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In the Bayesian framework, predictions for a regression problem are expressed in terms of a
distribution of output values. The mode of this distribution corresponds to the most probable
output, while the uncertainty associated with the predictions can conveniently be expressed in
terms of error bars given by the standard deviation of the output distribution. In this paper we
consider the evaluation of error bars in the context of the class of generalized linear regression
models. We provide insights into the dependence of the error bars on the location of the data
points and we derive an upper bound on the true error bars in terms of the contributions from

individual data points which are themselves easily evaluated.

1 Introduction ,
Many applications of neural networks are concerned with the prediction of one or
more continuous output variables, given the values of a number of input variables.
As well as predictions for the outputs, it is also important to provide some measure
of uncertainty associated with those predictions.

The Bayesian view of regression leads naturally to two contributions to the error
bars. The first arises from the intrinsic noise on the target data, while the second
comes from the uncertainty in the values of the model parameters as a consequence
of having a finite training data set [1, 2]. There may also be a third contribution
which arises if the true function is not contained within the space of models under
consideration, although we shall not discuss this possibility further.

In this paper we focus attention on a class of universal non-linear approximators
constructed from linear combinations of fixed non-linear basis functions, which we
shall refer to as generalized linear regression models. We first review the Bayesian
treatment of learning in such models, as well as the calculation of error bars [3].
Then, by considering the contributions arising from individual data points, we pro-
vide insight into the nature of the error bars and their dependence on the location
of the data in input space. This in turn leads to the key result of the paper which is
an upper bound on the true error bars expressed in terms of the single-data-point
contributions. Our analysis is very general and is independent of the particular form
of the basis functions.

2 Bayesian Error Bars

We are interested in the problem of predicting the value of a noisy output variable
t given the value of an input vector . Throughout this paper we shall restrict
attention to regression for a single variable ¢ since all of the results can be extended
in a straightforward way to multiple outputs. To set up the Bayesian formalism we
begin by defining a model for the distribution of ¢ conditional on . This is most
commonly chosen to be a Gaussian function in which the mean is governed by the
output y(x;w) of a network model, where w 1s a vector of adaptive parameters
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(weights and biases). Thus we have

p(tlw ,w) Wexp {_(y(«’l?;:;)g—t) } (1)

where o2 is the variance of the distribution.

In the Bayesian framework, our state of knowledge of the weight values is expressed
in terms of a distribution function over w. This is initially set to some prior distri-
bution, from which a corresponding posterior distribution can be computed using
Bayes’ theorem once we have observed the training data. A common choice of prior
is a Gaussian distribution of the form

() = Gy 15112 ex { g TS @)

where M is the total number of weight parameters, S is the inverse covariance
matrix of the distribution, and |S| denotes the determinant of S. Since the param-
eters in S control the distribution of other parameters they are often referred to as
hyperparameters. The noise variance o2 is commonly also called a hyperparameter
since, in a Bayesian framework, it can be treated using similar techniques to S.
Here we shall assume that the values of 02 and S are fixed and known.

The training data set D consists of N pairs of input vectors " and corresponding
target values " where n = 1,..., N. From this data set, together with the noise

model (1), we can construct the likelihood function given by

N
p(D|w) = H p(t"|x", w) = mexp{ 357 Z{y(m ;W) — t”}2} 3)

Vn=1
We can then combine the likelihood function and the prior using Bayes’ theorem to
obtain the posterior distribution of weights given by p(w|D) = p(D|w)p(w)/p(D).
The predictive distribution of ¢ given a new input = can then be written in terms
of the posterior distribution in the form

p(t|z, D) = / p(t|z, w)p(w| D) duw @)

where p(t|z, w) is given by (1).
 Throughout this paper we consider a particular class of non-linear models of the
form

M
ywsw) = Y uidi(@) = ¢ T(@w )

which we shall call generalized linear regression models. Here the ¢;(x) are a set
of fixed non-linear basis functions, with generally one of the basis functions ¢; =
1 so that w; plays the role of a bias parameter. Such models possess universal
approximation capabilities for reasonable choices of the ¢; (z), while havmg the
advantage of being linear in the adaptive parameters w

Since (5) is linear in w, both the noise model p(t|z, w) and the posterior distribution
p(w|D) will be Gaussian functions of w. It therefore follows that, for a Gaussian
prior of the form (2), the integral in (4) will be Gaussian and can be evaluated
analytically to give a predictive distribution p(t|z, D) which will be a Gaussian
function of ¢. The mean of this distribution is given by y(x;wmp) where wyp is
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found by minimizing the regularized error function

N
1 T 2 L 1
507 nz_:l{qﬁ (z™)w —t"}° + ke Sw (6)
and is therefore given by the solution of the following linear equations
Awpp = 0',,—2@ Tt (7)
where ¢ is a column vector with elements ", A is the Hessian matrix given by
N
1 T,g_lgT
A= 0_32¢(mn)¢(m") +8= ;?qs &+ S (8)

and @ is the N x M design matriz with elements ®,,; = ¢;(x™). Solving for wyp
and substituting into (5) we obtain the following expression for the corresponding
network output

ymp(z) = ¢ T(2)w = 0, 2¢ T(z)A '3 Tt 9) .

