
A New Framework for Machine Learning

Christopher M. Bishop

Microsoft Research, Cambridge, U.K
Christopher.Bishop@microsoft.com

http://research.microsoft.com/∼cmbishop

Abstract. The last five years have seen the emergence of a powerful
new framework for building sophisticated real-world applications based
on machine learning. The cornerstones of this approach are (i) the adop-
tion of a Bayesian viewpoint, (ii) the use of graphical models to repre-
sent complex probability distributions, and (iii) the development of fast,
deterministic inference algorithms, such as variational Bayes and expec-
tation propagation, which provide efficient solutions to inference and
learning problems in terms of local message passing algorithms. This
paper reviews the key ideas behind this new framework, and highlights
some of its major benefits. The framework is illustrated using an example
large-scale application.

1 Introduction

In recent years the field of machine learning has witnessed an important con-
vergence of ideas, leading to a powerful new framework for building real-world
applications. The goal of this paper is to highlight the emergence of this new
viewpoint, and to emphasize its practical advantages over previous approaches.
This paper is not, however, intended to be comprehensive, and no attempt is
made to give accurate historical attribution of all the many important contribu-
tions. A much more detailed and comprehensive treatment of the topics discussed
here, including additional references, can be found in [5].

The new framework for machine learning is built upon three key ideas: (i) the
adoption of a Bayesian viewpoint, (ii) the use of probabilistic graphical models,
and (iii) the application of fast, deterministic inference algorithms. In Section 2
we give a brief overview of the key concepts of Bayesian statistics, illustrated
using a simple curve-fitting problem. We then discuss the use of probabilis-
tic graphical models in Section 3. Inference and learning problems in graphical
models can be solved efficiently using local message-passing algorithms, as de-
scribed in Section 4. The new framework for machine learning is then illustrated
using a large-scale application in Section 5, and finally in Section 6 we give some
brief conclusions.

2 Bayesian Methods

The Bayesian interpretation of probabilities provides a consistent, indeed optimal,
framework for the quantification of uncertainty [2,3,13]. In pattern recognition

J.M. Zurada et al. (Eds.): WCCI 2008 Plenary/Invited Lectures, LNCS 5050, pp. 1–24, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://research.microsoft.com/~cmbishop

2 C.M. Bishop

and machine learning applications, uncertainty arises both through noise pro-
cesses on the observed variables, as well as through the unknown values of latent
variables and model parameters. The adoption of a Bayesian viewpoint there-
fore provides a principled formalism through which all sources of uncertainty can
be addressed consistently. In principle, it involves no more than the systematic
application of the sum rule and the product rule of probability.

Machine learning models can be divided into parametric and non-parametric,
according to whether or not they are based on models having a prescribed
number of adjustable parameters. Most applications to date have been built
using parametric models, and indeed this will be the focus of this paper. How-
ever, many of the same points emphasized here apply equally to non-parametric
techniques.

Consider a model governed by a set of parameters which we group into a
vector w. If we denote the training data set by D, then a central quantity is
the conditional probability distribution p(D|w). When viewed as a function of
w this is known as the likelihood function, and it plays a central role both in
conventional (frequentist) and Bayesian approaches to machine learning. In a
frequentist setting the goal is to find an estimator w� for the parameter vec-
tor by optimizing some criterion, for example by maximizing the likelihood. A
significant problem with such approaches is over-fitting whereby the parame-
ters are tuned to the noise on the data, thereby degrading the generalization
performance.

In a Bayesian setting we express the uncertainty in the value of w through
a probability distribution p(w). This captures everything that is known about
the value of w, aside from the information provided by the training data, and is
usually known as the prior distribution. The contribution from the training data
is expressed through the likelihood function, and this can be combined with the
prior using Bayes’ theorem to give the posterior distribution

p(w|D) =
p(D|w)p(w)

p(D)
. (1)

Here the denominator is given by

p(D) =
∫

p(D|w)p(w) dw (2)

and can be viewed as the normalization factor which ensures that the posterior
distribution p(w|D) in (1) integrates to one. It also plays a central role in model
selection, as we shall discuss shortly.

In order to illustrate the use of Bayesian methods in machine learning, we
consider the problem of fitting a set of noisy data points using a polynomial
function. Although this example involves only a single input variable, a sin-
gle output variable, and a simple parametric model, it captures most of the
important concepts underpinning real-world applications of more sophisticated
multivariate non-linear models.

A New Framework for Machine Learning 3

The polynomial function itself can be written in the form

y(x,w) = w0 + w1x + w2x
2 + . . . + wMxM =

M∑
j=0

wjx
j (3)

where M is the order of the polynomial.
First we consider briefly a conventional, non-Bayesian, approach to this prob-

lem. Figure 1 shows the training data and the function from which the data is
generated, along with the result of fitting several polynomials of different order
by minimizing the sum-of-squares error between the polynomial predictions and
the data point, defined by

E(w) =
1
2

N∑
n=1

{y(xn,w) − tn}2 (4)

where tn denotes the training set target value corresponding to an input value
of xn

It can be seen that if the order of the polynomial is too low (M = 0, 1) then
the result is a poor representation of the underlying sinusoidal curve. Equally if
the order of the polynomial is too high (M = 9) then the result is again poor
due to over-fitting. The best approximation arises from a model of intermediate
complexity (M = 3). This is confirmed by looking at the root-mean-square error,
defined by

ERMS =
√

2E(w�)/N (5)

on both the training set and an independent test set, as shown in Figure 2.
The best generalization performance (i.e. the smallest test set error) occurs for
models of intermediate complexity.

Now consider a Bayesian approach to this problem. If we assume that the
data has Gaussian noise, then the likelihood function takes the form

p(D|w) =
N∏

n=1

N
(
tn|y(xn,w), β−1) (6)

where β is the precision (inverse variance) of the noise process. Here N
(
t|μ, σ2

)
denotes a Gaussian distribution over the variable t, with mean μ and variance σ2.

