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Abstract. Many approaches to object recognition are founded on probability
theory, and can be broadly characterized as either generative or discriminative ac-
cording to whether or not the distribution of the image features is modelled. Gen-
erative and discriminative methods have very different characteristics, as well as
complementary strengths and weaknesses. In this chapter we introduce new gen-
erative and discriminative models for object detection and classification based
on weakly labelled training data. We use these models to illustrate the relative
merits of the two approaches in the context of a data set of widely varying im-
ages of non-rigid objects (animals). Our results support the assertion that nei-
ther approach alone will be sufficient for large scale object recognition, and we
discuss techniques for combining the strengths of generative and discriminative
approaches.

1 Introduction

In recent years many studies, both in machine learning and computer vision areas, have
focussed on the problem of object recognition. The key challenge is to be able to recog-
nize any member of a category of objects in spite of wide variations in visual appearance
due to changes in the form and colour of the object, occlusions, geometrical transforma-
tions (such as scaling and rotation), changes in illumination, and potentially non-rigid
deformations of the object itself. Since detailed hand-segmentation and labelling of im-
ages is very labour intensive, learning object categories from ‘weakly labelled’ data has
been studied in recent years. Weakly labelled data means that training images are la-
belled only according to the presence or absence of each category of object. A major
challenge presented by this problem is that the foreground object is accompanied by
widely varying background clutter, and the system must learn to distinguish the fore-
ground from the background without the aid of labelled data.

Many of the current approaches to this problem rely on the use of local features
obtained from small patches of the image. One motivation for this is that local patches
can give information about an object even it is occluded. An other motivation is that
the variability of small patches is much less than that of whole images and so there are



much better prospects for generalization, in other words for recognizing that a patch
from a test image is similar to patches in the training images. However, the patches
must be sufficiently variable, and therefore sufficiently large, to be able to discriminate
between the different object categories and also between objects and background clutter.
A good way to balance these two conflicting requirements is to determine the object
categories present in an image by fusing together partial ambiguous information from
multiple patches. Probability theory provides a powerful framework for combining such
uncertain information in a principled manner, and will form the basis for our research.
We will also focus on the detection of objects within images by combining information
from a large number of patches of the image.

Local features are obtained from small patches which are extracted from the local
neighbourhood of interest points obtained in the image. Some of the interest point oper-
ators such as saliency [8], Difference of Gaussian (DoG) [11] and Harris-Laplace (HL)
[12] are invariant to location, scale and orientation, and some are also affine invariant
[12] to some extent. For the purposes of this chapter we shall consider the use of such
generic operators. We will use some very common operators (Section 2) and feature
description methods and will compare their effect in learning performance (Section 5).

Also, the locations of the patches which provide strong evidence for an object can
give an indication of the location and spatial extent of that object. The probabilistic
model of Fergus et al. [6] performed the localization of the object in an image by learn-
ing jointly the appearances and relative locations of a small set of parts whose potential
locations are determined by the saliency detector [8]. Since their algorithm is compu-
tationally complex, the number of parts has to be kept small. In [10] a discriminative
framework for the classification of image regions by incorporating neighborhood
interactions is presented. But for two class classification only. In [5], the spatial
relationship between patches was not considered but informative features (i.e. object
features) were selected based on information criteria such as likelihood ratio and mu-
tual information. However, in this supervised approach, hundreds of images were hand
segmented. Finally, [19] extended the Gaussian Mixture Model (GMM) based approach
of [5] to a semi-supervised case where a multi-modal GMM was trained to model fore-
ground and background feature together. In their study, some uncluttered images of
foreground were also used for the purpose of training their model. In this chapter, we
do not attempt to model the spatial relationship between patches but instead focus on
the comparison of generative with discriminative methods in the context of local patch
labelling.

The object recognition problem is basically a classification problem and there are
many different modelling approaches for the solution. These approaches can be clas-
sified into two main categories such as generative and discriminative. To understand
the distinction between discriminative and generative approaches, consider a scenario
in which an image described by a vector X (which might comprise raw pixel intensi-
ties, or some set of features extracted from the image) is to be assigned to one of K
classes k = 1, . . . ,K. From basic decision theory [3] we know that the most complete
characterization of the solution is expressed in terms of the set of posterior probabilities
p(k|X). Once we know these probabilities it is straightforward to assign the image X

to a particular class to minimize the expected loss (for instance, if we wish to minimize



the number of misclassifications we assign X to the class having the largest posterior
probability).

In a discriminative approach we introduce a parametric model for the posterior prob-
abilities, p(k|X), and infer the values of the parameters from a set of labelled training
data. This may be done by making point estimates of the parameters using maximum
likelihood, or by computing distributions over the parameters in a Bayesian setting (for
example by using variational inference).

