More than 10 years

If you do not participate in code reviews, please scroll to the bottom of the survey and click
submit so that we can still get your answers to the first two questions. Thanks!

3) If you are a manager, please answer the following questions.

 Yes No

Do you regularly participate in code reviews? () ()

Do you manage other managers? () ()

4) How many years have you worked in the software industry?

() Less than 2 () 2-5 years () 6-10 years () More than 10 years

5) How many years have you worked at Microsoft?

() Less than 2 years () 2-5 years () 6-10 years () More than 10 years

Team Demographics
The following questions ask about your team's characteristics.

6) How many people make up your immediate team (including yourself)?

7) Of the number you listed above, how many people on your team do you directly work with?

8) Of those people, what percentage work near you? (i.e. you could get a cup of coffee with
them)

() None

() Less than half

() More than half

() All

9) What version control system does your team currently use? (Please check all that apply)

[] TFS

[] SourceDepot

[] Git

[] Other: ___

10) For the following table, please indicate if your team implements any of the following
practices

 Yes No

Pair programming () ()

Uses automated tool support for code check-ins (e.g., a Checkin Wizard). () ()

Provides formal training on code reviews practices () ()

Scrum () ()

An agile development process () ()

11) Based on your experiences, which of the following best describes your team's attitude
towards code reviews?
They consider it to be:

() Very unimportant () Unimportant () Neutral () Important () Very important

Team Code Reviews
The following questions ask about your team's code review practices.

12) Please answer if your team does any of the following:

 Yes No

Does your team subscribe to rules or policies for conducting code
reviews?

() ()

Does a code change normally require a code review before it can be
checked in?

() ()

Does your team have mechanisms to keep team members aware of
each other's reviews?

() ()

Does your team review and reflect on their code review process? () ()

13) What code review tools does your team currently use? (Choose all that apply)

[] CodeFlow

[] CodeFlow plug-in in Visual Studio

[] Code review feature in Visual Studio

[] GitHub pull requests

[] VSO pull requests

[] Atlassian

[] Email

[] Odd

[] No tool

[] Other: ___

14) Of the people you work with on code reviews (either as an author or reviewer of changes),
what percentage of those people work near you? (i.e. you could get a cup of coffee with them)

() None

() Less than half

() More than half

() All

15) To what degree does your performance in code reviews impact your job evaluation?
It has:

() A large impact () A minor impact () No impact

() I don't know or I haven't thought about it

Code Reviews
The next questions ask about why you do code reviews and for your opinions on the process.

16) Based on your experience, which of the following best describes your attitude towards code
reviews?

() Very unimportant () Unimportant () Neutral () Important () Very important

17) Why do you do code reviews? Below is a list of reasons developers do code reviews.
Please choose and rank your top 5 items (with 1 being the most important).

________Avoid breaking builds

________Code improvement

________Lead to shared code ownership

________Find defects

________Find alternative solutions

________Improve the development process

________Build team awareness

________Increase knowledge transfer

________Team assessment

18) If you have other important motivations you wish to share, please briefly explain them below
and indicate their level of importance.

19) Do situations occur where you find code reviews can be skipped? If so, briefly describe those
situations.

20) Below is a list of challenges developers face in code reviews.
Please choose and rank your top 5 challenges to code reviews (with 1 being the greatest
challenge).

________Understanding the motivations for the change

________Review size

________Understanding the code's purpose

________Finding relevant documentation

________Identifying who to talk to

________Obtaining insightful feedback

________Understanding how the change was implemented

________Receiving feedback in a timely manner

________Managing time constraints

________Maintaining code quality

________Reaching consensus

________Bikeshedding (disputing minor issues while more serious ones are overlooked)

________Managing multiple communication channels

Code Reviewing
The following question asks about your thoughts and actions as a reviewer on code reviews
(reviewing changes, not authoring them).

For the next set of questions we want you to think about the recent code reviews you have been a
part of in the past week and reflect on those experiences. If you did not act as a reviewer, please
answer the next question and skip the rest of the questions in this section.

21) In the past week, how often did you act as a reviewer on code reviews (reviewing changes,
not authoring them).

() I did not act as a reviewer

() Once during the week

() A couple times during the week

() At least once a day

() Multiple times a day

22) To what degree the following statements align with your recent experiences as a reviewer
on code reviews.

 Strongly
disagree Disagree Neutral Agree Strongly

agree

When reviewing, I worry about
others judging my abilities as a
programmer.

() () () () ()

It improves my confidence as a
programmer when I review the
changes of others.

() () () () ()

I am thorough when I review the
work of others.

() () () () ()

As a code reviewer I feel that my
feedback is respected.

() () () () ()

My personal relationships with
those involved in a review have
an impact on my code review.

() () () () ()

I am confident that the author
considers my feedback.

() () () () ()

23) Thinking about your actions as a reviewer on code reviews over the past week, how often do
you make use of the following resources to gather additional information relevant to code
reviews?