For simplicity we consider a Gaussian prior distribution of the form

p(w|α) = N (w|0, α−1I) =
(α

2π

)(M+1)/2
exp

{
−α

2
wTw

}
(7)

where α is the precision of the distribution. Using Bayes’ theorem (1) it is then
straightforward to evaluate the posterior distribution over w, which also takes
the form of a Gaussian.

The posterior distribution is not itself of interest, but it plays a crucial role
in making predictions for new input values. These predictions are governed by

4 C.M. Bishop

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

Fig. 1. Plot of a training data set of N = 10 points, shown as blue circles, each
comprising an observation of the input variable x along with the corresponding target
variable t. The green curve shows the function sin(2πx) used to generate the data. Our
goal is to predict the value of t for some new value of x, without knowledge of the green
curve. The red curves show the result of fitting polynomials of various orders M using
least squares.

M

E
R

M
S

0 3 6 9
0

0.5

1
Training
Test

Fig. 2. Graphs of the root-mean-square error, defined by (5), evaluated on the training
set and on an independent test set for various values of M

A New Framework for Machine Learning 5

the predictive distribution, which is obtained from the sum and product rules of
probability in the form

p(t|x, D) =
∫

p(t|x,w)p(w|D) dw

= N
(
t|m(x), s2(x)

)
(8)

where the mean and variance are given by

m(x) = βφ(x)TS
N∑

n=1

φ(xn)tn (9)

s2(x) = β−1 + φ(x)TSφ(x). (10)

Here the matrix S is given by

S−1 = αI + β
N∑

n=1

φ(xn)φ(xn)T (11)

where I is the unit matrix, and we have defined the vector φ(x) with elements
φi(x) = xi for i = 0, . . . , M .

Figure 3 shows a plot of the predictive distribution when the training set
comprises N = 4 data points. Note that the variance of the predictive distri-
bution is itself a function of the input variable x. In particular, the uncertainty
in the predictions is smallest in the neighbourhood of the training data points.
This intuitively pleasing result follows directly from the adoption of a Bayesian
treatment.

x

t

0 1

−1

0

1

Fig. 3. Plot of the predictive distribution (8) with N = 4 training data points. The
red curve shows the mean of the predictive distribution, while the red shaded region
spans one standard deviation either side of the mean.

6 C.M. Bishop

As can be seen from (10), the variance of the predictive distribution comprises
two terms. The first corresponds to the noise on the training data and represents
an irreducible level of uncertainty in predicting the value of t for a new input
value x. The second term represents the uncertainty in predictions arising from
the uncertainty in the model parameters w. If we observe more data points, this
latter uncertainty will decrease, as can be seen in Figure 4.

x

t

0 1

−1

0

1

Fig. 4. As in Figure 3 but with N = 25 data points. The residual uncertainty in the
predictive distribution is due mainly to the noise on the training data.

As an aside, suppose we make a frequentist point estimate of the model param-
eters by maximizing the posterior distribution. Equivalently we can maximize
the logarithm of the posterior distribution, which takes the form

ln p(w|D) = −β

2

N∑
n=1

{tn − wTφ(xn)}2 − α

2
wTw + const. (12)

which we recognise as the negative of the standard sum-of-squares error func-
tion with a quadratic weight penalty (regularization term). Thus we see how
a conventional frequentist approach arises as a particular approximation to a
Bayesian treatment.

We have seen that a Bayesian approach naturally makes predictions in the
form of probability distributions over possible values, conditioned on the ob-
served input variables. This is substantially more powerful than simply making
point predictions as in conventional (non-Bayesian) machine learning approaches
[5, pages 44–46].

Another major advantage of the Bayesian approach is that it automatically
addresses the question of model complexity and model comparison. In conven-
tional approaches based on a point estimate of the model parameters, it is com-
mon to optimize the model complexity to achieve a balance between too simple

A New Framework for Machine Learning 7

a model (which performs poorly on both training data and test data) and one
which is too complex (which over-fits the training data and makes poor pre-
dictions on test data). This is usually addressed using data hold-out techniques
such as cross-validation, in which part of the training data is kept aside in order
to compare models of different complexity and to select the one which has the
best generalization performance. Such cross-validations methods are wasteful of
valuable training data, and are often computationally expensive due to the need
for multiple training runs.

The Bayesian view of model comparison involves the use of probabilities to
represent uncertainty in the choice of model, along with a consistent application
of the sum and product rules of probability. Suppose we wish to compare a set of
L models {Mi} where i = 1, . . . , L. Here a model refers to a parametric repre-
sentation for the probability distribution over the observed data D, along with a
prior distribution for the parameters. We shall suppose that the data is generated
from one of these models but we are uncertain which one. Our uncertainty in
the choice of model is expressed through a prior probability distribution p(Mi).
Given a training set D, we then wish to evaluate the posterior distribution

p(Mi|D) ∝ p(Mi)p(D|Mi). (13)

The prior allows us to express a preference for different models. Let us simply
assume that all models are given equal prior probability. The interesting term is
the model evidence p(D|Mi) which expresses the preference shown by the data
for different models. It is sometimes also called the marginal likelihood because
it can be viewed as a likelihood function over the space of models, in which
the parameters have been marginalized out. For a model governed by a set of
parameters w, the model evidence is given, from the sum and product rules of
probability, by

p(D|Mi) =
∫

p(D|w, Mi)p(w|Mi) dw. (14)

Recall that this term arises as the normalization factor in Bayes’ theorem (1)
for the parameters.