By contrast, in a generative approach we model the joint distribution p(k,X) of
images and labels. This can be done, for instance, by learning the class prior probabil-
ities p(k) and the class-conditional densities p(X|k) separately. The required posterior
probabilities are then obtained using Bayes’ theorem

p(k|X) =
p(X|k)p(k)
∑

j p(X|j)p(j)
(1)

where the sum in the denominator is taken over all classes.
Each modelling approach has some advantages as well as disadvantages. There are

many recent studies dealing with the comparison of these two approaches with the final
goal of combining the two in the best way. In [13] it was concluded that although the
discriminative learning has lower asymptotic error, a generative classifier approaches its
higher asymptotic error much faster. Very similar results were also obtained by [4] but
they showed on a simulated data that this is only true when the models are appropriate
for the data, i.e. the generative model models the data distribution correctly. Otherwise,
if a mis-matched model was selected then generative and discriminative models be-
haved similarly, even with a small number of data points. In both [4] and [13] it was
observed that as the number of data points is increased the discriminative model per-
forms better. In [4] and [7] discriminative and generative learning were combined in an
ad-hoc manner using a weighting parameter and the value of this parameter defines the
extend to which discriminative learning is effective over generative learning. In [1] dis-
criminative learning was performed on a generative model where background posterior
probability was modelled with a constant.

In this chapter we will provide two different models, one from each approach, which
are able to provide labels for the individual patches, as well as for the image as a whole,
so that each patch is identified as belonging to one of the object categories or to the
background class. This provides a rough indication of the location of the object or ob-
jects within the image. Again these individual patch labels must be learned on the basis
only of overall image class labels. Our training set is weakly labelled where each image
is labelled only according to the presence or absence of each category of object. Our
goal in this chapter is not to find optimal object recognition system, but to compare
alternative learning methodologies. For this purpose, we shall use a fixed data set. In
particular, we consider the task of detecting and distinguishing cows and sheep in nat-
ural images. This set is chosen for the wide variability of the objects in order to present
a non-trivial classification problem. We do not have any data set for background only.
Various features used in this study are explained in Section 2. Our discriminative and
generative models are introduced in Sections 3 and 4 respectively.

We use tn to denote the image label vector for image n with independent compo-
nents tnk ∈ {0, 1} in which k = 1, . . . K labels the class. In our case K = 3 where the



classes are cow, sheep and background. Each class can be present or absent indepen-
dently in an image, and we make no distinction between foreground and background
classes within the model itself. Xn denotes the observation for image n and this com-
prises as set of Jn patch vectors {xnj} where j = 1, . . . , Jn. Note that the number Jn

of detected interest points will in general vary from image to image.
We shall compare the two models in various aspects. First we will investigate how

the models behave with weakly labelled data and then we will test how strongly labelled
(i.e. images are segmented as foreground and background) and weakly labelled data
can be used together in training the models. Experiments and results for this is given in
Section 5.1. Secondly, we will test the models with various types of feature as inputs
to see how feature type effects the models. Experiments and results for this is given
in Section 5.2. Finally, as many previous studies did, we will see how training data
quantity affects learning in the two different model types. Experiments and results for
this is given in Section 5.3.

2 Feature Extraction

Due to the reasons that we have mentioned in the previous section,we will follow several
recent approaches and use interest point detectors to focus attention on a small number
of local patches in each image. This is followed by invariant feature extraction from a
neighbourhood around each interest point.

We choose to work with Harris-Laplace (HL) [12] and Difference of Gaussian
(DoG) [11] interest point operators because they are invariant to orientation and scale
changes. In our earlier study [17] we have used DoG interest point detector with SIFT
(Scale Invariant Feature Transform) descriptor. SIFT is invariant to illumination and
affine (to some degree) changes and very suitable for DoG interest point detectors.
However SIFT, being a 128 dimentional vector, brings a high computational load for
model learning. Thus, in this chapter we will use 15 dimensional Local Jet (LJ) de-
scriptor instead [9, 16].

For the purpose of comparison, we will train our models using different feature
types and see how they are effected by these choices. The two feature point operators,
HL and DoG, will be used with the same feature descriptor (LJ). In Figure 1 a cow
image is shown together with with HL and DoG feature point detectors in order to give
more insight into these two types of operators. Here only feature points which have
scale grater than 5 pixels are shown. As can be observed from the images, the DoG
operator extracts uniform regions (leftmost image in Figure 1) and HL extracts corners
(middle image in the figure) where the number of features extracted by HL is usually
less than DoG.

The feature descriptor may be concatenated with colour information. The colour
information is extracted from each patch based on [2]. Averages and standard deviations
of (R,G,B), (L, a, b) and (r = R/(R + G + B), g = G/(R + G + B)) constitute
the colour part of the feature vector. Lab is a device-independent colour space that
attempts to uniformly represent colour as we perceive it. L is the lightness value,
a is the red/green opponency and blue/yellow is represented on the b axis. As a



result, if colour is also used as a feature descriptor then we will have a 31 dimensional
feature vector.

Just for comparison purposes, we will also use square random patches as interest re-
gions which are selected at random sizes and random positions all over the image. Since
the size of a patch can vary between 1 pixel to the full size of the image, the patches will
be scaled to 16 by 16 size. If each pixel’s colour information is used directly to form a
feature vector, this makes a feature vector of size 768 (16*16*3) and it is impossible to
use this directly in our models (especially in the generative model). Thus, we compute
first 15 Principle Component Analysis (PCA) coefficients for the gray scale patch and
we obtain the colour feature as described in the previous paragraph. Again this makes
a 31 dimensional feature vector. The number of random patches is selected to be ap-
proximately the same as the number of patches found by other interest point operators,
which is around 100 for each image. In the rightmost image in Figure 1 the cow image
with some of the random patches is also shown. We only show 10 random patches here.
In Section 5.2, comparison of the two models when used with different features will be
given in terms of patch labelling and image labelling. We will compare HL and DoG
operators with LJ and colour feature, and random patches with PCA coefficients and
colour feature.

