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The tokamak is currently the principal magnetic
confinement system for controlled fusion research.
In seeking to understand the physics of the high
temperature plasma inside the tokamak, it is
important to have detailed information on the spatial
distribution of electron density. One technique for
density measurement uses laser interferometry, which
gives line-integral information along chords through
the plasma. This requires an inversion procedure to
extract spatially local density information. In this
paper we make use of feedforward networks to
extract local density profiles from the line-integral
data obtained from the multichannel interferometer
on the JET (Joint European Torus) tokamak. An
important feature of our approach is the use of
profile data from a second high resolution diagnostic
system, called LIDAR, to train the network. The
LIDAR system provides data at high spatial resolu-
tion but with a low repetition rate, and therefore
has a complementary réle to interferometry which
operates at a high sampling rate but with much lower
spatial resolution. Results show that the neural
network is able to extract significantly more detailed
profile information than the conventional Abel inver-
sion method currently used on JET.
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1. Introduction

Measurements of the spatial distribution of electron
density in a -‘high temperature tokamak plasma
experiment require non-invasive diagnostic tech-
niques. One approach is to use laser interferometry
to obtain line-integral measurements of density
along a number of chords through the plasma. The
extraction of spatially local density information from
this line-integral data is usually performed by
generalised Abel inversion. In this paper we describe
a novel approach to this problem using feedforward
neural networks. A significant feature of our
approach is the use of profile information obtained
from a second diagnostic, known as LIDAR, to
train the network. The LIDAR system provides
data at high spatial resolution but with a low
repetition rate, and therefore has a complementary
role to interferometry which operates at a high
sampling rate but with much lower spatial resolution.
As we shall show, the neural network approach
allows significantly more detailed density profiles to
be obtained from the interferometer data than is
possible with conventional methods.

Many plasma phenomena can occur on timescales
of microseconds, whereas a plasma pulse can
last for many seconds. Since modern tokamak
experiments have numerous plasma diagnostics,
many of which are capable of high sampling rates,
the volumes of data which can potentially be
generated, are very large. Furthermore, there is
often only a few minutes available between plasma
pulses (or ‘shots’) in which to analyse the data if it
is to be available in time to influence the choice of
operating parameters for the next pulse. Neural
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network techniques offer a number of features,
including the capability to perform high speed
non-linear transformations, which make them of
considerable interest for data analysis purposes in
the context of tokamak physics. Other tokamak
applications of neural networks, for data analysis
and control, can be found in [1-3].

A brief overview of the tokamak magnetic con-
finement system is given in Sect. 2, and is followed
by a description of the LIDAR and multichannel
interferometer diagnostics on the JET tokamak in
Sect. 3. The general problem of profile reconstruc-
tion from interferometer line-integral data is dis-
cussed in Sect. 4. In Sect. 5 we describe the neural
network approach to profile reconstruction and
present results obtained from JET data. Finally, a
summary and discussion are given in Sect. 6.

2. An Overview of the Tokamak

The tokamak is currently the favoured experimental
system for research into the magnetic confinement
approach to controlled fusion. The photograph
shows the Joint European Torus (JET) experiment,
currently the world’s largest tokamak, at Culham
Laboratory in Oxfordshire. A tokamak (from the
Russian for ‘toroidal magnetic chamber’) consists of
a toroidal vacuum vessel in to which a small quantity
of gas (usually isotopes of hydrogen) is introduced.
The gas is ionised and raised to a very high
temperature, typically a few 107K, by a large toroidal
electric current (up to 7 X 10° amps in JET) which
is induced by transformer action from a set of
primary poloidal field coils. The plasma current also
interacts with its own magnetic field in such a way
as to confine the high pressure of the plasma.
Additional magnetic fields, produced by currents
flowing through external poloidal and toroidal field
coils, act to stabilise and shape the plasma. The
superposition of the various magnetic fields leads
to a complex field structure, with individual field
lines forming spirals which live on closed nested
toroidal flux surfaces. Figure 1 shows a schematic
illustration of the flux surfaces in a typical tokamak.