We can gain insight into Bayesian model comparison, and understand how the
marginal likelihood can favour models of intermediate complexity, by considering
Figure 5. Here the horizontal axis is a one-dimensional representation of the space
of possible data sets, so that each point on this axis corresponds to a specific data
set. We now consider three models M1, M2 and M3 of successively increasing
complexity. Imagine running these models generatively to produce example data
sets, and then looking at the distribution of data sets that result. Any given
model can generate a variety of different data sets since the parameters are
governed by a prior probability distribution, and for any choice of the parameters
there may be random noise on the target variables. To generate a particular
data set from a specific model, we first choose the values of the parameters from
their prior distribution p(w), and then for these parameter values we sample
the data from p(D|w). A simple model (for example, based on a first order
polynomial) has little variability and so will generate data sets that are fairly

8 C.M. Bishop

p(D)

DD0

M1

M2

M3

Fig. 5. Schematic illustration of the distribution of data sets for three models of differ-
ent complexity, in which M1 is the simplest and M3 is the most complex. Note that
the distributions are normalized. In this example, for the particular observed data set
D0, the model M2 with intermediate complexity has the largest evidence.

similar to each other. Its distribution p(D) is therefore confined to a relatively
small region of the horizontal axis. By contrast, a complex model (such as a ninth
order polynomial) can generate a great variety of different data sets, and so its
distribution p(D) is spread over a large region of the space of data sets. Because
the distributions p(D|Mi) are normalized, we see that the particular data set
D0 can have the highest value of the evidence for the model of intermediate
complexity. Essentially, the simpler model cannot fit the data well, whereas the
more complex model spreads its predictive probability over too broad a range of
data sets and so assigns relatively small probability to any one of them.

Returning to the polynomial regression problem, we can plot the model evi-
dence against the order of the polynomial, as shown in Figure 6. Here we have
assumed a prior of the form (7) with the parameter α fixed at α = 5 × 10−3.
The form of this plot is very instructive. Referring back to Figure 1, we see that
the M = 0 polynomial has very poor fit to the data and consequently gives a
relatively low value for the evidence. Going to the M = 1 polynomial greatly
improves the data fit, and hence the evidence in Figure 6 is significantly higher.
However, in going to M = 2, the data fit is improved only very marginally, due
to the fact that the underlying sinusoidal function from which the data is gen-
erated is an odd function and so has no even terms in a polynomial expansion.
Indeed, Figure 2 shows that the residual data error is reduced only slightly in
going from M = 1 to M = 2. Because this richer model suffers a greater com-
plexity penalty, the evidence actually falls in going from M = 1 to M = 2. When
we go to M = 3 we obtain a significant further improvement in data fit, as seen
in Figure 1, and so the evidence is increased again, giving the highest overall
evidence for any of the polynomials. Further increases in the value of M produce
only small improvements in the fit to the data but suffer increasing complexity
penalty, leading overall to a decrease in the evidence values. Looking again at

A New Framework for Machine Learning 9

M

0 2 4 6 8
−26

−24

−22

−20

−18

Fig. 6. Plot of the model evidence versus the order of the polynomial, for the simple
curve fitting problem

Figure 2, we see that the generalization error is roughly constant between M = 3
and M = 8, and it would be difficult to choose between these models on the ba-
sis of this plot alone. The evidence values, however, show a clear preference for
M = 3, since this is the simplest model which gives a good explanation for the
observed data.

3 Graphical Models

The use of Bayesian methods in machine learning amounts to a consistent ap-
plication of the sum and product rules of probability. We could therefore pro-
ceed to formulate and solve complicated probabilistic models purely by algebraic
manipulation. However, it is highly advantageous to augment the analysis us-
ing diagrammatic representations of probability distributions, called probabilistic
graphical models. These offer several useful properties:

1. They provide a simple way to visualize the structure of a probabilistic model
and can be used to design and motivate new models.

2. Insights into the properties of the model can be obtained by inspection of
the graph.

3. Complex computations, required to perform inference and learning in so-
phisticated models, can be expressed in terms of graphical manipulations, in
which underlying mathematical expressions are carried along implicitly.

A graph comprises nodes (also called vertices) connected by links (also known
as edges or arcs). In a probabilistic graphical model, each node represents a ran-
dom variable (or group of random variables), and the links express probabilistic
relationships between these variables.

10 C.M. Bishop

x1

x2 x3

x4 x5

x6 x7

Fig. 7. Example of a directed graph describing the joint distribution over variables
x1, . . . , x7. The corresponding decomposition of the joint distribution is given by (16).

There are two main types of graphical model in widespread use, correspond-
ing to directed graphs (in which the links have a directionality indicated by
arrows) and undirected graphs (in which the links are symmetrical). In both
cases the graph expresses the way in which the joint distribution over all of the
random variables can be decomposed into a product of factors each depending
only on a subset of the variables, but the relationship between the graph and
the factorization is different for the two types of graph.

Consider first the case of directed graphs, also known as Bayesian networks
or belief networks. An example is shown in Figure 7. If there is a link going from
a node a to a node b, then we say that node a is the parent of node b. The graph
specifies that the joint distribution factorizes into a product over all nodes of a
conditional distribution for the variables at that node conditioned on the states
of its parents

p(x) =
K∏

k=1

p(xk|pak) (15)

where pak denotes the set of parents of xk, and x = {x1, . . . , xK}. For the specific
case of the graph shown in Figure 7, the factorization takes the form

p(x1)p(x2)p(x3)p(x4|x1, x2, x3)p(x5|x1, x3)p(x6|x4)p(x7|x4, x5). (16)

A specific, and very familiar, example of a directed graph is the hidden Markov
model, which is widely used in speech recognition, handwriting recognition, DNA
analysis, and other sequential data applications, and is shown in Figure 8. The
joint distribution for this model is given by

p(x1, . . . ,xN , z1, . . . , zN) = p(z1)

[
N∏

n=2

p(zn|zn−1)

]
N∏

n=1

p(xn|zn). (17)

A New Framework for Machine Learning 11

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

Fig. 8. The directed graph corresponding to a hidden Markov model. It represents the
joint distribution over a set of observed variables x1, . . . , xN in terms of a Markov chain
of hidden variables z1, . . . , zN . Exactly the same graph also describes the Kalman filter.