, ,

Fig. 1. Different interest point operators. Feature point locations are the centers of the squares
and the size of a square shows the scale of that feature point. The three images show (left to right)
DoG interest points, HL interest points and random patches.

3 The Discriminative Model with Patch Labelling

In a discriminative setting, the purpose is to learn the posterior probabilities. Since our
goal is to determine the class membership of individual patches also, we associate with
each patch j in an image n a binary label τnjk ∈ {0, 1} denoting the class k of the
patch. For the models developed in this chapter we shall consider these labels to be
mutually exclusive, so that

∑K
k=1

τnjk = 1, in other words each patch is assumed to be
either cow, sheep or background. Note that this assumption is not essential, and other
formulations could also be considered. These components can be grouped together into
vectors τnj . If the values of these labels were available during training (correspond-
ing to strongly labelled images) then the development of recognition models would
be greatly simplified. For weakly labelled data, however, the {τ nj} labels are hidden
(latent) variables, which of course makes the training problem much harder.



We now introduce a discriminative model, which corresponds to the directed graph
shown in Figure 2.

Jn

xnj

w

tn

N

tnj

Fig. 2. Graphical representation of the discriminative model for object recognition.

Consider for a moment a particular image n (and omit the index n to keep the nota-
tion uncluttered). We build a parametric model yk(xj ,w) for the probability that patch
xj belongs to class k. For example we might use a simple linear-softmax model with
outputs

yk(xj ,w) =
exp(wT

k xj)
∑

l exp(wT

l xj)
(2)

which satisfy 0 6 yk 6 1 and
∑

k yk = 1. More generally we can use a multi-layer
neural network, a relevance vector machine, or any other parametric model that gives
probabilistic outputs and which can be optimized using gradient-based methods. The
probability of a patch label τ j is then given by

p(τ j |xj) =

K
∏

k=1

yk(xj ,w)τjk (3)

where the binary exponent τjk simply pulls out the required term (since y0

k = 1 and
y1

k = yk).
Next we assume that if one, or more, of the patches carries the label for a particular

class, then the whole image will. For instance, if there is at least one local patch in the



image which is labelled ‘cow’ then the whole image will carry a ‘cow’ label (recall that
an image can carry more than one class label at a time). Thus the conditional distribution
of the image label, given the patch labels, is given by

p(t|τ ) =
K
∏

k=1



1 −
J
∏

j=1

[1 − τjk]





tk




J
∏

j=1

[1 − τjk]





1−tk

. (4)

In order to obtain the conditional distribution p(t|X) we have to marginalize over
the latent patch labels. Although there are exponentially many terms in this sum, it can
be performed analytically for our model due to the factorization implied by the graph
in Figure 2 to give

p(t|X) =
∑

τ







p(t|τ )

J
∏

j=1

p(τ j |xj)







=

K
∏

k=1



1 −
J
∏

j=1

[1 − yk(xj ,w)]





tk




J
∏

j=1

[1 − yk(xj ,w)]





1−tk

. (5)

This can be viewed as a probabilistic version of the ‘noisy OR’ function [15].
Given a training set of N images, which are assumed to be independent, we can

construct the likelihood function from the product of such distributions, one for each
data point. Taking the negative logarithm then gives the following error function

E (w) = −
N
∑

n=1

C
∑

k=1

{tnk ln [1 − Znk] + (1 − tnk) lnZnk} (6)

where we have defined

Znk =

Jn
∏

j=1

[1 − yk (xnj ,w)] . (7)

The parameter vector w can be determined by minimizing this error (which corresponds
to maximizing the likelihood function) using a standard optimization algorithm such as
scaled conjugate gradients [3]. More generally the likelihood function could be used as
the basis of a Bayesian treatment, although we do not consider this here.

Once the optimal value wML is found, the corresponding functions yk(x,wML)
for k = 1, . . . ,K will give the posterior class probabilities for a new patch feature
vector x. Thus the model has learned to label the patches even though the training data
contained only image labels. Note, however, that as a consequence of the ‘noisy OR’
assumption, the model only needs to label one foreground patch correctly in order to
predict the image label. It will therefore learn to pick out a small number of highly
discriminative foreground patches, and will classify the remaining foreground patches,
as well as those falling on the background, as ‘background’ meaning non-discriminative
for the foreground class. This will be illustrated in Section 5.1.



3.1 Soft Discriminative Model

In our discriminative model with probabilistic noisy OR assumption, if only one patch
is labelled as belonging to a class, then the whole image is labelled as belonging to
that class. We can soften this assumption by modelling the posterior probability of the
image label using the logistic sigmoid function

p (tk = 1|X) =
1

1 + e−Zk
(8)

where Zk is the sum over all patches

Zk =
J
∑

j=1

yk (xj ,w) (9)

where

yk(xj ,w) = w
T

k xj (10)

so that we are adding the log odds. It follows that the conditional distribution of target
labels is given by

p (tk|X) =

(

1

1 + e−Zk

)tnk (

1 −
1

1 + e−Zk

)1−tk

. (11)

The distribution for the vector of target variables is then given by

p (t|X) =

K
∏

k=1

p (tk|X) . (12)

However outputs of this model can not be directly used as patch label probabilities
because they are not normalized and they don’t satisfy

∑

k yk = 1. This does not cause
a problem in finding the most probable patch label. We can directly use the model
outputs and choose the biggest one as patch label. However, when we need patch label
probabilities then we need to normalize the model outputs over all possible patches and
labels.