In seeking to understand the physics of the
magnetically confined plasma, it is of considerable
interest to be able to measure the spatial distributions
of plasma density and temperature, and to investi-
gate how these distributions evolve with time. In
this paper we are concerned with the determination
of electron density profiles. To a good approximation
it can be assumed that the tokamak has rotational
symmetry around the central vertical axis (the Z-
axis in Fig. 1). It is therefore sufficient to consider

Fig. 1. Schematic illustration of a tokamak vacuum vessel, shown
in cross-section, together with the nested toroidal flux surfaces.
In many instances these flux surfaces are also the surfaces of
constant electron density.

the density distribution in a cross-sectional plane at
one toroidal location. The contours of constant
density generally form closed nested surfaces, with
the density going to zero at the walls of the vacuum
vessel. The spatial distribution of density is usually
expressed in terms of a density profile as a function
of major radius R (see Fig. 1), along the toroidal
mid-plane. This density profile then specifies the
density at all points within the tokamak, provided
the surfaces of constant density are known. In many
circumstances, the surfaces of constant density
coincide with the flux surfaces. This fact is used
explicitly in the conventional methods for profile
reconstruction. Note, however, that in some situ-
ations (in particular, when the plasma is strongly
rotating) the density surfaces and flux surfaces need
not coincide. Unlike conventional approaches, our
neural network method does not require the density
to be constant on the magnetic surfaces.

3. Density Profile Measurements on JET

The two principal diagnostics on JET for measure-
ment of the electron density profile are the multi-
channel interferometer and the LIDAR Thompson
scattering system. Here we give a brief overview of
the main characteristics of these two diagnostics,
with emphasis on those features which are of
particular relevance to the current study.

The JET far infrared interferometer can be seen
on the left side of Fig. 2, and a detailed description
of the system can be found in [4]. The instrument
is based on a Mach-Zender interferometer driven
by a 195 pm DCN laser. Six vertical lines of sight,
shown schematically in Fig. 3, provide phase shift
measurements to 1/20 of a fringe, permitting line-
integral densities in the range 5 X 107 to 10?'m~2
to be measured. (The dashed contours in Fig. 3
represent the magnetic flux surfaces). The spatial




Fig. 2. JET tokamak showing the multichannel interferometer
(the tall box-section structure on the left).

resolution of the interferometer is, at best, of order
20 cm, while the sampling rate is currently around
10* Hz, although the interferometer itself is capable
of much finer time resolution.

To determine the density profile from the six line-
integral measurements, an inversion procedure is
needed. This will typically take into account infor-
mation on the geometry of the flux surfaces obtained
from other diagnostics, with the assumption that
the density is constant on a flux surface. In this
study we shall compare the results of a neural
network inversion technique with those obtained
routinely on JET using a conventional Abel inversion
procedure.

The LIDAR (light detection and ranging) diagnostic
is described in detail in [5]. It uses a ruby laser to
obtain density profile information across the mid
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Fig. 3. Schematic illustration of the six vertical chords of the
multichannel interferometer on JET, together with the LIDAR
line-of-sight. The dashed contours represent the flux surfaces.

plane, as shown schematically in Fig. 3. Thompson
scattering of the laser light, together with time of
flight measurements, allows the electron density
profile to be measured with a spatial resolution of
order 9 cm. The laser repetition rate is typically
1-2 Hz.

Thus, the two density profile diagnostics play
complementary roles. The interferometer has low
spatial resolution (> 20 cm) with a high repetition
rate (10* Hz), while the LIDAR gives relatively high
spatial resolution (9 cm) but at the expense of a very
low repetition rate (1-2 Hz). As we shall show, our
neural network approach allows the high resolution
of the LIDAR profiles to be exploited in the
interpretation of interferometer data, to give an
improved reconstruction of the electron density pro-
file. In addition, the trained neural network provides
a non-linear procedure for extracting the density
profiles which is sufficiently fast to allow inter-shot
analysis of the large volumes of interferometer data.

