
A new mode of development for Earth system models is needed to enable better targeted 

and more informative projections for both decision makers and scientists.
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T	 he Earth system is the thin layer of the Earth that  
	 contains and supports life. It ultimately governs  
	 most processes vital to human health and 

wellbeing: from food and water availability to disease 
spread and global economics. It is the canonical 

example of a complex system, in which its dynamics, 
resulting from interacting multiscale and nonlinear 
processes, cannot be predicted from understanding 
any of its isolated components. Attempts to under-
stand the Earth system and how it will change in the 
future therefore depend on computational models 
that represent, with varying levels of abstraction, 
physical, chemical, and biological components of the 
Earth system and their interactions (Randall et al. 
2007; Edwards 2010).

Decades of research using such models have 
resulted in advances in the understanding of many 
Earth system processes, including the impacts of 
humans on climate. Models have also produced 
projections, combining current knowledge of the 
underlying science with a set of plausible future 
societal change scenarios to provide information 
to guide climate change mitigation policy. But what 
confidence can be assigned to the projections? 
Confidence about a particular climate projection 
is often judged by the agreement between different 
climate models, with greater confidence assigned to 
projected changes for which there is close agreement 
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(Pachauri and Reisinger 2007), although other con-
siderations, such as why the models disagree, are also 
taken into account. Agreements between climate 
models have predominantly occurred for physical 
phenomena occurring over large spatial scales. All 
models agree that the world will become warmer on 
average if CO2 levels continue to increase (Stainforth 
et al. 2005; Pachauri and Reisinger 2007; Oreskes 
et al. 2010; Kerr 2011; Rowlands et al. 2012), and they 
all agree that the increases will be greater at higher 
latitudes (Pachauri and Reisinger 2007). However, 
they disagree in other aspects, such as by how much 
the world will warm (Oreskes et al. 2010; Bretherton 
et al. 2012), and these disagreements become more 
pronounced at finer, regional spatial scales (Pachauri 
and Reisinger 2007).

It is now widely recognized that differences in 
projections not only fail to recognize a variety of 
additional sources of uncertainty, but also inevitably 
become increasingly uncertain the further into the 
future they are extended. For instance, projections 
still rarely incorporate estimates of uncertainty in 
many model parameters and uncertainty arising 
from internal model variability, and so typically 
underestimate the uncertainty (Stainforth et al. 
2007a,b; Brekke et al. 2008; Fischer et al. 2011; 
Bretherton et al. 2012). However, any model will 
also always imperfectly represent the dynamics of 
the real world by failing to account for all the fac-
tors determining the dynamics by deliberately not 
incorporating known processes and by obviously not 
accounting for unknown processes. Thus, projections 
will inevitably become less reliable, and thus uncer-
tain, the further into the future they are extended 
(Smith 2002; Parker 2011; Smith and Stern 2011).

Despite their limitations, model projections are 
used by governments, businesses, and scientists to 
help make decisions. However, the lack of clarity 
about their uncertainty limits the extent to which 
they can be treated with any more sophistication than 
simply a collection of plausible outcomes (Cox and 
Stephenson 2007; Moss et al. 2010; Oreskes et al. 2010; 
Kerr 2011; Maslin and Austin 2012). For example, 
land use managers wishing to assess how precipitation 
might change in the future are typically confronted 
with a wide range of predictions about the direction 
and timing of change (Stainforth et al. 2007b; New 
et al. 2007; Stainforth 2010; Maslin and Austin 2012). 
Decision makers do not depend on consistent or con-
fident projections in order to make decisions (Polasky 
et al. 2011; Kunreuther et al. 2013) but analyses of un-
certainty and estimates of confidence in projections 
provide a much a clearer understanding of the need 

for, and likely consequences of, different decisions 
(Weaver et al. 2013; Lemos et al. 2012).

Of course, we do not suggest that Earth system 
modeling has not been useful in informing decision 
making. However, it has followed an approach that 
is better suited to exploring the plausible rather than 
identifying the probable. How can this situation be im-
proved? How can we improve how model projections 
are made to provide clearer information to decision 
makers? We believe this can be facilitated by pursuing 
an alternative mode of model development; one that 
has the central aim of enabling the balance of models 
to be adjusted to allow balances of detail to be found 
that provide useful information for specific decisions.