The error function for this soft discriminative model is given by the negative log
likelihood, and takes the form

E (w) = −
N
∑

n=1

K
∑

k=1

{

Znk (tnk − 1) − ln
(

1 + e−Znk
)}

. (13)

With this soft version, an improvement in both patch labelling and image labelling is
obtained. Comparative results for the two discriminative models (probabilistic noisy
OR and soft) are given in Section 5.1.
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Fig. 3. Graphical representation of the generative model for object recognition.

4 The Generative Model with Patch Labelling

Next we turn to a description of our generative model, whose graphical representation is
shown in Figure 3. The structure of this model mirrors closely that of the discriminative
model. In particular, the same class-label variables τ nj are associated with the patches
in each image, and again these are unobserved and must be marginalized out in order to
obtain maximum likelihood solutions.

In the discriminative model we represented the conditional distribution p(t|X) di-
rectly as a parametric model. By contrast in the generative approach we model p(t,X),
which we decompose into p(t,X) = p(X|t)p(t) and then model the two factors sep-
arately. This decomposition would allow us, for instance, to employ large numbers of
‘background’ images (those containing no instances of the object classes) during train-
ing to determined p(X|t) without concluding that the prior probabilities p(t) of objects
is small.

Again, we begin by considering a single image n. The prior p(t) is specified in
terms of K parameters ψk where 0 6 ψk 6 1 and k = 1, . . . ,K, so that

p(t) =

K
∏

k=1

ψtk

k (1 − ψk)1−tk . (14)

In general we do not need to learn these from the training data since the prior occur-
rences of different classes is more a property of the way the data was collected than
of the real world frequencies. (Similarly in the discriminative model we will typically
wish to correct for different priors between the training set and test data using Bayes’
theorem.)



The remainder of the model is specified in terms of the conditional probabilities
p(τ |t) and p(X|τ ). The probability of generating a patch from a particular class is
governed by a set of parameters πk, one for each class, such that πk > 0, constrained
by the subset of classes actually present in the image. Thus

p(τ j |t) =

(

K
∑

l=1

tlπl

)−1 K
∏

k=1

(tkπk)τjk . (15)

Note that there is an overall undetermined scale to these parameters, which may be
removed by fixing one of them, e.g. π1 = 1.

For each class k, the distribution of the patch feature vector x is governed by a
separate mixture of Gaussians which we denote by φk(x;θk), so that

p(xj |τ j) =

K
∏

k=1

φk(xj ;θk)τjk (16)

where θk denotes the set of parameters (means, covariances and mixing coefficients)
associated with this mixture model, and again the binary exponent τjk simply picks out
the required class.

If we assume N independent images, and for image n we have Jn patches drawn
independently, then the joint distribution of all random variables is

N
∏

n=1

p(tn)

Jn
∏

j=1

[p(xnj |τnj)p(τnj |tn)] . (17)

Since we wish to maximize likelihood in the presence of latent variables, namely the
{τnj}, we use the EM algorithm. The expected complete-data log likelihood is given
by

N
∑

n=1

Jn
∑

j=1

{

K
∑

k=1

〈τnjk〉 ln [tnkπkφk(xnj)] − ln

(

K
∑

l=1

tnlπl

)}

. (18)

In the E-step the expected values of τnkj are computed using

〈τnjk〉 =
∑

{τ nj}

τnjkp(τnj |xnj , tn) =
tnkπkφk(xnj)
K
∑

l=1

tnlπlφl(xnj)

. (19)

Notice that the first factor on the right hand side of (15) has cancelled in the evaluation
of 〈τnjk〉.

For the M-step we first set the derivative with respect to one of the parameters πk

equal to zero (no Lagrange multiplier is required since there is no summation constraint
on the {πk}) and then re-arrange to give the following re-estimation equations

πk =





N
∑

n=1

Jntnk

(

K
∑

l=1

tnlπl

)−1




−1
N
∑

n=1

Jn
∑

j=1

〈τnjk〉. (20)



Since these represent coupled equations we perform several (fast) iterations of these
equations before proceeding with the next EM cycle (note that for this purpose the
sums over j can be pre-computed since they do not depend on the {πk}).

Now consider the optimization with respect to the parameters θk governing the
distribution φk(x;θk). The dependence of the expected complete-data log likelihood
on θk takes the form

N
∑

n=1

Jn
∑

j=1

〈τnjk〉 lnφk(xnj ;θk) + const. (21)

This is easily maximized for each class k separately using the EM algorithm (in an
inner loop), since (21) simply represents a log likelihood function for a weighted data
set in which patch (n, j) is weighted with 〈τnjk〉. Specifically, we use a model in which
φk(x;θk) is given by a Gaussian mixture distribution of the form

φk(x;θk) =

M
∑

m=1

ρkmN (x|µkm,Σkm). (22)

The E-step is given by

γnjkm =
ρkmN (xnj |µkm,Σkm)

∑

m′ ρkm′N (xnj |µkm′ ,Σkm′)
(23)

while the M-step equations are weighted by the coefficients 〈τnjk〉 to give

µnew

km =

∑

n

∑

j〈τnjk〉γnjkmxnj
∑

n

∑

j〈τnjk〉γnjkm

Σnew

km =

∑

n

∑

j〈τnjk〉γnjkm(xnj − µnew

km )(xnj − µnew

km )T
∑

n

∑

j〈τnjk〉γnjkm

ρnew

km =

∑

n

∑

j〈τnjk〉γnjkm
∑

n

∑

j〈τnjk〉
.