Here x1, . . . ,xN represent the observed variables (i.e. the data). In a graphical
model the observed variables are denoted by shading the corresponding notes.
The variables z1, . . . , zN represent latent (or hidden) variables which are not
directly observed but which play a key role in the formulation of the model.
In the case of the hidden Markov model the latent variables are discrete, while
the observed variables may be discrete or continuous according to the particular
application.

We can also consider the graph in Figure 8 for the case in which both the hid-
den and observed variables are Gaussian, in which case it describes the Kalman
filter, a model which is widely used for tracking applications [21]. This highlights
an important property of graphical models, namely that a particular graph de-
scribes a whole family of probability distributions which share the same factor-
ization properties.

One of the powerful aspects of graphical models is the ease with which new
models can be constructed, incorporating appropriate domain knowledge in the
process. For example, Figure 9 shows an extension of the hidden Markov model
which expresses the notion that there are two independent latent processes,
and that at each time step the observed variables have distributions which are

z(1)
n−1 z(1)

n z(1)
n+1

z(2)
n−1 z(2)

n z(2)
n+1

xn−1 xn xn+1

Fig. 9. A factorial hidden Markov model

12 C.M. Bishop

xi

yi

Fig. 10. An undirected graphical model representing a Markov random field for image
de-noising, in which xi is a binary latent (hidden) variable denoting the state of pixel
i in the unknown noise-free image, and yi denotes the corresponding value of pixel i in
the observed noisy image

conditioned on the states of both of the corresponding latent variables. This is
known as a factorial hidden Markov model.

Similarly, the Kalman filter can be extended to give a switching state space
model. This has multiple Markov chains of continuous linear-Gaussian latent
variables, each of which is analogous to the latent chain of the standard Kalman
filter, together with a Markov chain of discrete variables of the form used in a
hidden Markov model. The output at each time step is determined by stochasti-
cally choosing one of the continuous latent chains, using the state of the discrete
latent variable as a switch, with the distribution of the observation at each step
conditioned on the state of the corresponding continuous hidden variable.

Many other models can easily be constructed in this way. The key point is
that new models can be formulated simply by drawing the corresponding graph-
ical model, and prior knowledge from the application domain can be expressed
through the structure of the graph. In particular, missing links in the graph
determine the conditional independence properties of the joint distribution [5,
Section 8.2].

The second major class of graphical model is based on undirected graphs. A
well-known example is the Markov random field, illustrated in Figure 10. This
graphical structure can be used to solve image processing problems such as de-
noising and segmentation.

As with directed graphs, an undirected graph specifies the way in which the
joint distribution of all variables in the model factorizes into a product of factors
each involving only a subset of the variables. To understand this factorization
we need to introduce the concept of a clique, which is defined as a subset of the
nodes in a graph such that there exists a link between all pairs of nodes in the
subset. In other words, the set of nodes in a clique is fully connected.

A New Framework for Machine Learning 13

If we denote a clique by C and the set of variables in that clique by xC , then
the joint distribution is written as a product of potential functions ψC(xC) over
the cliques of the graph

p(x) =
1
Z

∏
C

ψC(xC). (18)

Here the quantity Z, sometimes called the partition function, is a normalization
constant and is given by

Z =
∑
x

∏
C

ψC(xC) (19)

which ensures that the distribution p(x) given by (18) is correctly normalized.
By considering only potential functions which satisfy ψC(xC) � 0 we ensure
that p(x) � 0. In (19) we have assumed that x comprises discrete variables, but
the framework is equally applicable to continuous variables, or a combination of
the two, in which the summation is replaced by the appropriate combination of
summation and integration.

Because we are restricted to potential functions which are strictly positive it
is convenient to express them as exponentials, so that

ψC(xC) = exp {−E(xC)} (20)

where E(xC) is called an energy function, and the exponential representation
is called the Boltzmann distribution. The joint distribution is defined as the
product of potentials, and so the total energy is obtained by adding the energies
of each of the cliques.

In the case of Figure 10 there are three kinds of cliques, those that involve
a single hidden variable, those that involve two adjacent hidden variables con-
nected by a link, and those that involve one hidden and one observed variable,
again connected by a link. An example of an energy function for such a model
takes the form

E(x,y) = h
∑

i

xi − β
∑
{i,j}

xixj − η
∑

i

xiyi (21)

which defines a joint distribution over x and y given by

p(x,y) =
1
Z

exp{−E(x,y)}. (22)

Directed and undirected graphs together allow most models of practical in-
terest to be constructed. Which type of graph is more appropriate will depend
on the application. Generally speaking, directed graphs are good at expressing
causal relationships between variables. For example, if we have set of diseases
and a set of symptoms then we can use a directed graph to capture the notion
that the symptoms are caused by the diseases, and so there will be arrows (di-
rected edges) going from disease variable nodes to symptom variable nodes. Undi-
rected graphs, however, are better at expressing correlations between variables.

14 C.M. Bishop

x1 x2 x3

fa fb fc fd

Fig. 11. Example of a factor graph, which corresponds to the factorization (23)

For example, in a model for segmenting an image into foreground and background
we know that neighbouring pixels are very likely to share the same label (they
are usually either both foreground or both background) and this can be captured
using an undirected graph of the form shown in Figure 10.

