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Supplementary Text 

Note S1: The role of donor VL in transmission risk and selection bias 

In Eq. 6 we noted that an overall increase 𝑐 in the probability that any donor virus 

will be able to establish infection will lower the odds of transmission. Notably, 

transmission risk factors that increase risk by simply increasing exposure (reflected by 𝑛, 

the number of viruses in the quasispecies, which could be generalized to account for the 

number of exposures) were not present in Eq. 6, having canceled out in prior steps. 

Importantly, this cancelation was possible because of the assumption that the overall rate 

of transmission is small, leading to the approximation in Eq. 2. But how good is this 

approximation and what happens when transmission rates are high, violating the 

assumption that enables this approximation? This question is particularly relevant for 

donor VL, a well-established transmission risk factor. Although VL is known to increase 

transmission risk, there are at least two possible mechanisms: (i) high donor VL is a 

marker of increased viral fitness, consistent with the observations that in vivo replicative 

capacity correlates with VL (18-21) and that donor VL predicts early setpoint VL in 

linked recipients (32-34); and (ii) high donor VL simply increases the probability of 

transmission by increasing overall exposure.  Our observation that increased donor VL 

reduces transmission selection bias suggests that fitness is at least one factor, but only if 

the approximation in Eq. 2 is valid. 

To explore the validity of the approximation in Eq. 2 in the context of selection bias 

as expressed in Eq. 4, we implemented the formula for the exact rate of transmission 

under the binomial distribution in Matlab®, given by 

𝑟 ≡ Pr(𝑇 > 0) = 1 − (1 − 𝑝𝑎)𝑓𝑎𝑛(1 − 𝑝𝑎)(1−𝑓𝑎)𝑛 

then plotted the relationship between 𝑟 and the conditional probability that the founder 

virus included a virus of type 𝑎 (fig. S3), given by 

𝑟𝑎|𝑟 ≡ Pr(𝑇𝑎 > 0|𝑇 > 0) =
1 − (1 − 𝑝𝑎)𝑓𝑎𝑛

1 − (1 − 𝑝𝑎)𝑓𝑎𝑛(1 − 𝑝𝑎)(1−𝑓𝑎)𝑛
=

𝑟𝑎

𝑟
 

where 𝑟𝑎 = 1 − (1 − 𝑝𝑎)𝑓𝑎𝑛 is the rate of transmission of viruses of type 𝑎. If 

transmission is unbiased, then 𝑝 = 𝑝𝑎 = 𝑝𝑎 and we can write 

𝑟𝑎|𝑟 ≡ Pr(𝑇𝑎 > 0|𝑇 > 0) =
1 − (1 − 𝑝)𝑓𝑎𝑛

1 − (1 − 𝑝)𝑛
≈ 𝑓𝑎 

where the approximation again assumes a low rate of transmission. Thus, for small rates 

of transmission, transmission will be unbiased with respect to 𝑎 if 𝑟𝑎|𝑟 = 𝑓𝑎; that is, if the 

probability that the founder virus includes a virus of type 𝑎 is equal to the proportion of 

donor viruses that are of type 𝑎. For each simulation experiment, we first set the baseline 

selection bias 𝑏 = (𝑝𝑎 + 𝑐)/(𝑝𝑎 + 𝑐), the frequency 𝑓𝑎 of 𝑎 in the donor quasispecies, 

and initial values of 𝑛 and 𝑝𝑎 such that 𝑟 was low (initially 0.001). Setting 𝑐 = 0, and 

𝑛 = 1000, we then manipulated 𝑟 by increasing either 𝑛 or 𝑐, and then plotted the 

relationship between 𝑟 and 𝑟𝑎|𝑟. 
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From this experimental setup, we observed that, for very high rates of transmission 

(𝑟 > 0.5), the odds that a virus of type 𝑎 is in the founder population increases due to the 

increased odds of multiple-virus infection (fig. S3). For cases where selection bias favors 

the minority variant (𝑝𝑎 < 𝑝𝑎; top rows of fig. S3), increasing the rate of infection by 

increasing 𝑐 (that is, increasing the ability of each individual virus to establish infection; 

blue circles) causes selection bias to shrink toward zero, as seen by the convergence of 

𝑟𝑎|𝑟 toward 𝑓𝑎; this convergence is slowest when 𝑎 represents 99% of the population, 

which is close to the mean value of 𝑓𝑎 over all sites in our deep sequencing data.  In 

contrast, increasing the quantity of donor viruses, 𝑛, has no effect on selection bias: until 

𝑟 is sufficiently high to make multiple-virus infection likely, the probability that the 

founder includes 𝑎 remains near 𝑓𝑎. Similar results are observed when the selection bias 

favors the donor majority variant (𝑝𝑎 > 𝑝𝑎; bottom rows of fig. S3), though here the 

effect of multiple-virus transmission is to induce a U-shape on the selection-bias curve. 