DIFFERENT PERSPECTIVES ON THE 
FUTURE EVOLUTION OF MODELS. There is 
a diverse variety of models of the Earth system (Fig. 1) 
because the level of detail has evolved over time to ad-
dress different scientific questions. The predominant 
direction of model development to date has been the 
addition of more details, simulating an increasing 
number of different processes. In so doing, they have 
increased our understanding of the Earth system. 
They have also evolved to simulate processes at 
increasingly finer spatial resolutions (Claussen et al. 
2002; Randall et al. 2007; Slingo et al. 2009), enabling 
phenomena to be simulated that only begin to occur 
at finer spatial scales (such as hurricanes). However, it 
is important to recognize that the same advances have 
also brought costs that can reduce predictive accuracy 
(by “accuracy” we mean the degree to which model 
predictions are centered on the dynamics and states 
of real-world phenomena rather than, for example, 
the number of real-world processes that the models 
depict). We will detail these costs below but, as an 
example, efforts have been biased toward adding 
details to individual models that are already techni-
cally unwieldy and intractable (Held 2005), rather 
than enabling uncertainty in the different aspects to 
be assessed, quantified, and incorporated into predic-
tions and projections (“predictions”: estimates of how 
the Earth system will change; “projections”: estimates 
of how the Earth system might change under different 
scenarios; Weaver et al. 2013).

Perspectives differ on how much time and re-
sources should be spent on adding yet more details. 
One perspective is that this is likely to be worth-
while because the model projections, incorporating 
more processes and at finer spatial resolutions, will 
become more realistic (Slingo et al. 2009; Gent et al. 
2009; Slingo 2010). However, this is true only if our 
understanding of those new processes, as expressed in 
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model formulations and param-
eter values, is sufficient to enable 
the projections to reliably predict 
the dynamics of the system under 
future scenarios. For example, 
Oppenheimer et al. (2008) show 
that the continual refinement of 
model details can actually lead 
to “negative learning”: where 
confidence improves over time to 
an answer that is different from 
the truth.

An alternative perspective is 
that continually adding details 
will unlikely deliver the desired 
improvements in decision-
making capabi l it ies (Dessai 
et al. 2009). Instead, it is pro-
posed that the focus of making 
climate change decisions using 
projections should change from 
one that awaits sufficiently high 
confidence in what will happen 
before acting (“predict then act”) 
to one that uses the projections 
as a set of plausible examples of 
what might happen to decide on how best to act in 
light of that knowledge and uncertainty (Stainforth 
et al. 2007b; Dessai et al. 2009; Kunreuther et al. 2013). 
Toward this goal, studies have investigated improving 
the process of decision making to make more robust 
decisions while incorporating information with differ-
ent and diverse sources of uncertainty (Lempert and 
Collins 2007; Stakhiv 2011; Kunreuther et al. 2013; 
Weaver et al. 2013). These have led to the refinement 
of robust decision-making (RDM) methods within 
climate change decision making (Weaver et al. 2013). 
Existing model projections can already inform deci-
sion making under such frameworks, but for a limited 
range of scenarios and scales of spatial and temporal 
resolution. But they are not necessarily best suited for 
this purpose. To examine a range of scenarios, it would 
be more convenient to use models that could easily be 
simulated under many different scenarios (Weaver 
et al. 2013; Bretherton et al. 2012). Another focus has 
therefore been on how to redesign methodological 
frameworks for producing climate change projections 
so that they can be better targeted toward the needs 
of users (Weaver et al. 2013; Bretherton et al. 2012).