4. Interferometer Profile Reconstruction

In this section we discuss the general problem of
extracting an electron density profile from the line-
integral data generated by the JET interferometer.
We also outline the conventional Abel inversion
technique traditionally used on JET. A detailed
discussion of our neural network approach, however,
is deferred to Sect. 5.

Reconstruction of a density profile from a set of
line-integral measurements represents a form of
inverse problem. The forward problem, illustrated
in Fig. 4a, involves the calculation of the expected
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values of the line-integrals, given both the density
profile and the contours of constant density (taken
to be the flux surfaces). Since this involves simply
the evaluation of integrals in a geometrical problem,
it is well defined and gives a unique result. However,
the ‘inverse’ problem, illustrated in Fig. 4b, requires
the determination of the density profile from the
line-integral data, and is an example of an ill-posed
problem. (Note that this is not quite the inverse of
the forward problem, since in both cases it is
assumed that the geometry of the flux surfaces is
known.) A problem is said to be ill-posed [6,7]
when one or more of the following conditions is not

met: (i) there exists a solution; (i) the solution is

unique; and (iii) the solution is stable (so that small
variations in the data produce small changes in the
solution). Ill-posed problems occur in many areas of
physics and engineering, and have been extensively
studied. The problem of finding the density profile
from a finite number of line-integral measurements
is ill-posed, since there are infinitely many density
profiles which give rise to the same values for the
line-integrals.

There are two basic approaches to the solution of
ill-posed problems. The first, known as structural
stabilisation, involves limiting the number of degrees
of freedom in the function being fitted. In the case
of density profile reconstruction, this would require
fitting a given functional form for the density profile
which contains a limited number of adjustable par-
ameters. Thus the density profile might, for instance,
be represented by a finite order polynomial, with the
various coefficients being determined by a least-
squares fitting procedure. The principal disadvantage
of such an approach is that a specific functional form
must be selected, and the choice made may not be
optimal for the particular problem.
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Fig. 4. a Illustration of the forward problem of calculating the
expected values for the density line-integrals for a given density
profile; b illustration of the ‘inverse’ problem of extracting a
density profile from a set of line-integral measurements.

The second approach to the solution of ill-posed
problems involves the use of regularisation terms to
bias the form of the solution, and thereby render the
solution unique. The theory of regularisation methods
is described in [8]. They have been applied to the
problem of neural network learning in [9,10]. The
regularisation terms correspond to prior knowledge
concerning the expected form of the solutions. For
instance, if the solution is expected to be smooth then
the regularisation term may be taken to be the mean
square curvature of the function. In the context of
density profile reconstruction, the use of LIDAR
profiles represents prior knowledge concerning the
expected form of the density profiles, although this
information will be used in Sect. 5 to provide target
outputs for network training rather than in the form
of a regularisation term.

The conventional method used on JET to recon-
struct the density profiles, known as generalised
Abel inversion, adopts the former approach of
limiting the number of degrees of freedom in an
assumed functional form for the density profile. An
indication of the appropriate number of degrees of
freedom can be obtained as follows. For the JET
interferometer, there are six independent line-
integral measurements. If information on the shape
of the flux surfaces is also available, and we assume
that the density is constant on a flux surface, then
this effectively doubles the number of independent
items of information to 12. This can be seen
intuitively from the fact that knowledge of the
density at one point on the mid-plane gives the
value of the density at a second point on the mid-
plane, where the two points lie on the same constant
density surface. Furthermore, we know that the
density should vanish at the walls of the tokamak,
and this provides two further independent pieces of
information. Thus there are in total 14 independent
items of information available from the line-integral
measurements, plus knowledge of the constant
density surfaces. This is sufficient to determine the
values of the parameters in a 14 parameter functional
form for the density profile. This does not, however,
take account of the presence of noise on the data.
To ensure the results are not strongly sensitive to
noise, it is necessary to restrict further the number
of degrees of freedom. On JET, the line-integral of
density along a vertical chord is represented as
polynomial function of major radius R (where R is
defined in Fig. 1), and it is usual to consider 6-8
degrees of freedom, (where the number of degrees
of freedom is given by the number of polynomial
coefficients to be determined from the data). The
values of the coefficients are then found by a linear
matrix inversion algorithm.
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The neural network approach set out below also
makes use of functions having a restricted number
of degrees of freedom to ensure that the profile
reconstruction is well-posed, although the functions
are defined in a quite different way. In Sect. 5 we
shall compare the results from the neural network
approach directly with those obtained using Abel
inversion.