If one EM cycle is performed for each mixture model φk(x;θk) this is equivalent
to a global EM algorithm for the whole model. However, it is also possible to perform
several EM cycle for each mixture model φk(x;θk) within the outer EM algorithm.
Such variants yield valid EM algorithms in which the likelihood never decreases.

The incomplete-data log likelihood can be evaluated after each iteration to ensure
that it is correctly increasing. It is given by

N
∑

n=1

Jn
∑

j=1

{

ln

(

K
∑

k=1

tnkπkφk(xnj)

)

− ln

(

K
∑

l=1

tnlπl

)}

.

Note that, for a data set in which all tnk = 1, the model simply reduces to fitting a
flat mixture to all observations, and the standard EM is recovered as a special case of
the above equations.



This model can be viewed as a generalization of that presented in [19] in which
a parameter is learned for each mixture component representing the probability of that
component being foreground. This parameter is then used to select the most informative
N components in a similar approach to [5] and [18] where the number N is chosen
heuristically. In our case, however, the probability of each feature belonging to one of
the K classes is learned directly.

Inference in the generative model is more complicated than in the discriminative
model. Given all patches X = {xj} from an image, the posterior probability of the
label τ j for patch j can be found by marginalizing out all other hidden variables

p (τ j |X) =
∑

t

∑

τ /τ j

p (τ ,X, t)

=
∑

t

p (t)
1

(

∑K
l=1

πltl

)J

K
∏

k=1

(πktkφk (xj))
τjk
∏

i6=j

[

K
∑

k=1

πktkφk (xi)

]

(24)

where τ = {τ j} denotes the set of all patch labels, and τ/τ j denotes this set with
τ j omitted. Note that the summation over all possible t values, which must be done
explicitly, is computationally expensive.

For the inference of image label we require the posterior probability of image label
t, which can be computed using

p (t|X) ∝ p (X|t) p (t) (25)

in p(t) is computed from the coefficients {ψk} for each setting of t in turn, and p (X|t)
is found by summing out patch labels

p (X|t) =
∑

τ

J
∏

j=1

p (X, τ j |t) =

Jn
∏

j=1

∑K
k=1

tkπkφk (xj)
∑K

l=1
tlπl

. (26)

5 Experiments and Results

In this chapter, we have used a test bed of weakly labelled images each containing either
cows or sheep, in which the animals vary widely in terms of number, pose, size, colour
and texture. There are 167 images in each class, and 10-fold cross-validation is used
to measure performance. For the discriminative model we used a two-layer nonlinear
network having 10 hidden units with ‘tanh’ activation functions. The network had 31
inputs, corresponding to the LJ or PCA coefficient with colour feature as discussed in
Section 2 and 3 outputs (cow, sheep, background). For the generative model we used
a separate Gaussian mixture for cow, sheep and background, each of which has 10
components with diagonal covariance matrices. In our earlier study [17] we used input
vector of size 144 which consists of SIFT and colour features. Using a smaller feature
vector this time brings computational benefit such as speed and computable covariance
matrixes.



In the test phase of both discriminative and generative models, we input the patch
features to the models and obtain the posterior probabilities of the patch labels as the
outputs using (2) for probabilistic noisy OR discriminative model or (10) with normal-
ization for soft discriminative model and (24) for the generative model. The posterior
probability of the image label is computed as in (5) for probabilistic noisy OR model or
(12) for the soft discriminative model and (25) for the generative case. We can therefore
investigate the ability of the models both to predict the class labels of whole images and
of their constituent patches. The latter is important for object localization.

5.1 Combining Strongly Labelled and Weakly Labelled Data for Training

Initial results with the generative model showed that with random initialization of the
mixture model parameters it is incapable of learning a satisfactory solution [17]. We
conjectured that this is due to the problem of multiple local maxima in the likelihood
function (a similar effect was found by [19]). To test this, we used some segmented
images for initialization purposes (but not for optimization) in our earlier study [17]. 30
cow and 30 sheep images were hand-segmented, and a patch which has any foreground
pixel was labelled as foreground and a patch which has no foreground pixel was la-
belled as background. Features obtained from the patches belonging to each class were
clustered using the K-means algorithm and the component centers of a class mixture
model were assigned to the cluster centers of the respective class. The mixing coeffi-
cients were set to the number of points in the corresponding cluster divided by the total
number of points in that class. Similarly, covariance matrices were computed using the
data points assigned to the respective center.

In this chapter, we use these segmented images also for training optimization in
order to give both models the same chance. In the generative case, including the seg-
mented data into learning requires only a slight change in the expected complete-data
log likelihood which becomes partially expected in this case:

∑

n∈US

Jn
∑

j=1

{

K
∑

k=1

〈τnjk〉 ln [tnkπkφk(xnj)] − ln

(

K
∑
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tnlπl

)}

+
∑
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Jn
∑

j=1

{

K
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k=1

τnjk ln [tnkπkφk(xnj)] − ln

(

K
∑

l=1

tnlπl

)}

(27)

where S and US denote segmented and unsegmented image sets respectively. For seg-
mented images n ∈ S, τnkj values are already known. Including the segmented data
to the generative model is very easy where we only need to assign known patch labels
instead of their expected labels in the outer E step (19) mentioned in Section 4.