 Never Rarely Sometimes Often Always

Bug reports () () () () ()

Contacting the review author () () () () ()

Contacting subject experts (besides
the author)

() () () () ()

Source code not in the review () () () () ()

Design documentation () () () () ()

Mailing lists () () () () ()

Style guides () () () () ()

Source code history in the repository () () () () ()

24) Generally as a reviewer on code reviews, indicate which communication channel you would
turn to first to do the following tasks:

Code
review
tool

Face to
face
discussion

Face to
face
discussion
at a
whiteboard

Video
or
voice
chat

Telephone Email IM

Get a fast response () () () () () () ()

Explore alternative
approaches

() () () () () () ()

Communicate
issues that may
reflect badly on
someone

() () () () () () ()

Reach a consensus () () () () () () ()

Schedule a meeting () () () () () () ()

Coordinate with
other teams

() () () () () () ()

Negotiate changes () () () () () () ()

Ask questions
about the code in
general

() () () () () () ()

Ask questions
about the history of
the code

() () () () () () ()

Ask questions to
understand a
change

() () () () () () ()

Ask questions to
understand the
reasons for a
change

() () () () () () ()

25) Generally as a reviewer on code reviews, indicate the frequency of which you find yourself
doing the tasks mentioned above:

 Never Rarely Sometimes Often Always

Get a fast response () () () () ()

Explore alternative approaches () () () () ()

Communicate issues that may
reflect badly on someone

() () () () ()

Reach a consensus () () () () ()

Schedule a meeting () () () () ()

Coordinate with other teams () () () () ()

Negotiate changes () () () () ()

Ask questions about the code in
general

() () () () ()

Ask questions about the history of
the code

() () () () ()

Ask questions to understand a
change

() () () () ()

Ask questions to understand the
reasons for a change

() () () () ()

Code Authoring
The following question asks about your thoughts and actions as an author of code reviews
(submitting changes for others to look at).

For the next set of questions we ask you to think about the recent code reviews you have been a
part of in the past week, and to reflect on those experiences. If you did not act as an author,
please answer the next question and skip the rest of the questions in this section.

26) In the past week, how often did you act as an author of code reviews (submitting changes for
others to look at).

() I did not act as an author

() Once during the week

() A couple times during the week

() At least once a day

() Multiple times a day

27) Thinking as an author of code reviews this past week, how often did you do any of the
following before you sent out changes for review?

 Never Rarely Sometimes Often Always

Read through the changes
looking for mistakes

() () () () ()

Write a detailed description of
the code to be reviewed

() () () () ()

Get advice from subject matter
experts

() () () () ()

Give reviewers a heads-up
about the review

() () () () ()

Run static analysis () () () () ()

Run tests () () () () ()

Create tests () () () () ()

Build and run changes () () () () ()

28) To what degree do you agree with the following statements based on your recent
experiences as an author of code reviews.

 Strongly
disagree Disagree Neutral Agree Strongly

agree

As a review author, I
appreciate the feedback I
receive from reviewers.

() () () () ()

When others review my
changes, I worry about them
judging my abilities as a
programmer.

() () () () ()

It improves my confidence
when others review my
changes

() () () () ()

I feel that I am more thorough
because I know my code will
be reviewed.

() () () () ()

My personal relationship to
reviewers has an impact when
I author a code review.

() () () () ()

I express thankfulness to
those who review my code.

() () () () ()

I learn a lot when other
developers review my code.

() () () () ()

Best practices
The following questions ask about best practices for code reviews.

29) What do you think is the most important thing developers can do to increase feedback speed
on code reviews?

30) What do you think is the most important thing developers can do to increase feedback
usefulness on code reviews?

31) What do you think is the most important thing developers can do to increase code review
productivity?

32) Please list the top impediment to productivity you encounter on code reviews.

Thank you for taking the time to respond to our survey. We hope that the results of this study
will provide meaningful feedback, leading to changes in code review tool support and practices.

33) If you are interested in participating in follow up sessions regarding this survey, or in future
studies, please enter your alias below. (Note: this step is completely voluntary. If you wish to
participate, but not associate your alias with the answers given in this survey, you may email us
separately)

34) Please use the following text box if you have any additional feedback or comments that you
feel would be helpful to our research in this area.

If you found anything unclear, or should be changed in this survey, we would love to hear your
feedback.

	Appendix: In-Depth Survey Analysis
	Demographics
	Technical set-up
	Development practices
	Code reviews

	Appendix: In-Depth Survey Analysis
	Demographics

	Appendix: In-Depth Survey Analysis
	Demographics
	Impact in the job evaluation

	Appendix: In-Depth Survey Analysis
	Demographics

	Appendix: In-Depth Survey Analysis
	Demographics

	Appendix: In-Depth Survey Analysis
	Demographics

	Appendix: Complete Survey
	Appendix: In-Depth Survey Analysis
	Demographics