5. Neural Network Approach to Profile
Reconstruction

The neural network approach to profile reconstruc-
tion described in this paper can be broken down
into two distinct parts. The first consists of the
determination of an appropriate reduced-dimen-
sionality representation for the profiles. As with the
Abel inversion method, the approach used in this
paper also involves the use of a functional form for
the density profile having a restricted number of
degrees of freedom. However, unlike the polynomial
used in Abel inversion, no explicit choice of
functional form for the profiles will be made.
Instead, we shall use the high-resolution LIDAR
profile information to generate an appropriate
functional form. This will involve finding a reduced
dimensionality representation of the LIDAR profiles
using principal component analysis, and will be
discussed in Sect. 5.2. To facilitate comparison with
the profiles obtained by Abel inversion (which uses
polynomials of order 6-8), we shall consider eight
degree-of-freedom representations.

The second stage of the neural network approach
then makes use of networks of the multilayer
perceptron type to map the interferometer data
(together with information concerning the geometry
of the flux surfaces) onto the reduced dimensionality
representation of the density profile. Combining the
two parts together we arrive at the equivalent of a
single network which maps the line-integral and flux
surface data directly onto a density profile. The
second stage will be discussed in more detail in
Sect. 5.3. We begin, however, with a brief descrip-
tion of the dataset used to train and test the network.

5.1. Training Data

A dataset for training and testing the networks was
assembled from the JET database. Each entry in
the dataset corresponds to a particular time on a
particular shot, and includes the values of the six
line-integrals, together with the values for the
LIDAR density profiles which are stored in the
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dataset at 35 equally spaced values of major radius
R. (Although the spacing of the data point is
approximately 5 cm, the true resolution of the
LIDAR system is around 9 cm.)

As well as the values of the line-integrals of
density from the interferometer, the network must
also be provided with information about the
geometry of the constant density contours. Unfortu-
nately, this information is not available directly. We
do know, however, that the density if often constant
on the magnetic flux surfaces, and even when it is
not, there is expected to be a significant correlation
between the flux surfaces and the constant density
surfaces. Information on the geometry of the flux
surfaces can be obtained from the large number of
magnetic field measurements taken around the
perimeter of the vacuum vessel. For the purposes
of this study we have made use of the output
produced by the FAST code [11], which provides
the values of a number of parameters (such as major
radius, elongation, triangularity, and so on), known
as Lao—Hirshman coefficients, based on measurements
of the magnetic fields at a number of points around
the perimeter of the vacuum vessel. This code has
been chosen because it is sufficiently fast that the
information will be available for all required time
slices on an inter-shot basis, allowing the network to
be used for inter-shot profile reconstruction.

The data points were selected so as to give a wide
range of profile shapes, covering both broad and
centrally peaked LIDAR profiles. Also included in
the dataset were the density profiles obtained using
the standard Abel inversion technique employed on
JET, for the corresponding time slices. These
provided a point of comparison for the neural
network results. The dataset contains a total of 1777
entries each corresponding to a particular shot and
time, and was divided randomly into a training set
of 893 points and a test set of 884 points. Abel
profiles were available for 620 of the training points
and 618 of the test points. Considerable care and
effort was expended in setting up the dataset. In
particular, the interferometer traces were examined
individually so as to discard those which suffer from
the problem of ‘fringe jumps’, which correspond to
an error of 2w in the phase measurement for a
particular chord, and which lead to significant errors
in the density line-integral measurements.