Notably, in each of these plots, the approximation in Eq. 3 (solid red and blue lines) 

closely tracks the exact probabilities for cases of single-virus infection, validating our use 

of this approximation in the models. 

Thus, these simulations confirm that the overall donor viral population size 𝑛 does 

not affect transmission selection bias in cases of single-virus transmission, while the 

effect of multiple-virus transmission is to increase the probability that a virus of type 𝑎 is 

transmitted, regardless of the selection bias. In Fig. 3, we observed that increased donor 

VL predicts lower selection bias and that this effect is strongest for polymorphisms, an 

observation that is inconsistent with high VL simply increasing the rate of multiple-virus 

transmission. These results thus suggest that high VL is in this context primarily a marker 

for increased viral transmission fitness. That donor VL is a more important predictor for 

transmission in male compared to female recipients [(27); see also table S3] is consistent 

with our observation that female recipients generally have a lower selection bias than 

males and that donor VL has a stronger effect on selection bias among male recipients 

(Fig. 3). These observations suggest that the increased effect of donor VL on female-to-

male transmission may primarily be the result of an increased barrier among male 

recipients that increases the importance of overall viral fitness (in effect, 𝑐 is much 

smaller in males than females). Together with our observation that transmission index 

predicts transmission (Fig. 5), these models predict that reduction in overall viral fitness 

(for example, via drug resistance mutations, or as a result of immunological adaptation), 

will have a larger effect on female-to-male than on male-to-female transmission. 

These results also suggest that therapeutic approaches to lowering VL without 

lowering VL fitness (for example, anti-retroviral therapy [ARV] in the absence of viral 

escape) will have no effect on transmission selection bias. Indeed, to the extent that ARV 

failure is caused by mutations that concomitantly weaken the virus, these models predict 

that high viral loads resulting from virologic failure will be correlated with increased 

selection bias, as in these cases higher VL will be a marker of decreased fitness in the 

absence of drug due to the escape mutations. Similar effects may arise in the case of elite 

controllers—if elite control is primarily indicative of an effective immune response and 

not a general inability of the virus to replicate.  

  



 

 

4 

 

Note S2: Independence of viruses 

Thus far, we have assumed that the probability that two different viruses will 

establish infection are independent of each other. However, it has been reported that the 

distribution of multiple-virus infections exceeds what would be expected under 

independence (1). Indeed, the rate of multiple-virus infections (≈ 10%) exceeds by 10 to 

100 fold what would be predicted from the binomial distribution given observed rates of 

transmission (see next section). But what is the effect of non-independence on our 

modeling and on our conclusions? 

The hypothesis that transmission is non-independent is supported by the relatively 

high frequency of multiple-virus infections. One possible mechanism for this non-

independence would be a process in which the successful transmission of one virus 

makes it easier for another virus to break through the physical and immunological 

barriers (for example, if infection of one target cell causes the recruitment of other target 

cells). This mechanism would imply that the probability that no viruses establish 

infection remains (1 − 𝑝)𝑛, and thus the overall probability of infection is still given by 

𝑟 = Pr(𝑇 > 0; 𝑛, 𝑝) = 1 − (1 − 𝑝)𝑛, and the observed low rates of transmission, 𝑟 <
0.01, still allow the approximation 𝑟 ≈ 𝑛𝑝. The primary issue of non-independence is 

that the frequency of multiple-virus transmission will be non-negligible—roughly 10% in 

heterosexual cohorts. For these 10% of individuals, the odds that a virus of type 𝑎 is in 

the founder population is no longer a simple function of 𝑓𝑎 and 𝑝𝑎/𝑝𝑎 (Eq. 3), because 

the denominator needs to account for the probability that viruses of both type 𝑎 and 𝑎 are 

transmitted. In effect, the odds as stated in Eq. 3 will overestimate the true odds. 

However, while 10% of individuals are infected with multiple viruses, in our model 

setup, we group all viruses into two types: type 𝑎, comprising >75% of all donor viruses, 

and type 𝑎. In this context, transmission of multiple viruses is irrelevant if they are all of 

the same type, as will be the case for the vast majority of sites for any particular instance 

of multiple-virus transmission. Furthermore, by filtering out instances where a mixture is 

observed in the recipient, we likely exclude many instances in which the founder 

population includes viruses from both the donor majority and minority variants. Thus, the 

overall proportion of sites in our modeling setup that includes viruses of both types is 

likely much less than 10%.  