However, even if more robust decision-making 
frameworks are adopted, contemporary climate 
models still do not adequately convey important in-
formation that can be used to assess the confidence 

that can be placed in their projections. By “confidence” 
we mean an estimate of the probability of how the 
real-world system will behave. A related concept is 
the credibility of projections, which describes the 
assessment of a mechanistic model to reliably repro-
duce particular real-world phenomena (e.g., Brekke 
et al. 2008). Our perspective is that significant im-
provements to how climate models are developed are 
needed to provide more informative climate change 
projections. Such projections should go beyond 
being just a set of plausible outcomes to also convey 
a much more rigorous depiction of uncertainty in 
those projections than has been done to date. While 
any estimates of uncertainty will always become de-
creasingly reliable the further into the future they are 
projected (unless some proof can be given about the 
extent to which they truly bound real-world dynam-
ics), they can still be seen as information-constrained 
predictions of the future, based on past evidence and 
understanding. Our focus here is on the methodologi-
cal process of making the climate model projections 
themselves to better convey information and uncer-
tainty relevant to the information being sought.

THE COSTS OF MODEL COMPLEXITY. 
Contemporary practices are still limited in the 
extent to which they incorporate different sources 

Fig. 1. Toward more balanced models of the Earth system. There cur-
rently exists a wide spectrum of models of the Earth system (Randall 
et al. 2007): Earth system models (ESMs), energy balance models 
(EBMs) (Lenton 2000), ESMs of intermediate complexity (EMICS) 
(Claussen et al. 2002), and atmosphere–ocean general circulation 
models (AOGCMs) (Murphy et al. 2004). Each prioritizes the allocation 
of computational resources (the area of the gray polygon) differently. 
Enabling and performing fluid navigation of this model space to identify a 
suitable balance of details will be a key part to our new approach, termed 
a variable detail model (VDM), here. Gray lines represent hypothetical 
alternative resource allocations in the VDM.
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of uncertainty into model projections. Uncertainty 
arises from multiple sources: from uncertainty in the 
data used to initialize, parameterize, and evaluate 
models; from uncertainty in how adequately models 
represent reality; from differences in our scientific 
understanding of processes and how to represent 
them in models; from uncertainty in whether the 
model has been implemented correctly; and from 
uncertainty arising from simulated random events 
occurring in real-world processes (Stainforth et al. 
2007a; Masson and Knutti 2011; Slingo and Palmer 
2011). Yet Earth system models are currently so 
computationally demanding that only between 3 and 
10 simulations per scenario were recommended for 
decadal forecasts and hindcasts to inform the Fifth 
Assessment Report of the Intergovernmental Panel 
on Climate Change (Meehl and Bony 2011). This is a 
very low number of replicates to characterize a dis-
tribution in something so dynamically rich as global 
climate. For example, Deser et al. (2012; see Daron 
and Stainforth 2013 for another example) estimated 
how many simulations were needed to detect anthro-
pogenic changes in air temperature, precipitation, and 
sea level pressure predicted by a general circulation 
model with its between-run variations arising only 
from simulated random atmospheric and oceanic 
processes. They found that <10 simulations were 
insufficient to detect changes in precipitation and 
sea level pressure for most regions of Earth, even 
over multidecadal time windows, with only changes 
in surface air temperature being reliably detected for 
most regions of Earth with such few replicates. Yet 
this is just for one model, not even a full Earth system 
model, under one scenario, using one major source 
of variation (internal variability), and for a few global 
properties. Awareness of the need to understand the 
degree of replication required to capture internal 
variability is increasing and it is notable that some 
modeling groups conducted many more than 10 
simulations per scenario for their phase 5 of the 
Coupled Model Intercomparison Project (CMIP5) 
simulations (Stainforth et al. 2005; World Climate 
Research Programme 2013).

There have been significant efforts to incorporate 
parameter uncertainty into general circulation model 
projections to assess how it influences uncertainty 
(e.g., Murphy et al. 2004; Stainforth et al. 2005; 
Collins et al. 2006; Knight et al. 2007; Piani et al. 2007; 
Murphy et al. 2009; Fischer et al. 2011; Sanderson 
2011; Rowlands et al. 2012; Sexton et al. 2012; Sexton 
and Murphy 2012). However, these have predomi-
nantly not been extended to other components of 
the Earth system (e.g., biological components), to 

full Earth system models, or to the functional forms 
assumed to represent particular Earth system pro-
cesses (structural uncertainty; Slingo and Palmer 
2011; Maslin and Austin 2012). Quantifying this 
additional uncertainty and reporting its consequenc-
es is being more commonly performed for compo-
nents of Earth system models but it is yet unknown 
whether fully incorporating these, or the additional 
uncertainty of whether policy recommendations will 
be implemented when making future projections, will 
swamp any anticipated improvements in predictive 
precision from increasing the realism of existing 
components (Smith and Stern 2011; Palmer 2012).