The covariance matrix for the posterior distribution p(w|D) is given by the inverse
of the Hessian matrix. Together with (4) this implies that the total variance of the
output predictions is given by
T -
oi(e) =0} + ol (x) = o)+ ¢ () A7 p(x) (10)
Here the first term represents the intrinsic noise on the target data, while the second

term arises from the uncertainty in the weight values as a consequence of having a
finite data set.

3 An Upper Bound on the Error Bars
We first consider the behaviour of the error bars when the data set consists of a
single data point. As well as providing important insights into the nature of the
error bars, it also leads directly to an upper bound on the true error bars.
In the absence of data, the variance is given from (8) and (10) by
() = 0} + ¢ T(2)S ™ p(x) (11)
where the second term, due to the prior, is typically much larger than the noise
term o2. If we now add a single data point located at z° then the Hessian becomes
S+0;2¢(2°)¢ T(x°). To find the inverse of the Hessian we make use of the identity
TN (M) (v TMTY)

<M+'v'v ) =M T o M-To (12)
which is easily verified by multiplying both sides by (M + vv T). The variance at
an arbitrary point z for a single data point at x° is then given by

- C(z,z%)?
2 2 _ )
o(z) = o} +‘C(:B,CB) 7T+ C(ad, 20) (13)
where we have defined the prior covariance function
C(z,a') = ¢ T (2)S ™ p(x) (14)

The first two terms on the right hand side of (13) represent the variance due to
the prior alone, and we see that the effect of the additional data point is to reduce
the variance from its prior value, as illustrated for a toy problem in Figure 1. From
(13) we see that the length scale of this reduction is related to the prior covariance
function C(x, z’).
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If we evaluate o%(z) in (13) at the point z° then we can show that the error
bars satisfy the upper bound o?(z°) < 202. Since the noise level is typically much
less than the prior variance level, we see that the error bars are pulled down very
substantially in the neighbourhood of the data point. Again, this is illustrated in
Figure 1.
We now extend this analysis to provide an upper bound on the error bars. Suppose
we have a data set consisting of N data points (at arbitrary locations) and we add
an extra data point at /V+1. Using (8) the Hessian Ay for the N +1 data points
can be written in terms of the corresponding Hessian Ay for the original N data
points in the form ’

Avi1 = Ay + 0,7 ¢(@V ) T(@N ) (15)
Using the identity (12) we can now write the inverse of Ayy; in the form

1 _ a1 AR eEVTe TN AR

A = 16
N+1 N 0_3 +¢T(mN+1)A1—V1¢(wN+1) ( )
Substituting this result into (10) we obtain
2
2 2 |6 T(aV+) A7 ¢(=)]
on41() = ox(z) — (17)

i+ (@) AY G(aN 1)
From (8) we see that the Hessian Ay is positive definite, and hence its inverse will
be positive definite. It therefore follows that the second term on the right hand side
of (17) is negative, and so we obtain

oxr41(x) < o} (@) (18)
This represents the intuitive result that the addition of an extra data point cannot
lead to an increase in the magnitude of the error bars. Repeated application of this
result shows that the error bars due to a set of data points will never be larger than
the error bars due to any subset of those data points.

‘It can also be shown that the average change in the error bars resulting from the

addition of an extra data point satisfies the bounds

N

1 o2
(Ac*(@) = 5 D [oh (") - of(a™)] 2 -3¢ (19)

n=1
A further corollary of the result (18) is that, if we consider the error bars due
to each of a set of N data points individually, then the envelope of those error
bars constitutes an upper bound on the true error bars. This is illustrated with a
toy problem in Figure 1. The contributions from the individual data points are
easily evaluated using (13) and (14) since they depend only on the prior covariance
function and do not require evaluation or inversion of the Hessian matrix.

4 Summary

In this paper we have explored the relationship between the magnitude of the
Bayesian error bars and the distribution of data in input space. For the case of a
single isolated data point we have shown that the error bar is pulled down close to
the noise level, and that the length scale over which this effect occurs is characterized
by the prior covariance function. From this result we have derived an upper bound
on the error bars, expressed in terms of the contributions from individual data

points.
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Figure 1 A simple example of error bars for a one-dimensional input space and
a set of 30 equally spaced Gaussian basis functions with standard deviation 0.07.
There are two data points at z = 0.3 and x = 0.5 as shown by the crosses. The
solid curve at the top shows the variance 02 (z) due to the prior, the dashed curves
show the variance resulting from taking one data point at a time, and the lower
solid curve shows the variance due to the complete data set. The envelope of the
dashed curves constitutes an upper bound on the true error bars, while the noise
level (shown by the lower dashed curve) constitutes a lower bound.
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