An important point concerns the normalisation
of the profile data. We first note that the profile
reconstruction problem is essentially geometrical in
nature. If all line-integral values are scaled by a
constant factor, then the reconstructed profile should
also be scaled by that same factor, and any
reconstruction method should reflect this exact

]
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linear invariance property. In the case of the neural
network approach, we avoid having to train the
network to reconstruct self similar profiles of
different amplitude by normalising both the line-
integral data and the corresponding LIDAR target
data. In effect, we are using the network to solve
the non-linear problem of determining the shape of
the density profile, with the overall scale recovered
by subsequent post-processing. Thus, for any given
training pattern p, the line-integrals A2 (where k =
1, ..., 6 labels the interferometer channels) are
normalised to give a vector of unit length with
components:

N2 = NR/NP (1)
where
6 1/2
NP = {Z w;)Z} )
k=1

Similarly, the LIDAR density values are normalised
to give:

A2 = nZ/NP 3)
where i = 1, ..., 35 labels the values of major radius
R at which the LIDAR density values are specified.
The normalised 7#¢ will be used to provide target
values for training the network. When testing the
network on new data, the line-integrals are similarly
normalised, and the network outputs are postpro-
cessed by multiplying by M to recover the physical
density values. As will be discussed in more detail
later, this normalisation effectively uses up a degree
of freedom, and so within the network architecture
we shall be seeking seven degree-of-freedom rep-
resentations, in keeping with the desire to have
eight degrees of freedom overall.

The Lao-Hirshman coefficients are normalised to
zero mean and standard deviation = § (with respect
to the training set), thereby ensuring that all network
inputs are 0(1).

5.2. Dimensionality Reduction

The first stage of the neural network approach to
profile reconstruction involves finding a represent-
ation for the density profiles which has a restricted
number of degrees of freedom (i.e. adjustable
parameters). To achieve this we shall make use of
the LIDAR profiles from the training part of the
dataset. We shall consider both the conventional
technique of principal component analysis (PCA),
and a non-linear neural network approach.

Principal component analysis makes use of the
covariance matrix for the LIDAR training data,
defined by:

Cy= 2, (i = Ay = 1) 4)

where 72 denotes the (normalised) LIDAR electron
density at spatial point i (i = 1, ..., N, where N =
35) for pattern p, P is the total number of patterns,
and 7; is defined by:

1 P
P2 ©)

where the sum runs over all patterns p in the
training set. The principal components are given by
the eigenvectors of the matrix C:

N
E C,]u](m) = }L(m) u,»(m) m = 1, ceey N (6)
j=1

Since C is, by construction, a real symmetric matrix,
it has eigenvectors which form an orthonormal,
complete set:

N
> ufmu™ =3, (7)
i=1

ulm uj(m) =9 (8)
1
where 3 is the Kronecker symbol. A reduced dimen-
sionality representation of the density profiles is then
obtained simply by retaining the M < N eigenvectors
corresponding to the M largest eigenvalues. Any new
density profile 72 can then be projected down onto
the M-dimensional subspace using:

e

N
n”;’:z(ﬁtp—ﬁl) mz].,...,M (9)
i=1

to give a set of M coefficients m5,. These coefficients
represent an approximation to 7 obtained by pro-
jecting back into the N-dimensional profile space
using:

M
w2 =7+ D meu™ i=1,...,N (10)
m=1

If M = N then the original profile is recovered
exactly. This can be seen by substituting Eq. (9)
into Eq. (10), and wusing Eq. (8) to give
a? =2 Vi,p. However, if M < N then there is
some error involved in the mapping down to M-
dimensions and back to N-dimensions. Principal
component analysis is designed so that the mean
square error over the whole dataset is as small as
possible, subject to the limitations of using a linear
procedure. We can define a reconstruction error for
a particular pattern p by:

~ 35 12
Erms = {% 21 (ﬁfj - ”A‘Iz?)z} (11)
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Fig. 5. Compression error for LIDAR profiles as a function of
the number of retained principal component eigenvectors.