Nevertheless, what is the effect of non-independence on the small number of sites 

where this is relevant? With respect to viral fitness features (primarily those in Fig. 2), 

the effect will be to dilute the signal, making it harder to detect a selection bias between 

viruses of type 𝑎 and 𝑎. Thus, non-independence does not change our conclusions with 

respect to the existence of selection bias at the transmission bottleneck in general, nor the 

observation that these features are related to viral fitness in particular. With respect to the 

reduction of selection bias by risk factors, the effect will be to uniformly increase the 

probability that the founder population includes a virus of type 𝑎, regardless of whether 

selection bias favors or restricts 𝑎. Indeed, this can be observed among the high rates of 

transmission observed in fig. S3 (see Note S1), in which increasing 𝑛 to very high rates 

of transmission increases the probability that 𝑎 is in the founder population, regardless of 

𝑝𝑎/𝑝𝑎. Importantly, while the risk factors considered here (sex, GUI and donor VL) 

likely increase the rate of multiple-virus transmission [as any transmission risk factor will 

under the binomial distribution, and as previously reported for GUI (3)], the observation 

that this effect is most extreme among variants with low cohort frequency, where 𝑝𝑎 ≪
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𝑝𝑎 (Fig. 3), argues that this effect is largely driven by a reduction in selection bias, not by 

very high rates of multiple-virus transmission. 

 

The expected rate of multiple infection under the binomial distribution is approximately 

the rate of transmission 

We asserted in the previous section that the pattern of multiple-virus infection 

suggests that transmission is non-independent. This observation was first made by 

Abrahams and colleagues, who argued from the Poisson distribution that the observed 

distribution of the number of virus genotypes per infection was not consistent with the 

independence assumption (1). Here, we briefly re-derive the Abrahams result using the 

binomial distribution and show that, under independence, the proportion of founder 

populations with more than one virus will be approximately the same as the overall rate 

of infection. Since the observed rate of multiple-virus infection greatly exceeds that 

predicted by the binomial distribution, we conclude that transmission is characterized by 

non-independence among individual viruses, such that the transmission of one virus 

particle increases the probability that other virus particles will be part of the founder 

population. 

Equation 2 provides the exact probability (assuming a binomial process) that at least 

one virus establishes infection: that is, the probability, or rate 𝑟, of infection per exposure 

incident. Similarly, the binomial distribution provides the exact probability that a single 

virus establishes infection as 

Pr(𝑇 = 1; 𝑛, 𝑝) = 𝑛𝑝(1 − 𝑝)𝑛−1 

Thus, the conditional probability that productive infection was established by a single 

virus is 

Pr(𝑇 = 1|𝑇 > 0; 𝑛, 𝑝) =
𝑛𝑝(1 − 𝑝)𝑛−1

1 − (1 − 𝑝)𝑛
 

From the approximation in Eq. 2, we see that the probability that a successful 

transmission event involves multiple viruses is approximately  

Pr(𝑇 > 1|𝑇 > 0; 𝑛, 𝑝) = 1 −
𝑛𝑝(1 − 𝑝)𝑛−1

1 − (1 − 𝑝)𝑛
 

≈ 1 −
𝑛

𝑝
1 − 𝑝

(1 − 𝑛𝑝)

𝑛𝑝
 

= 1 −
1 − 𝑛𝑝

1 − 𝑝
 

= 1 −
1 − 𝑟

1 −
𝑟
𝑛

 

≈ 𝑟  

where we have again used the assumption of small per-virus transmission probability, 

p<<1. That is, the proportion of infections established by multiple variants will be 
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approximately equal to the proportion of sex acts that result in any infection. Note that 

while the above approximations allow for an intuitive understanding of the relationship 

between the probability of transmission and the conditional probability of transmitting 

multiple viruses, exact probabilities are easily computed by statistical software and reveal 

that the above approximations overstate expected transmissions that involve multiple 

viruses, especially when the probability of transmission exceeds 20% (data not shown). 