It is often convenient to work with a third form of graphical representation
known as a factor graph. We have seen that both directed and undirected graphs
allow a global function of several variables to be expressed as a product of factors
over subsets of those variables. Factor graphs make this decomposition explicit
by introducing additional nodes for the factors themselves in addition to the
nodes representing the variables.

Consider, for example, a distribution that is expressed in terms of the factor-
ization

p(x) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3). (23)

This can be expressed by the factor graph shown in Figure 11. Factor graphs
provide a useful representation for inference algorithms, discussed in the next
section, as they allow both directed and undirected graphs to be treated in a
unified way.

4 Approximate Inference

Having formulated a model in terms of a probabilistic graph we now need to learn
the parameters of the model, and to use the trained model to make predictions.
Some of the nodes in the graph correspond to observed variables representing
the training data, and we are interested in finding the posterior distribution of
other nodes, representing variables whose value we wish to predict, conditioned
on the training data. We refer to this as an inference problem. The remaining
nodes in the graph represent other latent, or hidden, variables whose values we
are not directly interested in.

In a Bayesian setting, the model parameters are also random variables and
are therefore represented as nodes in the graph. Computing the posterior distri-
bution of those parameters is therefore just another inference problem!

A New Framework for Machine Learning 15

x1 x2 xN−1xN

Fig. 12. A simple undirected graph comprising a chain of nodes, used to illustrate the
solution of inference problems

Consider first the problem of performing inference on a simple chain of nodes
shown in Figure 12. The cliques of this graph comprise pairs of adjacent nodes
connected by links. Thus the joint distribution of all of the variables is given by

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · · ψN−1,N(xN−1, xN). (24)

Let us consider the inference problem of finding the marginal distribution p(xn)
for a specific node xn that is part way along the chain. Note that, for the moment,
there are no observed nodes. By definition, the required marginal is obtained by
summing the joint distribution over all variables except xn, so that

p(xn) =
∑
x1

· · ·
∑
xn−1

∑
xn+1

· · ·
∑
xN

p(x). (25)

In a naive implementation, we would first evaluate the joint distribution and
then perform the summations explicitly. The joint distribution can be repre-
sented as a set of numbers, one for each possible value for x. Because there are
N variables each with K states, there are KN values for x and so evaluation
and storage of the joint distribution, as well as marginalization to obtain p(xn),
all involve storage and computation that scale exponentially with the length N
of the chain.

We can, however, obtain a much more efficient algorithm by exploiting the
conditional independence properties of the graphical model. If we substitute
the factorized expression (24) for the joint distribution into (25), then we can
rearrange the order of the summations and the multiplications to allow the
required marginal to be evaluated much more efficiently. Consider for instance
the summation over xN . The potential ψN−1,N(xN−1, xN) is the only one that
depends on xN , and so we can perform the summation

∑
xN

ψN−1,N(xN−1, xN) (26)

first to give a function of xN−1. We can then use this to perform the summation
over xN−1, which will involve only this new function together with the potential
ψN−2,N−1(xN−2, xN−1), because this is the only other place that xN−1 appears.
Similarly, the summation over x1 involves only the potential ψ1,2(x1, x2) and so
can be performed separately to give a function of x2, and so on.

16 C.M. Bishop

If we group the potentials and summations together in this way, we can express
the desired marginal in the form

p(xn) =
1
Z⎡

⎣ ∑
xn−1

ψn−1,n(xn−1, xn) · · ·
[∑

x2

ψ2,3(x2, x3)

[∑
x1

ψ1,2(x1, x2)

]]
· · ·

⎤
⎦

︸ ︷︷ ︸
μα(xn)⎡

⎣ ∑
xn+1

ψn,n+1(xn, xn+1) · · ·
[∑

xN

ψN−1,N(xN−1, xN)

]
· · ·

⎤
⎦

︸ ︷︷ ︸
μβ(xn)

. (27)

The key concept that we are exploiting is that multiplication is distributive over
addition, so that

ab + ac = a(b + c) (28)

in which the left-hand side involves three arithmetic operations whereas the
right-hand side reduces this to two operations.

Let us work out the computational cost of evaluating the required marginal
using this re-ordered expression. We have to perform N − 1 summations each of
which is over K states and each of which involves a function of two variables. For
instance, the summation over x1 involves only the function ψ1,2(x1, x2), which
is a table of K ×K numbers. We have to sum this table over x1 for each value of
x2 and so this has O(K2) cost. The resulting vector of K numbers is multiplied
by the matrix of numbers ψ2,3(x2, x3) and so is again O(K2). Because there are
N − 1 summations and multiplications of this kind, the total cost of evaluating
the marginal p(xn) is O(NK2). This is linear in the length of the chain, in
contrast to the exponential cost of a naive approach.

We can now give a powerful interpretation of this calculation in terms of
the passing of local messages around on the graph. From (27) we see that the
expression for the marginal p(xn) decomposes into the product of two factors
times the normalization constant

p(xn) =
1
Z

μα(xn)μβ(xn). (29)

We shall interpret μα(xn) as a message passed forwards along the chain from
node xn−1 to node xn. Similarly, μβ(xn) can be viewed as a message passed
backwards along the chain to node xn from node xn+1. Note that each of the
messages comprises a set of K values, one for each choice of xn, and so the
product of two messages should be interpreted as the point-wise multiplication
of the elements of the two messages to give another set of K values.

A New Framework for Machine Learning 17

The message μα(xn) can be evaluated recursively because

μα(xn) =
∑
xn−1

ψn−1,n(xn−1, xn)

⎡
⎣ ∑

xn−2

· · ·

⎤
⎦

=
∑
xn−1

ψn−1,n(xn−1, xn)μα(xn−1) (30)

with an analogous result for the backward messages.
This example shows how the local factorization implied by the graphical struc-

ture allows the cost of exact inference to be reduced from being exponential in
the length of the chain to being linear. A similar result holds for more complex
graphs provided they have a tree structure (i.e. they do not have any loops).
This exact inference technique is known as belief propagation.