A plot of this error (for the LIDAR profiles in
the training set), resulting from projection onto
successively increasing numbers of eigenvectors, is
shown in Fig. 5. For a seven degree-of-freedom
representation of the normalised density profiles we
should retain seven principal components. When
the reconstructed 35-dimensional profile, obtained
from Eq. (10), is post multiplied by the normalis-
ation factor A?, we recover the full eight degree-of-
freedom representation.

Neural networks offer a non-linear dimensionality
reduction technique [12] which includes principal
component analysis as a special case. Consider the
S-layer network architecture shown in Fig. 6. The
input and output layers contain the same number
N of units, while the second hidden layer contains

[ density profile ]

A

[ third hidden layer ]
A

[second hidden layer J
A

[ first hidden layer ]

1

[ density profile J

Fig. 6. Compression network used for non-linear dimensionality
reduction.
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M < N units. The first and third hidden layers are
often chosen to have the same number of units,
although this is not essential. Training data for the
network consists of the (training data set) LIDAR
profiles, and the network is trained to map the
density profiles onto themselves. This mapping is
unlikely to be exact, however, since there are fewer
units in the second hidden layer than there are input
units. The network therefore seeks a reduced
dimensionality representation which minimises the
profile reconstruction error. The first hidden layer
acts to map the N-dimensional input vector on to
the M-dimensional representation of the second
hidden layer, in a manner analogous to Eq. (9).
Similarly, the third hidden layer maps from the M-
dimensional representation of the second hidden
layer back into the N-dimensional profile space, in
an analogous way to Eq. (10). Unlike principal
component analysis, however, these mappings can
be non-linear. In fact, using the universality theorem
for single-hidden-layer networks given in [13], these
mappings can approximate any non-linear mapping
of the same dimensionality to arbitrary accuracy,
provided there are sufficiently many non-linear
hidden units. Furthermore, it can be shown [14]
that if the hidden units in the network operate on
the linear part of the sigmoidal curve, then the
subspace spanned by the activations of the M middle
layer hidden units corresponds to the space of the
first M principal component eigenvectors. In this
sense, the neural approach contains principal com-
ponent analysis as a special case.

Networks having five layers with 35 inputs and
35 (linear) outputs, and various numbers of units
in the first and third hidden layers (always taken to
be equal), were trained using the normalised LIDAR
profiles from the training dataset. In all cases there
were seven units in the second hidden layer to force
the network to find an optimal seven degree-of-
freedom representation for the profiles. All network
training described in this paper was performed using
the BFGS memoryless quasi-Newton algorithm [15],
which is found to be much faster and more robust
than gradient descent based methods. The best
results, i.e. the smallest error with respect to the
test set, were obtained for a network having ten
units in each of the first and third hidden layers,
and are compared with the corresponding results
from PCA in Table 1. The root-mean-square (RMS)
errors of the network outputs for the trained network
are calculated separately for the training and test
sets, using the following definition:

ERMS = {35%3 Z E (ﬁtP - t-tp)z} (12)

p=1i=1




Reconstruction of Tokamak Density Profiles Using Feedforward Networks 11

Table 1. Comparison of RMS errors due to dimensional-
ity reduction by both neural network and PCA methods,
for the training and test sets.

Method RMS (train) x10*  RMS (test) x10?
Neural 4.44 4.67
network

PCA 4.56 4.67

where # denotes the ith component of the normal-
ised target vector for pattern p. Note that normalised
output data is used in defining Eq. (12) to ensure
that the results are not dominated by a small number
of high density shots.

It is clear that there is no significant improvement
resulting from the non-linearity offered by the neural
network approach to dimensionality reduction, and
so from now on we shall use the PCA results. This
has a number of practical advantages resulting from
the linear nature of principal component analysis.