Note that, for small transmission rates, the precise values of 𝑛 and 𝑝 are irrelevant: 

𝑛𝑝 is the statistic of interest, as it determines the transmission probability 𝑟. Furthermore, 

note that this result holds under models in which individual viruses have different 

probabilities of establishing infection (in which case 𝑝 represents the mean over the entire 

population of viruses). For example, it is well known that some couples represent high 

infection risk, while others represent low infection risk (27, 28). In these scenarios, the 

above model can be extended to a probabilistic hierarchical model, with the same result 

that the expected number of multiple-virus transmissions will be approximately equal to 

the overall rate of transmission. Briefly, if high risk couples have a rate of transmission of 

𝑟↑ while low risk couples have a rate of transmission of 𝑟↓, then the overall rate of 

transmission in the population will be the average rate of transmission, weighted by the 

proportion of individuals in the high (𝑓↑) or low (1 − 𝑓↑) risk groups. Similarly, because 

within each group the rate infection will be approximately the same as the rate of 

infections involving multiple viruses, the conditional probability that productive 

transmission results in multiple transmitted viruses will also be the weighted average 𝑟 ≈
𝑓↑𝑟↑ + (1 − 𝑓↑)𝑟↓. That is, the overall rate of transmission will still be approximately 

equal to the overall proportion of transmissions that involve multiple transmitted viruses. 
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Fig. S1. Cohort frequencies of donor majority variants correlate with the frequency 

of those variants in the donor quasispecies.  

Deep sequencing (454) was performed on 5 donors to estimate the quasispecies 

frequencies of dominant variants, as called from population sequences. The mean 

quasispecies frequency computed as a sliding window over cohort frequency (window 

size of 1 unit in log-odds space) is plotted in Green (all sites) and Red (all sites with 

observed quasispecies variation in the donor). Cohort and quasispecies frequencies are 

computed as smoothed log-odds scores with smoothing factor 𝑞 = 1/50. 
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Fig. S2. Additional features that impact selection bias. 

(A-C) Selection bias against transmission of variants that are consistent with escape from 

donor HLA alleles in (A) Gag, (B) Pol, and (C) Nef. (D) Residues that are susceptible to 

recipient HLA alleles—meaning they represent an un-escaped amino acid residue that is 

linked to at least one recipient HLA allele—are less likely to be transmitted. However, 

because transmission is defined as differences between recipient and donor sequences, as 
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measured a median of 46 days after transmission, these curves could represent rapid 

escape in the recipient. (E) Differences among proteins Gag, Pol and Nef, or (F) among 

protein domains. Although these differences were significant (see Table 2), no 

differences were observed when correcting for donor quasispecies frequency among the 5 

couples for whom deep sequencing was available (Table 1), suggesting that these protein-

specific difference may primarily result from differences in mean quasispecies 

frequencies of variants for these proteins. Nevertheless, these protein domains are 

included as covariates in all multivariable models to correct for confounding. Nef 

functional CD4 and MHC downregulation domains are taken from (49). 
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Fig. S3. Simulation of selection bias versus transmission probability. 

The exact binomial probability mass function was used to explore the relationship 

between the probability of transmission, 𝑟, and the conditional probability that the 

transmitted founder virus population contains at least one virus of type 𝑎 (𝑟𝑎|𝑟). For a 

range of 5 bias values (𝑝𝑎/𝑝𝑎) and a range of donor quasispecies frequencies for 𝑎 (𝑓𝑎), 
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we plotted the conditional transmission probability of 𝑎 as a function of the overall 

transmission probability 𝑟. For each plot, we set the donor viral population size to 𝑛 =
1000, then solved for 𝑝𝑎 to achieve a transmission probability of 0.001, satisfying bias, 

𝑓𝑎, and 𝑛. We then increased the rate of transmission 𝑟, either by increasing the overall 

donor population size, 𝑛 (red dots), or by increasing 𝑝 for all viruses by adding a constant 

𝑐 to both 𝑝𝑎 and 𝑝𝑎 (blue circles). The red and blue solid lines indicate the predicted 

conditional transmission probability of 𝑎, as estimated by the approximation in Eq. 3. A 

reduction in selection bias is here visualized as the convergence of the conditional 

transmission probability toward 𝑓𝑎 (gray line). 
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Fig. S4. Empirical reversion rates. 

Empirical reversion rates of donor polymorphisms to non-mixture consensus were 

estimated using a kernel smoothing function, as implemented in the Matlab statistics 

package, using a Gaussian kernel with widths of 1 week and 1 month. The plot shows the 

curves with 1 week smoothing for <3mo and 1 month smoothing for >3mo (the larger 

smoothing window accommodates the sparser sampling times).  Dotted lines show the 

mean reversion rates in the 3-12 month interval. Reversion rates are an order of 

magnitude higher in the first three months of infection compared to the following 18 

months; steady state reversion rates are lower in males compared to females, whereas 

initial reversion rates are higher in males compared to females. These data are thus 

consistent with an initial selection bias and are not likely artifacts of early reversion, as 

further supported by the ability to estimate the odds of transmission of viruses and virus 

populations (Fig. 5). Compare to Fig. 4, which shows cumulative reversion. Note that 

Fig. 4 measures reversion times relative to the first available sample date in the recipient; 

here, reversion times are measured relative to the estimated date of infection. 
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Table S1. Clinical characteristics of the cohort. 