It is also currently unknown how the partition-
ing of detail amongst model components influences 
the confidence that can be placed in predictions or 
projections (Smith 2002; Oreskes et al. 2010). For 
example, increasing the spatial resolution of a spe-
cific atmospheric physics model is justifiable in order 
to predict atmospheric dynamics more precisely 
(Shaffrey et al. 2009; Palmer 2012) but if its compu-
tational requirements restrict the inclusion of other 
details then the model may be less accurate than had 
an alternative atmospheric model formulation been 
adopted to allow other component processes to be 
represented more accurately. The adequacy of a model 
structure, including the level of detail, can be assessed 
by the degree to which predictions can recapture the 
known (and relevant) dynamics of interest, although 
such assessments are not in widespread use (Judd 
et al. 2008; Le Bauer et al. 2013; Smith et al. 2013).

It is also worth being aware that, fundamentally, 
more detailed models can make worse predictions 
than simpler models. This could occur, for example, 
if mechanisms or parameters are included as if they 
apply generally where they are in fact applicable 
to a much narrower range of circumstances. This 
is more likely to occur if models are tested against 
unchanging datasets because it raises the chances of 
a hypothetical mechanism being found that explains 
the variance in the specific dataset. This is known as 
overfitting, in which overly detailed models make 
worse predictions than simpler models through 
being overly tuned to the specifics of the calibration 
or training datasets (Bishop 2006; Crout et al. 2009; 
Masson and Knutti 2013).

Inadequate justification of the balance of details 
in models of the Earth system ultimately makes it 
difficult to meaningfully compare the projections 
of different models. Intercomparison exercises 
[such as the current Climate Model Intercompari-
son Project (Doblas-Reyes et al. 2011; Meehl and 
Bony 2011; Stouffer et al. 2011)] illustrate the degree 
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of consistency between projections. However, the 
diverse and incompatible approaches to formulating 
and simulating models cause major difficulties in 
allowing detailed intercomparisons and the origins 
of differences in projections to be understood. The 
fact that some models used in intercomparisons are 
related, either by ancestry or by adoption of common 
formulations, means that the variation between their 
projections may be an overly conservative and biased 
estimate of the actual uncertainty (Stainforth et al. 
2007a; Tebaldi and Knutti 2007; Dessai et al. 2009; 
Schwalm et al. 2009; Frank et al. 2010; Knutti et al. 
2010; Smith and Stern 2011; Rowlands et al. 2012; 
Bishop and Abramowitz 2013). A rigorous analysis 
of the large ensemble from the general circulation 
model available at www.climateprediction.net reas-
suringly highlighted that variation due to hardware 
and software differences had relatively small effects 
on variation in model projections and that the effects 
arising from parameter variation were much larger 
(Knight et al. 2007). While extremely insightful, this 
analysis was performed for just one model structure 
and so it is largely unknown whether these findings 
apply more generally across a wider range of models.

A lack of detailed assessments of consistency of 
model components with historical observations, and 
the contributions of the uncertainties associated with 
model components to uncertainty in predictions, 
makes it unclear how best to proceed with future 
refinements. What are the most important and most 
reducible sources of uncertainty? Which components 
should be prioritized for refinement? What new data 
do we need to achieve this? Model development prac-
tices to date have insufficiently quantified the con-
tributions of known sources of uncertainty to enable 
such questions to be addressed, although a number 
of model component intercomparison projects have 
been conducted, are planned, or are underway to help 
address some these issues, such as the Program for 
the Intercomparison of Land surface Parameteriza-
tion Schemes (PILPS; Henderson-Sellers et al. 1996). 
Moreover, on top of the multiple necessary improve-
ments to Earth system models, the research com-
munity will need to decide how best to make them 
in light of limited computational resources (Shukla 
et al. 2010; Palmer 2012).