5.3. Network Mapping

So far we have set up a 7-dimensional representation
of the density profiles given by Eq. (10) with M =
7. The profiles themselves are described by the
values of electron density at 35 points along the
major radius, and can therefore be considered as
points in a 35-dimensional ‘profile space’. In our
representation, each profile will be described by the
values of the seven parameters m,,. The additional
global rescaling of the profiles resulting from the
normalisation used in Eq. (3) then leads to profiles
having eight degrees of freedom. The profiles are
now represented by a general linear expansion of
the same form as Eq. (10) replace with the profiles
now occupy an 8-dimensional hyperplanar sub-space
of the 35-dimensional profile space.

The second step in the neural network approach
to profile reconstruction involves setting up a
mapping which will generate the best example of
the reduced dimensionality representation corre-
sponding to particular values of the line-integrals
and flux surface parameters. In a conventional
analysis (such as the Abel inversion method) this
would  typically be done using a least-squares
calculation to select values for the adjustable
parameters such as to minimise the mean square
error between the measured line-integrals and those
predicted by the reconstructed profile (using the
forward calculation illustrated in Fig. 4a). With the
neural network approach, however, we make use
of the training dataset to determine a direct mapping
from the interferometer and flux surface data onto

the reduced-dimensionality representation.

The complete neural network system is shown
schematically in Fig. 7. The network has 13 inputs
corresponding to the six line-integrals and the seven
Lao-Hirshman coefficients, and 35 linear outputs
corresponding to the values of (normalised) electron
density at the same 35 radial points as used to
represent the LIDAR profiles. The activations of
the seven units in the layer labelled ‘principal
components’ correspond to the parameters mp5, of
Eq. (10). The first hidden layer permits a general
mapping onto the principal directions (again using
the universality theorem for networks having a
single non-linear hidden layer, described in [13]).
Thus the only adaptive weights in the network are
now those either side of the first hidden layer.

It is important to note that a feedforward neural
network can only generate one—one or many—one
mappings (functional mappings), since for any given
set of input values the output values are uniquely
defined. The forward problem illustrated in Fig. 4a
is clearly a many-one mapping, since the line-
integrals can be calculated uniquely once the profile
is specified, but many profiles (specified by a 35-
dimensional vector) can give rise to the same line-
integral values. The inverse problem of Fig. 4b is
therefore potentially a one-many mapping, and we
cannot expect to train a neural network to perform
this mapping for arbitrary profiles. We are not,
however, interested in generating all possible 35-
dimensional output vectors, but only those which
represent realistic tokamak density profiles. By
representing the normalised profiles by just seven
principal component eigenvector coefficients, there
are now more degrees of freedom in the input space
than there are in the output space. In addition,

[ density profile ]

A

( principal components ]
A

( hidden layer ]

line flux surface
integrals parameters

Fig. 7. Neural network architecture for profile reconstruction
using principal components to define the reduced dimensionality
representation of the density profiles.
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, . . ; . we note that the successive principal component
Principal component 3 eigenvectors, corresponding to increasing eigenval-
ues, have steadily increasing spatial frequency. This
is illustrated in Figs. 8a—c by the eigenvectors
corresponding to the 3rd, 8th and 21st eigenvalues.
Our approach of using the first seven eigenvectors
as the basis representation for the density profiles
is therefore consistent, since we expect the line-
integral information to determine the low spatial
frequencies in the profiles. Thus we expect that the
mapping to be learned by the network can be closely
approximated by a functional mapping.
Instead of defining the profile targets directly in
the 35-unit output layer and backpropagating errors
0 5 1'0 1'5 20 2'5 30 a5 to the principal components layer, it is compu-
Major radius coordinate tationally more efficient to generate a modified
a training data set by mapping the LIDAR training
profiles onto the principal vectors using Eq. (9).
— T - - The resulting parameter values act as targets for
Principai component 8 training what is now a single-hidden-layer network
having seven output units. The network is then
trained by minimising a mean-square error defined
with respect to the principal component coefficients.
These two approaches are formally equivalent, as m
is demonstrated in the Appendix. i

0.4 .