For the probabilistic noisy OR discriminative model, the error function becomes

E (w) = −
∑

n∈US

K
∑

k=1

{tnk ln [1 − Znk] + (1 − tnk) lnZnk}

−
∑

n∈S

Jn
∑

j=1

K
∑

k=1

τnjk ln(yk(xnj ,w)) (28)



where the first term on the right hand side of the error function includes unsegmented
images and is the image labelling error, while the second term includes segmented
images and is the patch labelling error.

Similarly, for the soft discriminative model, the error function (29) consists of two
parts: one with unlabelled data and the other with labelled data. These two parts need
to be treated differently during all optimization steps.

E (w) = −
∑

n∈US

K
∑

k=1

{

Znk (tnk − 1) − ln
(

1 + e−Znk
)}

−
∑

n∈S

Jn
∑

j=1

K
∑

k=1

(yk(xnj ,w) − τnjk) (29)

To test the effect of labelled data on the generative model, we train the same gen-
erative model with and without labelled data and compared the results. When only
unlabelled data is used (i.e. no initialization is performed) overall correct rate (ocr) for
image labelling is obtained to be 46.50% which is worse than random labelling. When
segmented data is used for initialization only then there is a significant increase in the
performance where ocr becomes 59.37%. When the segmented data is used for training
as well the performance is not effected much where ocr stays at 59.37%. In Figure 4
examples for generative model patch labelling are given for different situations where
most probable label is assigned for each patch. Patch centers are shown by coloured
dots where colour denotes the class (red, white, green for cow, sheep and background
respectively). As can be observed from the image, without initialization patch labelling
is as random (top image of the figure). Image labelling result for this particular sheep
image is t = [1 0 1] for this sample run which means that this is a cow image. With
initialization, most of the patches are labelled correctly (middle image in the figure).
Image label for the same sheep is t = [1 1 1] this time which means there are both cow
and sheep (as well as background) present in the image. When segmented data is also
used for training (bottom image) patch labelling performance becomes better and sheep
image is labelled correctly as t = [0 1 1].

Using segmented data for the probabilistic noisy OR discriminative model brings
some problems. When labelled data is also used for training, although the patch la-
belling performance increases significantly image labelling performance degrades. For
example, in Figure 5 patch labelling results during a sample run are given where the
most probable label is assigned to each patch. Top image is an example which is ob-
tained when segmented data is not used in training and ocr for this case is 62.50%.
Image labelling result is correct for this particular cow with t = [0.99 0.50 1] which
becomes t = [1 0 1] when 0.5 is used as a threshold for image label probability. Middle
image is obtained when segmented data is used for training the model and ocr for this
case is very low, 30%. In this case patch labelling is better but image label for this par-
ticular cow image is t = [1 0.83 1] which means that there is a high probability of sheep
also. This is caused by a white (sheep) patch in the cow image. The bottom image is



Fig. 4. Patch labelling results for the generative model where the most probable label is assigned
to each patch (red, white, green for cow, sheep and background respectively). Patch labelling
result in the top image is obtained when the generative model is trained without initialization.
The middle image is when labelled data is used only for initializing the model. The bottom image
is when the segmented images are used for both initializing and training the model.

when the soft discriminative model is trained with segmented data where ocr becomes
78.1%. Patch labelling is as good as the previous case but this time image labelling
is also correct t = [1 0 1] for this particular cow image although there are two white
(sheep) patches. This shows that when we use segmented data and force the probabilis-
tic noisy OR discriminative model to learn those patches as they are labelled then the
discriminative power decreases because those patches may not be that discriminative.
However this is not the case for soft discriminative model.



As we mentioned in Section 3.1 outputs are linear for our soft discriminative model
and this means that outputs can take any real value. Thus, normalization is required for
this model when we need patch label probabilities.

Fig. 5. Patch labelling results for discriminative models where the most probable label is as-
signed to each patch (red, white, green for cow, sheep and background respectively). Top image
is obtained when segmented data is not used in training of probabilistic noisy OR discriminative
model. Middle row is when segmented data is used for training the same model. The bottom row
is when the soft discriminative model is trained with segmented data.



5.2 Comparison with Different Feature Types

In this section we will provide comparative results between our generative (G) and
soft discriminative (D) model when they are used with different types of features such
as HL operator with LJ and colour feature (HL-LJ+C), DoG operator with LJ and
colour (DoG-LJ+C) and random patches with PCA coefficients and colour feature (R-
PCA+C). Usually DoG feature point operator finds more points than HL operator does
when applied on the same image. In the random selection case we define the number of
feature points and their local extension. In order to eliminate the effect of data quantity
in the comparison, we arranged the feature point extraction algorithms so that they pro-
duce roughly the same amount of feature points (around 100) for each image. Means
and standard deviations of overall correct rate results over 10 fold runs are given in
Table 1. Columns are for different feature types and rows are for different models.