A well-known special case of this message-passing algorithm is the forward-
backward algorithm for inferring the posterior distribution of the hidden vari-
ables in a hidden Markov model [1,19]. Similarly, the forward recursions of the
Kalman filter [14] and the backward recursions of the Kalman smoother [20] are
also special cases of this result.

For most practical applications, however, this efficient exact solution of in-
ference problems is no longer tractable. This lack of tractability arises either
because the graph is no longer a tree, or because the individual local marginal-
izations no longer have an exact closed-form solution.

We therefore need to find approximate inference algorithms which can yield
good results with reasonable computational cost. For a long time the only gen-
erally applicable method was to use Markov chain Monte Carlo sampling tech-
niques. Unfortunately, this approach tends to be computationally costly and
does not scale well to real-world applications involving large data sets. One of
the most important advances in machine learning in recent years has therefore
been the development of fast, approximate inference algorithms. Like the exact
inference algorithms for trees discussed above, these can all be expressed in terms
of local message passing on the corresponding graphical model, and this leads
naturally to efficient software implementations. They are often called ‘determin-
istic’ algorithms because they provide analytical expressions for the posterior
distribution, in contrast to Monte Carlo methods which yield their results in the
form of a set of samples drawn from the posterior distribution. Here we intro-
duce briefly some of the most prominent deterministic inference techniques. It
should be emphasized, however, that there are many other such algorithms and
new ones continue to be developed.

One of the simplest such algorithms is called loopy belief propagation [9] and
simply involves applying the standard belief propagation equations, derived for
tree-structured graphs, to more general graphical models. Although this is an
ad-hoc procedure, and has no guarantee of convergence, it is often found to yield
good results, and indeed gives state-of-the-art results for decoding certain kinds
of error-correcting codes [4,8,10,15,16].

18 C.M. Bishop

A more principled approach to approximate inference is to define a family
of approximating distributions (whose members are simpler in some sense than
the true posterior distribution) and then to seek the optimal member of that
family by minimizing a suitable criterion which measures the dissimilarity be-
tween the approximate distribution and the exact posterior distribution. Differ-
ent algorithms arise according to the simplifying assumptions in the approximate
posterior, and according to the choice of criterion.

The variational Bayes method defines the dissimilarity between the true pos-
terior distribution p(Z|X) and the approximating distribution q(Z) to be the
Kullback-Leibler divergence given by

KL(q‖p) = −
∫

q(Z) ln
{

p(Z|X)
q(Z)

}
dZ (31)

where Z represents the set of all non-observed variables in the problem and X
represents the observed variables.

The approximating distribution can be chosen to have a simple analytical
form. For example, it might be a Gaussian, whose mean and covariance are
then optimized so as to minimize the KL divergence with respect to the (non-
Gaussian) true posterior distribution. A more flexible framework arises, how-
ever, if we assume a specific factorization for the approximating distribution
q(Z), without any restriction on the functional form of the factors. Suppose we
partition the elements of Z into disjoint groups that we denote by Zi where
i = 1, . . . , M . We then assume that the q distribution factorizes with respect to
these groups, so that

q(Z) =
M∏
i=1

qi(Zi). (32)

If we substitute (32) into (31) we can then minimize the KL divergence with
respect to one of the factors qj(Zj), keeping the remaining factors fixed. This
involves a free-form functional optimization performed using the calculus of vari-
ations, and gives the result

ln q�
j (Zj) = Ei�=j [ln p(X,Z)] + const (33)

where p(X,Z) is the joint distribution of hidden and observed variables, and the
expectation is taken over all groups of variables Zi for i �= j. The additive con-
stant corresponds to the normalization coefficient for the distribution. In order
to apply this approach in practice, the factors qi(Zi) are first suitably initial-
ized, and then they are updated in turn using (33) until a suitable convergence
criterion is satisfied.

As an illustration of the variational Bayes method, consider the toy problem
shown in Figure 13. Here the green contours show the true posterior distribution
p(μ, τ) over the mean μ and precision (inverse variance) τ for a simple inference
problem involving a Gaussian distribution [5, Section 10.1.3]. For the sake of
illustration, suppose that this distribution is intractable to compute and so we
wish to find an approximation using variational inference. The approximating

A New Framework for Machine Learning 19

μ

τ

(a)

−1 0 1
0

1

2

μ

τ

(b)

−1 0 1
0

1

2

μ

τ

(c)

−1 0 1
0

1

2

μ

τ

(d)

−1 0 1
0

1

2

Fig. 13. An illustration of the variational Bayes inference algorithm. See the text for
details.

distribution is assumed to factorize so that q(μ, τ) = qμ(μ)qτ (τ). The blue con-
tours in Figure 13(a) show the initialization of this factorized distribution. In
Figure 13(b) the distribution qμ(μ) has been updated using (33) keeping qτ (τ)
fixed. Similarly, in Figure 13(c) the distribution qτ (τ) has been updated keep-
ing qμ(μ) fixed. Finally, the optimal factorized solution, to which the iterative
scheme converges, is shown by the red contours in Figure 13(d).

If we consider distributions which are expressed in terms of probabilistic
graphical models, then the variational update equations (33) can be cast in the
form of a local message-passing algorithm. This makes possible the construction
of general purpose software for variational inference in which the form of the
model does not need to be specified in advance [6].