AN ALTERNATIVE APPROACH. It is increas-
ingly recognized that the current generation of model 
projections often do not provide decision makers, 
scientists, or climate model output users in general 
with the specific information they need (Corell et al. 
2009; Dessai et al. 2009; Oreskes et al. 2010; Kerr 2011; 

Lemos et al. 2012; Lemos and Rood 2012; Maslin and 
Austin 2012; Kunreuther et al. 2013). For example, 
those making decisions in relation to future land use 
planning might wish to understand the diversity of 
risks (e.g., f loods) posed to potential developments 
(e.g., flood barriers or wind farms) as a consequence 
of climate change (Weaver et al. 2013) but are con-
fronted with a wide range of projections that differ in 
relevance, resolution, parent model, and uncertainty 
(to name a few) without clear information on their 
credibility or uncertainty. Recent advances in deci-
sion theory have gone a long way to enabling rational 
decisions in light of projected climate changes, 
irrespective of how models are developed (Polasky 
et al. 2011; Liverman et al. 2010; Kunreuther et al. 
2013; Weaver et al. 2013). For example, instead of 
decision makers awaiting confident estimates of the 
likelihood of particular events happening in future 
before acting (e.g., the chances that storm surges in 
a particular port will exceed 5 m), decision theory 
now provides robust ways of estimating the costs 
and benefits of acting now given the range of costs 
associated with different plausible events (Weaver 
et al. 2013). However, given the costs arising from 
contemporary model development practices, it is 
also clear that a number of changes to those practices 
would not only enable projections to provide more 
useful information for decision makers, such as 
providing more complete estimates of uncertainty, 
but also better target the needs of a much wider com-
munity of climate model users (Liverman et al. 2010; 
Bretherton et al. 2012). We therefore recommend here 
changes to model development practices to better suit 
the needs of those aiming to make more informative 
climate projections. In Table 1 we summarize the dif-
ferences between the approach we recommend and 
contemporary practices.

Given the costs of model complexity we think there 
should be a greater emphasis on adopting models that 
are at least simpler than the current generation of 
extremely computationally demanding Earth system 
models to permit more informative uncertainty quan-
tification. Such quantification should be conducted 
to reflect the sensitivity of model projections to the 
most important known sources of uncertainty in rela-
tion to the phenomena being targeted for prediction. 
Such uncertainty assessments are becoming more 
common in relation to parameter uncertainty and 
internal variability and the results of these predomi-
nantly argue for many more replicates than typically 
conducted for the most complex models (Stainforth 
et al. 2005; Sanderson 2011; Rowlands et al. 2012; 
Sexton and Murphy 2012; Deser et al. 2012). However, 
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uncertainty assessments also need to be extended to 
enable structural uncertainties to be assessed in more 
informative ways than is achieved to date through 
model intercomparisons. Ideally, structural uncer-
tainty assessments would be part of the uncertainty 
quantification conducted by any one modeling team, 
incorporating the effects of alternative formulations 
for internal processes (e.g., alternative ways of repre-
senting vegetation fires) or even for entirely different 
formulations (e.g., comparing simpler models to more 
detailed models). Thus, when projections are served 
to users, they can be accompanied by a more rigor-
ous exposition of the sensitivity of relevant model 
predictions to these different sources of uncertainty. 
However, such information should always be deliv-
ered with the caveat that any uncertainty or prob-
ability projection is increasingly likely to become 
misleading the further into the future it is projected.

Data assimilation and parameter inference 
methods will play key roles in future approaches to 
quantifying uncertainty in how the model reflects 
present day and historical phenomena. Such methods 
will be important for propagating uncertainty into 
projections and enabling assessments of the value of 
alternative model formulations in terms of precision, 
accuracy, and overall confidence in how well the 
model captures reality (Vrught et al. 2005; Berliner 
and Wikle 2007; Scholze et al. 2007; Sexton and 