Table 1. Means (M) and standard deviations (SD) of overall correct image label rate for different
feature types: HL with LJ and colour (HL-LJ+C), DoG with LJ and colour (DoG-LJ+C) and
random patches with PCA coefficients and colour (R-PCA+C).

HL-LJ+C DoG-LJ+C R-PCA+C
D (M)(%) 80.63 89.38 78.13
D (SD)(%) 7.13 4.74 3.83
G (M)(%) 56.25 56.25 75.62
G (SD)(%) 6.25 9.88 2.61

As can be observed from the table, ocr for discriminative model is not effected much
when different feature types are used. The best overall correct rate for the discrimina-
tive model is obtained by DoG-LJ+C feature and R-PCA+C feature causes the worst
performance. The generative model produces highly different overall correct rates with
different feature types. The best performance for the generative model is obtained by
the random patches. With DoG-LJ+C and HL-LJ+C the performance is worse than the
random patches.

It is also interesting to investigate the extent to which the discriminative and gen-
erative models correctly label the individual patches. In order to make a comparison in
terms of patch labelling we use 12 hand segmented test images for each class. These
segmented images are different from those we have used for initializing and training
the models. Patch labels are obtained by (24) for the generative model and by (10) for
the soft discriminative model. Normalization is required for the discriminative model
in order to obtain patch label probabilities. Various thresholds are used on patch la-
bel probabilities in order to produce ROC curves for the generative model and the soft
discriminative model, as shown in Figure 6.

As can be observed from the plots the generative model patch labelling is better than
the discriminative model patch labelling for all types of features and patch labelling with
DoG operator with LJ and colour feature is better than other feature types.
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Fig. 6. ROC curves of patch labelling. Each figure contains two curves. One for the generative
model and the other one for the discriminative model. Left figure is for R-PCA+C patches. Middle
one is for DoG-LJ+C. The rightmost one is for HL-LJ+C.



Some examples of patch labelling for test images are given in Figure 7 for random
patches, in Figure 8 for DoG patches and in Figure 9 for HL patches. In these figures
each patch is assigned to the most probable class and patch centers are given with
coloured dots where colour denotes the patch label.

,

,

Fig. 7. Patch labelling examples for random patches. Results for discriminative model (top row)
and generative model (bottom row) for cow (left column) and sheep (right column) image. Red
white, green dots denote cow, sheep and background patches respectively and patch labels are
obtained by assigning each patch to the most probable class.

5.3 Comparison for Training Data Quantity

We trained our models with various number of training data. We used 50 to 150 images
with 25 intervals from each class for training and plot overall correct rate versus number
of images used in training for both models in Figure 10. The left figure corresponds to
the use of random patches, while the right figure corresponds to the use of DoG patches.
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Fig. 8. Patch labelling examples for DoG patches. Results for discriminative model (top row)
and generative model (bottom row) for cow (left column) and sheep (right column) image. Red,
white, green dots denote cow, sheep and background patches respectively and patch labels are
obtained by assigning each patch to the most probable class.

Similar results as [13] and [4] are obtained in this chapter also. Since the generative
model performs the best with random patches (Section 5.2) we were expecting that with
less data the generative model performance should be better than discriminative model.
As can be observed from the left plots in Figure 10 the generative model performance
is much better than the discriminative one for less data and as the quantity of data is
increased discriminative model performance increases much faster than the generative
model’s performance. When DoG-LJ+C features are used, since the generative model
does not perform well with this feature type, we were not expecting same type of be-
haviour. As can be seen in the right hand plots in Figure 10, the generative and the
discriminative models behave nearly the same as we increase the data quantity but the
discriminative model performs better than the generative model all the time.

6 Discussion

In our earlier study [17], we introduced novel discriminative (probabilistic noisy OR)
and generative models. We used SIFT features only and showed that the probabilistic
noisy OR discriminative model and the generative model have complementary strengths
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Fig. 9. Patch labelling examples for HL patches. Results for discriminative model (top row) nd
generative model (bottom row) for cow (left column) and sheep (right column) image. Red, white,
green dots denote cow, sheep and background patches respectively and patch labels are obtained
by assigning each patch to the most probable class.

and limitations. The discriminative model is able to focus on highly informative fea-
tures, while the generative model gives high classification accuracy, and also has some
ability to localize the objects within the image. However, the generative model required
careful initialization in order to achieve good results. Also, inference in such a genera-
tive model can be very complex. A discriminative model, on the other hand, is typically
very fast once trained.

In this chapter, we have introduced a soft version of our previous probabilistic noisy
OR discriminative model [17]. The soft discriminative model introduced here has a
better patch labelling capability than probabilistic noisy OR one.

We have compared our soft discriminative and generative models in terms of using
strongly labelled and weakly labelled data together in training. Combining these two
data types is very easy in the generative model training but needs lots of variations in
the discriminative case. The generative model, unlike the discriminative ones, could also
benefit from the use of completely unlabelled images, although we have not conducted
any experiments on this so far.

We have used several different feature point operators and feature extractors, and
experimented with the effect of different feature types on the learning capacity of the
models. First, we have compared the models in terms of image labelling performance.
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Fig. 10. Overall correct rate versus data number plots to show how the models behave as the data
quantity is increased. Left figure is when random patches are used and the right figure is when
DoG features are used.