 

 
Transmitting 

Non- 

Transmitting 

N 137 181 

Male (%) 62 (45%) 87 (48%) 

Male recipient* GUI (%) [missing] 17 (29%) [3] 10 (12%) [1] 

Female recipient GUI (%) [missing] 27 (38%) [3] 15 (16%) [2] 

Male donor† log10 VL, median [IQR‡] 5.2 [4.7,5.7] 5.0 [4.3,5.3] 

Female donor log10 VL, median [IQR] 4.8 [4.3,5.3] 4.3 [3.6,4.9] 

ETI§, median [IQR] 46.0 [42.0,60.5]  
*In the case of non-transmitting couples, the “recipient” refers to the seronegative partner.     †In the case of non-
transmitting couples, the “donor” refers to the seropositive partner.     ‡Interquartile range.     §Estimated time 

between infection and first available sample. 
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Table S2. Reversion of donor polymorphisms transmitted to recipients 

Feature Ln(HR)* P value† Transmission‡ 

 Cohort frequency§ -0.28 0.016 + 

Viral fitness features** 

# Covarying sites -0.10 0.031 + 

Donor escape 0.99 0.003 − 

Structural frequency§ 0.01 0.496 + 

Donor log10 VL -0.16 0.131 + 

Is male-to-female 0.58 0.016 + Recipient susceptibility 

features† † Recipient is GUI male 0.17 0.406 + 

Is escape to consensus¶ 1.45 0.004 

  p17 -0.16 0.315 

  p24 0.11 0.409 

  Protease -1.92 0.196 

  Reverse transcriptase -1.42 3.1 × 10-6 

  Integrase -1.77 0.215 

  Nef CD4/MHC domains 1.40 0.207 

  *The hazard ratio of reversion from polymorphism to consensus, for sites in which a polymorphism was present in both the donor and recipient, 

were estimated using a Cox proportional hazards model. Only sites with available protein structures were used in the model; all sites were used in 
Fig. 4.     †P-values were estimated using a multilevel bootstrap (1000 replicates) to estimate the standard error for each parameter.     ‡The effect 

of the feature on odds of transmission (Table 2) is indicated: +, the feature generally increases odds of transmission; −, the feature generally 

decreases the odds of transmission.     §Because we are tracking reversion to consensus, and not any mutation away from the polymorphism, 
observed cohort and predicted structure frequencies are here represented as the negative standardized log-odds of the respective measure for the 

cohort consensus at that site.     ¶A binary variable indicating whether a mutation to consensus is consistent with escape from recipient HLA 

alleles, and thus may more likely represent immune escape than reversion.     **Viral fitness features are expected to elicit opposite effects on 
transmission and reversion: amino acids with high odds of transmission will have low rates of reversion and vice versa.     † †Recipient 

susceptibility features are expected to elicit concordant effects on transmission and reversion: individuals who have low selection bias will have 

high overall odds of transmitting the dominant donor variant; those variants will in turn revert faster because they on average have lower fitness. 
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Table S3. Transmission index of the seroprevalent partner is predictive of 

transmission 

Feature Ln(OR)* P value 

Offset 0.64 0.031 

Transmission index† 1.28 0.047 

Is male-to-female 1.11 0.705 

Donor‡ log10 VL (M2F)§ 1.47 0.031 

Donor log10 VL (F2M) 2.18 4.4 × 10-4 

Recipient¶ has GUI (M2F) 1.00 0.986 

Recipient has GUI (F2M) 3.41 0.010 
*Model was fit using logistic regression. Dependent variable was whether the seroprevalent 

individual had transmitted to their partner. Compare to Fig. 5C.     †Transmission index is 
standardized (zero mean, unit variance) for comparison purposes.     ‡Or the seropositive 

partner in the case of NYT couples.     §Donor VL and recipient GUI were given separate 

parameters for male-to-female (M2F) and female-to-male (F2M) couples.     ¶Or the 
seronegative partner in the case of NYT couples. 

 

Table S4. HLA associations, covariation associations and structural energy 

estimates (xls). 

 

 

 

 

 