Murphy 2012; Le Bauer et al. 2013; Smith et al. 2013). 
New studies examining the tradeoffs between the level 
of model detail and the ability to quantify uncertainty 
would be informative in relation to this (Smith 2002; 
Ferro et al. 2012; Palmer 2012). Formal probabilistic 
methods (i.e., Bayesian inference) are particularly well 
suited for comparing models with data and making 
projections that incorporate estimates of uncertainty, 
so would be particularly attractive for our proposed 
approach (Kass and Raftery 1995; Berger et al. 1999; 
Kennedy and O’Hagan 2001; Oakley and O’Hagan 
2002; Berliner 2003). So far, these have proven 
computationally unfeasible for the most detailed 
models (Oreskes et al. 1994; Smith and Stern 2011; 
van Oijen et al. 2011; Palmer 2012), but this could 
be addressed on the short term in a number of ways. 
For instance, Bayesian emulators of detailed models 
could be employed to make probabilistic predictions 
based on limited runs of the computer code (Kennedy 
and O’Hagan 2001; Oakley and O’Hagan 2002), or 
the number of details could even be restricted to a 
level where their suitability could be assessed using 
Bayesian methods. However other, non-Bayesian 
methods to uncertainty quantification could also 
be used to provide useful information, such as the 
adjoint method—a popular choice for investigating 
the parameter sensitivity of computationally intensive 
models (Courtier et al. 1993).

Table 1. Contrasts between the traditional modes of model development and the approach we advocate 
here, summarizing the points made in the main text.

Current tendencies Proposed changes

Oriented toward improving predictive precision of 
components independently

Focus improving components to increase overall confidence 
in model projections

Oriented toward precision of individual predictions over 
estimation of uncertainty

Bias toward accuracy of predictions, which requires 
uncertainty estimation

Detail incorporated because potentially important All detail justified by relevance, empirical evidence, and 
accuracy metrics

Most detailed models used to make projections, with 
confidence assessment made using separate analyses

Focus on adopting the most informative overall balance of 
details, including measures of uncertainty

Most parameters and processes defined prior to model 
construction

Many more parameters and processes justified through 
data assimilation, with prior assumptions clearly stated and 
accessible

Lack of ability to assess distribution of uncertainty across 
model and identify where inconsistencies exist

Probabilistic accounting for model uncertainty and its 
propagation into predictions

Incompatibility between model versions and between 
models of different institutions

Emphasis on enabling interoperability of components to 
enable identification of suitable balance of details

Intercomparison more important than intercompatibility Intercompatibility necessary for quantitative 
intercomparison

Better suited to scientific exploration of the plausible Better suited to identification of the probable, with more 
thorough accounting for uncertainty
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Climate models convey more confidence in pro-
jected phenomena when those phenomena arise in 
multiple different models and the reasons for them 
occurring are understood to be plausibly consistent 
with reality (Pachauri and Reisinger 2007; Held 
2005). The classic example is the consistent prediction 
from all modes of abstraction—from simple physi-
cal principles to multiple complex climate models, 
that increasing greenhouse gas concentrations leads 
to a global warming response (of course neither 
guarantee this will actually occur in reality). New 
approaches to climate modeling to inform decision 
makers need improved ways to demonstrate the 
consistency of projections under the different sources 
of uncertainty described above, but also enable the 
reasons behind the occurrence of projected phe-
nomena to be investigated, understood, and assessed 
for real-world relevance. Structuring the diversity 
of possible model details hierarchically is one way 
to facilitate this, which encouragingly was also the 
first recommendation of the National Academy of 
Sciences’ “National Strategy for Advancing Climate 
Modelling” (Bretherton et al. 2012; “Evolve to a com-
mon national software infrastructure that supports 
a diverse hierarchy of different models for different 
purposes . . .”). The hierarchical organization of 
model details is particularly helpful for enabling 
the reasons for particular model predictions to be 
understood and then tested (Held 2005). Emergent 
phenomena can be studied at the simplest possible 
level and the reasons for their emergence investigated 
without having to also simulate and account for 
excessive detail. Thus, one of the most useful (and 
challenging) improvements that we recommend is to 
develop widely applicable hierarchical descriptions of 
Earth system processes to provide frameworks within 
which models of the Earth system can be formulated 
and characterized, both in terms of their structure 
and in terms of their predictions and projections (this 
was also recommended by Held 2005).