Another widely used approximate inference algorithm is called expectation
propagation or EP [17,18]. As with the variational Bayes method discussed so
far, this too is based on the minimization of a Kullback-Leibler divergence but
now of the reverse form KL(p‖q), which gives the approximation rather different
properties. EP again makes use of the factorization implied by a graphical model,
and again the update equations for determining the approximate posterior dis-
tribution can be cast as a local message-passing algorithm. Although each step
is minimizing a specific KL divergence, the overall algorithm does not optimize
a unique quantity globally. However, for approximations which lie within the
exponential family of distributions, if the iterations do converge, the resulting
solution will be a stationary point of a particular energy function [17], although

20 C.M. Bishop

each iteration of EP does not necessarily decrease the value of this energy func-
tion. This is in contrast to variational Bayes, which iteratively maximizes a lower
bound on the log marginal likelihood, in which each iteration is guaranteed not
to decrease the bound. It is possible to optimize the EP cost function directly,
in which case it is guaranteed to converge, although the resulting algorithms can
be slower and more complex to implement.

While EP lacks the guaranteed convergence properties of variational Bayes,
it can often give better results because the integration in the KL divergence is
weighted by the true distribution, rather than by the approximation, which
causes the algorithm to take a more global view of approximating the true
distribution.

5 Example Application: Bayesian Ranking

We now describe a real-world application of the machine learning framework
discusses in this paper. It is based on a Bayesian formulation, which is expressed
as a probabilistic graphical model, and where predictions are obtained using
expectation propagation formulated as local message-passing on the graph. The
application is known as TrueSkillTM [12], and is a Bayesian system for rating
player skill in competitive games. It can be viewed as a generalization of the well
known Elo system, which is used for example in Chess, and which was adopted
by the World Chess Federation in 1970 as an international standard. With the
advent of online gaming, the importance of skill rating systems has increased
significantly because the quality of the online experience of millions of players
each day is at stake.

Elo assigns each player i a skill rating si, and the probability of the possible
game outcomes is modelled as a function of the two players skills s1 and s2. In
a particular game each player exhibits a performance

pi ∼ N (pi|si, β
2) (34)

which is normally distributed around their skill value with fixed variance β2. The
probability that player 1 wins is given by the probability that their performance
exceeds that of player 2, so that

P (p1 > p2|s1, s2) = Φ

(
s1 − s2√

2β

)
(35)

where Φ is the cumulative density of a zero-mean, unit-variance Gaussian. The
Elo system then provides an update equation for the skill ratings which causes
the observed game outcome to become more likely, while preserving the con-
straint s1 + s2 = const. There is a variant of the Elo system which replaces the
cumulative Gaussian with a logistic sigmoid. In Elo, a player’s rating is regarded
as provisional as long as it is based on less than a fixed number of, say, 20 games.
This problem was addressed previously by adopting a Bayesian approach, known
as Glicko, which models the belief about a player’s rating using a Gaussian with
mean μ and variance σ2 [11].

A New Framework for Machine Learning 21

An important new application of skill rating systems are multiplayer online
games, which present the following challenges:

1. Game outcomes often refer to teams of players, and yet a skill rating for
individual players is needed for future matchmaking.

2. More than two players or teams compete, such that the game outcome is a
permutation of teams or players rather than just a winner and a loser.

TrueSkill addresses both of these challenges in the context of a principled
Bayesian approach.

Each player has a skill distribution which is Gaussian si ∼ N (si|μi, σ
2
i), and

the performance of a player is again a noisy version of their skill given by (34).
The performance tj of team j is modelled as the sum of the performances of
the players comprising that team, and the ordering of the team performances
gives the ordering of the match results. This model can be expressed as the factor
graph shown in Figure 14. Draws can be incorporated into the model by requiring
a non-zero margin, governed by a parameter ε, between the performance of two
teams in order to achieve a victory.

Skill estimates need to be reported after each game, and so an online learning
scheme is used known as Gaussian density filtering, which can be viewed as a spe-
cial case of expectation propagation. The posterior distribution is approximated
by a Gaussian, and forms the prior distribution for the next game.

Extensive testing of TrueSkill demonstrates significant improvements over
Elo [12]. In particular, the number of games which need to be played in order
to determine accurate values for player skills can be substantially less (up to
an order of magnitude) compared to Elo. This is illustrated in Figure 15 which
shows the evolution of the skill ratings for two players over several hundred
games, based on data collected during beta testing of the Xbox title ‘Halo 2’.
We see that TrueSkill exhibits good convergence within the first 10–20 games,
whereas the Elo estimates are continuing to change significantly even after 100
games.

Intuitively, the reason for the faster convergence is that knowledge of the
uncertainty in the skill estimates modulates the magnitude of the updates in an
optimal way. For instance, informally, if a player with a skill rating of 120 ± 20
beats a player of rating 130± 2 then the system can make a substantial increase
in the rating of the winning player. Elo by contrast does not have access to
uncertainty estimates and so makes numerous small corrections over many games
in order to increase the skill estimate for a particular player.

Xbox 360 Live is Microsoft’s online console gaming service, allowing players to
play together across the world on hundreds of different game titles. TrueSkill has
been globally deployed as the skill rating system for Xbox 360 Live, analyzing
millions of game outcomes resulting from billions of hours of online play. It
processes hundreds of thousands of new game outcomes per day, making it one of
the largest applications of Bayesian inference to date. TrueSkill provides ratings
and league table information to the players, and is used to perform real-time
matchmaking.

22 C.M. Bishop

s1 s2 s3 s4

p1 p2 p3 p4

t1 t2 t3

d1 d2

N (s1; μ1, σ
2
1) N (s2; μ2, σ

2
2) N (s3; μ3, σ

2
3) N (s4; μ4, σ

2
4)

N (p1; s1, β
2) N (p2; s2, β

2) N (p3; s3, β
2) N (p4; s4, β

2)

I(t1 = p1) I(t2 = p2 + p3) I(t3 = p4)

I(d1 = t1 − t2) I(d2 = t2 − t3)

I(d1 > ε) I(|d2| ≤ ε)

1

2

3

4

5

6

Fig. 14. An example TrueSkill factor graph, for two matches involving three teams
and four players. The arrows indicate the optimal message passing schedule.