We have observed that the discriminative model is not effected very much when dif-
ferent feature types are used and the model performs the best with DoG-LJ+C (DoG
operator with local jet and colour features). Random patches with PCA coefficients and
colour features caused the worst performance for the discriminative model, while the
opposite results are observed for the generative model. The performance of the gen-
erative model depends significantly on the choice of feature types, and the best per-
formance is obtained with random features. We also compared the models in terms of
patch labelling. In all cases the generative model outperforms the discriminative model
in patch labelling. But the best patch labelling performance is obtained with DoG-LJ+C
feature for both models. This is a very reasonable result because DoG operator extracts
uniform regions as patches and in most cases a patch is either fully background or fully
foreground. However in other cases most of the time, a patch may contain some fore-
ground pixels as well as background pixels. In randomly selected patches this is more
serious.

We have also compared the two models when different number of images are used
for training. When this comparative experiment is performed using random patches
as features, we have observed that with small number of data the generative model
performs better than the discriminative model and as the data quantity increases the
performances for both models increase but this increase is more marked for the dis-
criminative model, so that the performance of the two approaches is similar for large
data sets. When this comparative experiment is performed using DoG-LJ+C features,
both models behaved nearly the same for all data quantities but the discriminative model
performs better all the time as we increase the data quantity.

Our investigations suggest that the most fruitful approaches will involve some com-
bination of generative and discriminative models. Indeed, this is already found to be
the case in speech recognition where generative hidden Markov models are used to ex-
press invariance to non-linear time warping, and are then trained discriminatively by
maximizing mutual information in order to achieve high predictive performance.



One promising avenue for investigation is to use a fast discriminative model to lo-
cate regions of high probability in the parameter space of a generative model, which can
subsequently refine the inferences. Indeed, such coupled generative and discriminative
models can mutually train each other, as has already been demonstrated in a simple
context in [14].

One of the limitations of the techniques discussed here is the use of interest point
detectors that are not tuned to the problem being solved (since they are hand-crafted
rather than learned) and which are therefore unlikely in general to focus on the most
discriminative regions of the image. Similarly, the invariant features used in our study
were hand-selected. We expect that robust recognition of a large class of object cate-
gories will require that local features be learned from data.

Classifying individual patches is very hard because patches from different classes
may seem similar due to the effects of illumination, pose, noise or similarity. This
ambiguity can be solved by modeling the interactions between patches. The con-
textual information can be used in the form of spatial dependencies in the images.
Markov Random Field models are traditional interaction models used in vision be-
cause they can incorporate spatial relationship constraints in a principled manner.
For the purposes of this study we have ignored spatial information regarding the
relative locations of feature patches in the image. However, most of our conclusions
remain valid if a spatial model is combined with the local information provided by
the patch features.

Acknowledgements We would like to thank Antonio Criminisi, Geoffrey Hinton, Fei
Fei Li, Tom Minka, Markus Svensen and John Winn for numerous discussions. The idea
of replacing noise OR with with sum of log-odds arose in a discussion with Geoffrey
Hinton.

References

1. A. Bar-Hillel, T. Hertz, and D. Weinshall. Object class recognition by boosting a part-based
model. In CVPR, 2005.

2. K. Barnard, P. Duygulu, D. Forsyth, N. Freitas, D. Blei, and M. I. Jordan. Matching words
and pictures. Journal of Machine Learning Research, 3:1107–1135, 2003.

3. C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.
4. G. Bouchard and B. Triggs. The trade-off between generative and discriminative classifiers.

In COMPSTAT, 2004.
5. G. Dorko and C. Schmid. Selection of scale invariant parts for object class recognition. In

ICCV, 2003.
6. R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale

invariant learning. In CVPR, 2003.
7. A. Holub and P. Perona. A discriminative framework for modelling object classes. In CVPR,

2005.
8. T. Kadir and M. Brady. Scale, saliency and image description. International Journal of

Computer Vision, 45(2):83–105, 2001.
9. J. J. Koenderink and A. J. van Doorn. Representation of local geometry in the visual system.

Biological Cybernetics, 55:367–375, 1987.



10. S. Kumar and M. Hebert. Discriminative random fields: A discriminative framework for
contextual interaction in classification. In ICCV, 2003.

11. D. Lowe. Distinctive image features from scale invariant keypoints. International Journal
of Computer Vision, 60(2):91–110, 2004.

12. K. Mikolajczyk and C. Schmid. Scale and affine invariant interest point detectors. Interna-
tional Journal of Computer Vision, 60:63–86, 2004.

13. A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A comparison of
logistic regression and naive bayes. In Advances in Neural Information Processing Systems
14, 2002.

14. R. Neal P. Dayan, G. E. Hinton and R. S. Zemel. The helmholtz machine. Neural Computa-
tion, pages 1022–1037, 1995.

15. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net- works of Plausible Inference.
Morgan Kaufmann Publishers, 1998.

16. B. M. ter Haar Romay, L. M. J. Florach, A. H. Salden, and M. A. Viergever. Representation
of local geometry in the visual system. Biological cybernetics, 55:367–375, 1987.

17. I. Ulusoy and C. M. Bishop. Generative versus discriminative methods for object recognition.
In CVPR, 2005.

18. M. Vidal-Naquet and S. Ullman. Object recognition with informative features and linear
classification. In ICCV, 2003.

19. L. Xie and P. Perez. Slightly supervised learning of part-based appearance models. In IEEE
Workshop on Learning in CVPR, 2004.