The balance of detail and sources of uncertainty 
considered relevant to a problem will obviously de-
pend on the problem being addressed. For example, 
United Nations Framework Convention on Climate 
Change decision makers recommending global cli-
mate mitigation decisions may require models with a 
different balance of details (in terms of spatial resolu-
tion and numbers of processes) than water agencies 
aiming to plan new water supply and wastewater man-
agement systems for their region meet the demands 
of the next 25 years (Rogelj et al. 2013; Weaver et al. 
2013). Thus, computational methods are also needed 
that facilitate the assessment and adjustment of the 

overall balance of model details relative to the ques-
tions posed, current knowledge, data, and uncertainty. 
Computational methods to enable the adjustment of 
details within the same modeling framework have 
already been developed for individual families of 
models to meet this requirement (e.g., the Met Office 
Unified Model; Pope et al. 2007), although these need 
to also be able to incorporate estimates of uncertainty 
in model components and parameters, so that the 
various costs and benefits of adopting different levels 
of abstraction discussed above can be assessed. These 
methods will also need to be extended to apply beyond 
an individual family of models, as described above, to 
allow the quantification and assessment of structural 
uncertainty. Adding to these challenges is the require-
ment (at least occasionally) to conduct assessments of 
the overall balance of details at a systemic level. This 
is for several reasons. First, because the different com-
ponents are coupled through feedbacks, the coupling 
of different components might be necessary to assess 
the accuracy with which they can predict important 
emergent phenomena. Second, systemic assessments 
can enable the detection of logical inconsistencies 
between the predictions of different components. 
Third, systemic assessment can also help to avoid the 
development of details of any one area in such a way 
as to detrimentally affect the accuracy of the overall 
model or the assessment of its accuracy. Fourth, such 
assessments can be used to help identify the most 
important reducible sources of uncertainty. Such 
approaches are being developed for numerical weather 
prediction models, where the poorest performing 
model features can be identified (Judd et al. 2008).

Achieving the sort of “balanced complexity” 
modeling paradigm (Fig. 1) we advocate above will 
obviously be extremely challenging, for both socio-
logical and technological reasons. Modeling groups 
adopt different methodological approaches and 
have differing incentives to adopt cross-institutional 
standards. Much model development to date is 
conducted in government-funded research institu-
tions where there is typically an incentive structure 
for individuals and research teams to produce 
research findings within a period of months to years 
that is publishable in peer-reviewed journals. The 
high resource and technical requirements to build 
even one detailed Earth system model mean that 
individuals and groups are reluctant to undertake 
projects involving radical modifications to their 
modeling architectures because of the likely time 
and financial costs involved. However, just as the 
increasing recognition of the need to conduct model 
intercomparisons and benchmarking has promoted 
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standards in compatibility data and model outputs 
we believe that the increasing need to utilize climate 
model information in decision-making context will 
promote methods that allow assessment of the costs 
and benefits of adopting different balances of detail 
for providing useful information.

So how could modeling systems be engineered to 
enable the methodological improvements described? 
One of the first steps will be to develop new, or evolve 
the existing, online repositories for model compo-
nents, whole models, driver and assessment data, and 
model outputs (e.g., the Earth system grid; Williams 
et al. 2009). Such repositories should enable access 
to components independently from their original 
parent models so that other research groups can 
assess the implications of alternative formulations for 
that component. Similar assessments could be made 
in relation to the driver and assessment datasets as 
well as model structures. To facilitate the exchange 
of model components, future components could be 
developed in such a way that facilitates their use 
within alternative model structures. This strategy was 
recently employed by Smith et al. (2013) to develop 
a global terrestrial carbon model with the intention 
to facilitate investigations into the costs and benefits 
of alternative model components and formulations 
for predicting global terrestrial carbon. In that study 
the modeling framework included code libraries that 
enabled model components to obtain the data they 
require to make outputs from online databases, from 
local computers, or from other model components, 
depending on the structural information specified. 
This facilitated rapid experimentation with a wide 
variety of model structures.