The graphical model formulation of TrueSkill makes it particularly straight-
forward to extend the model in interesting ways. For example, we can allow
the skills to evolve in time by adding additional links to the graph correspond-
ing to Gaussian temporal dynamics [12]. Similarly, the use of full expectation-
propagation updates allows information to be propagated backwards in time
(smoothing) as well as forwards in time (filtering). This permits a full analysis
of historical data, for example a comparison of the strength of different chess
players over a period of 150 years [7].

6 Discussion

In this paper we have highlighted the emergence of a new framework for the
formulation and solution of problems in machine learning. The three main in-
gredients, namely a Bayesian approach, the use of graphical models, and use of
approximate deterministic inference algorithms, fit very naturally together. In
a fully Bayesian setting every unknown variable is given a probability distribu-
tion and hence corresponds to a node in a graphical model, and deterministic

A New Framework for Machine Learning 23

Fig. 15. Convergence trajectories for two players comparing Elo (dashed lines) with
TrueSkill (solid lines). Note that the latter includes uncertainty estimates, shown by
the shaded regions.

approximation algorithms, which provide efficient solutions to inference prob-
lems, can be cast in terms of messages passed locally between nodes of the
graph.

In many conventional machine learning applications, the formulation of the
model, and the algorithm used to perform learning and make predictions, are
intertwined. One feature of the new framework is that there is a beneficial sepa-
ration between the formulation of the model in terms of its graphical structure,
and the solution of inference problems using local message passing. Research
into new inference algorithms can proceed largely independently of the particu-
lar application, while domain experts can focus their efforts on the formulation
of new application-specific models. Indeed, general purpose software can be de-
veloped1 which implements a range of alternative inference algorithms for broad
classes of graphical structures. Another major benefit of the new framework is
that it allows fully Bayesian methods to be applied to large scale applications,
something which was previously not feasible.

We live in an increasingly data-rich world, with ever greater requirements to
extract useful information from that data. The framework for machine learning
reviewed in this paper, which scales well to large data sets, offers the opportu-
nity to develop many new and exciting applications for machine learning in the
years ahead.

1 One example is Infer.Net which is described at:
http://research.microsoft.com/mlp/ml/Infer/Infer.htm

24 C.M. Bishop

References

1. Baum, L.E.: An inequality and associated maximization technique in statistical
estimation of probabilistic functions of Markov processes. Inequalities 3, 1–8 (1972)

2. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis, 2nd edn. Springer,
Heidelberg (1985)

3. Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. Wiley, Chichester (1994)
4. Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error-correcting

coding and decoding: Turbo-codes (1). In: Proceedings ICC 1993, pp. 1064–1070
(1993)

5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

6. Bishop, C.M., Spiegelhalter, D., Winn, J.: VIBES: A variational inference engine
for Bayesian networks. In: Becker, S., Thrun, S., Obermeyer, K. (eds.) Advances
in Neural Information Processing Systems, vol. 15, pp. 793–800. MIT Press, Cam-
bridge (2003)

7. Dangauthier, P., Herbrich, R., Minka, T., Graepel, T.: Trueskill through time:
Revisiting the history of chess. In: Advances in Neural Information Processing
Systems, vol. 20 (2007), http://books.nips.cc/nips20.html

8. Frey, B.J.: Graphical Models for Machine Learning and Digital Communication.
MIT Press, Cambridge (1998)

9. Frey, B.J., MacKay, D.J.C.: A revolution: Belief propagation in graphs with cycles.
In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information
Processing Systems, vol. 10. MIT Press, Cambridge (1998)

10. Gallager, R.G.: Low-Density Parity-Check Codes. MIT Press, Cambridge (1963)
11. Glickman, M.E.: Parameter estimation in large dynmaical paird comparison ex-

periments. Applied Statistics 48, 377–394 (1999)
12. Herbrich, R., Minka, T., Graepel, T.: Trueskilltm: A Bayesian skill rating system.

In: Advances in Neural Information Processing Systems, vol. 19, pp. 569–576. MIT
Press, Cambridge (2007)

13. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University
Press, Cambridge (2003)

14. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans-
actions of the American Society for Mechanical Engineering, Series D, Journal of
Basic Engineering 82, 35–45 (1960)

15. MacKay, D.J.C., Neal, R.M.: Good error-correcting codes based on very sparse
matrices. IEEE Transactions on Information Theory 45, 399–431 (1999)

16. McEliece, R.J., MacKay, D.J.C., Cheng, J.F.: Turbo decoding as an instance of
Pearl’s ‘Belief Ppropagation’ algorithm. IEEE Journal on Selected Areas in Com-
munications 16, 140–152 (1998)

17. Minka, T.: Expectation propagation for approximate Bayesian inference. In: Breese,
J., Koller, D. (eds.) Proceedings of the Seventeenth Conference on Uncertainty in
Artificial Intelligence, pp. 362–369. Morgan Kaufmann, San Francisco (2001)

18. Minka, T.: A family of approximate algorithms for Bayesian inference. Ph.D. thesis,
MIT (2001)

19. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE 77(2), 257–285 (1989)

20. Rauch, H.E., Tung, F., Striebel, C.T.: Maximum likelihood estimates of linear
dynamical systems. AIAA Journal 3, 1445–1450 (1965)

21. Zarchan, P., Musoff, H.: Fundamentals of Kalman Filtering: A Practical Approach,
2nd edn. AIAA (2005)

http://books.nips.cc/nips20.html

	Introduction
	Bayesian Methods
	Graphical Models
	Approximate Inference
	Example Application: Bayesian Ranking
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