Investigations into the effects of alternative model 
formulations will also benefit from adopting conven-
tions for the description of models—their structures, 
components, and use histories (Dunlap et al. 2008). 
This should also help to minimize or eliminate 
reducible sources of uncertainty associated with the 
technical implementation of models. Uncertainty 
in model projections also exists because of differ-
ences in datasets, algorithms, methods, models, and 
simulation architectures used by different research 
groups. The importance of these specific details 
cannot practically be assessed among very different 
models (though see Knight et al. 2007). Thus, any 
new approach will benefit from enabling scientists 
anywhere to access pools of models and datasets and 
verify whether or not a change was an improvement 
(by various measures of performance).

The comparison of different model structures and 
component formulations could also be aided by the 

adoption of programming languages that make it 
easier for the intentions of the code to be understood. 
Functional modeling languages (Pedersen and 
Phillips 2009) allow for succinct and functional 
descriptions of models. This would not only aid 
in conveying the intended purpose of the code but 
would also aid the translation of the same underlying 
model to different coding languages (e.g., FORTRAN 
versus C++). This is one promising way of allowing 
interoperability between the components of models 
written by different institutions when it is inevitable 
that there would be some resistance to initiatives to 
adopt standards in model development. Enabling 
models to work with data, parameters, and predic-
tions as probability distributions, just as naturally 
as they use with constants today, would also greatly 
facilitate modeling with uncertainty. Probabilistic 
programming languages are a relatively recent area 
of research and development aimed at facilitating the 
use of probability distributions and machine learning 
in general applications (Bishop 2013). Their applica-
tion in Earth system modeling could simplify the 
process of computing with probability distributions. 
Recent developments in functional probabilistic pro-
gramming languages could enable modelers to com-
bine the benefits of both functional and probabilistic 
programming languages (Bhat et al. 2013). Enabling 
the continual quantification, storage, and retrieval of 
uncertainty associated with model components and 
projections will also require much larger computer 
memory requirements; this could be facilitated with 
online data storage and retrieval capabilities.

One of the benefits of adopting a hierarchical 
approach to defining the relationships amongst 
model components is that it should facilitate model 
reconstruction from simple representations to avoid 
becoming locked into one model or modeling approach. 
Ideally, model developers would be able to identify all 
top-level components currently known to be relevant 
to a particular set of phenomena (one of which, for 
example, might be the sea level in 100 years’ time) and 
then, starting from the simplest possible representa-
tions of each of these, critically assess and reassess the 
adequacy of the level of detail used to model them. 
Further details, in terms of new model components 
(Fig. 1), would be added if justifiable. This approach to 
model development would not only lead to better pre-
dictions for less computing time, but also tend to check 
the sociological imbalances inherent to current Earth 
system science, helping to direct intellectual effort and 
scientific funding toward those components that are 
the least understood and most useful in relation to the 
phenomena being targeted for prediction.
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Any new modeling approach to get informative 
projections to users on demand and operate within 
formal or informal decision-making frameworks 
will also require the ability for researchers to specify, 
combine, and compare projections from multiple 
models—some perhaps projecting on demand and 
others obtained from archives to suit their analyses 
(Bretherton et al. 2012; Weaver et al. 2013). Such 
systems should be designed to allow a much broader 
community of experts to contribute to model devel-
opment and use, including some that have had little 
influence on model development to date. It should 
also permit the coproduction of new climate infor-
mation from climate modelers, domain experts, and 
decision makers—to enable a balance to be struck be-
tween providing the information that decision makers 
want and the information that scientists think deci-
sion makers need to know (Lemos and Rood 2012).

CONCLUSIONS. It is now time to build from the 
wealth of modes of abstraction of the Earth system 
developed so far, on the wealth of data in existence, 
and on advances in computation and statistics to 
build climate models that deliver much more pre-
dictive information for users. A key step toward this 
is to enable models to be built that include much 
more robust estimates of uncertainty, which in turn 
guides where scientific and computational resources 
need to be directed in order to reduce uncertainties 
further. Combining adaptive hierarchical modeling 
frameworks with assessments of the uncertainty in 
model formulations and projections will enable much 
better targeted explorations of model-detail space and 
allow urgent questions to be answered in a much more 
timely and reliable way.
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