0.2

©
=N

0.2

5.4. Results

Results for the case of networks using seven principal
components are given, for various numbers of units
. l . in the first hidden layer, in Table 2. Here the RMS
04 0 5 110 1'5 20 o5 30 35  errors are again defined, for both training and test
Major radius coordinate sets, by Eq. (12). Also shown in Table 2 are the
corresponding RMS errors between the Abel profiles
and the LIDAR profiles. These results are also
; plotted in Fig. 9.
Table 2 (Fig. 9) exhibits the classic form showing
a reduction in the training error as the number of !
hidden units is increased, while the test error |
decreases at first and reaches some optimum value,
and then increases as the number of hidden units
is increased further (corresponding to over-fitting).
We see from Table 2 that the RMS error between
the network profiles and the corresponding LIDAR
profiles for the test data (i.e. data not used in
the training of the network) is smaller than the
corresponding error between the Abel profiles and
the LIDAR. This implies that the network is
04 . . , , , producing reconstructed profiles which are closer to
o 5 10 15 20 25 30 35 LIDAR than are the corresponding Abel profiles.
Major radius coordinate As we shall see later, the neural network approach
Fig. 8. Plots of the principal component eigenvectors correspond- is able to extract .detailed features fr(?m the interfer-
ing.to' eigenvalues a 3, b 8 and ¢ 21, showing the steadily ometer data Wl_nCh are also seen in the LIDAR
increasing spatial frequency. profiles, but which are not seen in the Abel results.

0.4 T . . . .
Principal component 21

0.2
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Table 2. Results for neural network reconstruction of density
profiles for various numbers of hidden units showing the
RMS errors between the network profiles and those from
LIDAR, together with the corresponding RMS errors between
the Abel and LIDAR profiles

Niidden RMS (train) X102  RMS (test) x10?

9 1.650 1.641

12 1.592 1.640

15 1.556 1.578

18 1.523 1.541

21 1.580 1.603

24 1.489 1.598

27 1.432 1.738

30 1.450 1.966

Abel profiles 2.29 2.36

0.020 T T T ;
TRAIN ——
TEST —e——//

0.018

0.016

RMS error (Normalised profiles)

0.014 - - ' '
5 10 15 20 25 30

No of hidden units

Fig. 9. Plot of the RMS error for both training and test data for
the PCA approach to profile reconstruction (using seven principal
components) versus the number of hidden units in the network.

Note also, by comparison with the results in Table
1, that only a small part of the overall error can be
attributed to the use of a reduced dimensionality
representation for the profiles.

In Figs. 10a,b we plot two examples of density
profiles reconstructed using the neural network of
Table 2 with 18 hidden units (since this has the
smallest test error). The LIDAR profiles are shown
by the circles, the Abel profiles are shown by the
dashed curves, and the neural network profiles by
the solid curves. The network error appearing on
these graphs is the RMS error between the profile
predicted by the neural network (after post multipli-
cation by the corresponding normalisation factor \?
given by Eq. (2)) and the corresponding LIDAR
profile, and is defined by:

35

Erms = {% Z (n? — t?)z}l/z (13)

> i=1

Shot No: 18040 Time: 44.520
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w
RMS error (Net) = 1.89124e+18
RMS error (Abel) = 5.41433e+18
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Fig. 10. a,b. Two examples of density profiles (from the test
data set) reconstructed using the neural network approach (solid
curves), together with the corresponding LIDAR profiles (circles)
and Abel inversion profiles (dashed curves). The network chosen
had 18 hidden units and used seven principal components.

The RMS error between the Abel profile and the
LIDAR profile is defined in a similar way. We see
that the neural network can reconstruct significantly
more detail in the density profiles than can the Abel
method.

In Fig. 11 we show a scatter plot of the network
RMS error versus the Abel RMS error, for the
profiles in the test set, again using the network with
18 hidden units. It is clear that for the majority of
these profiles, the neural network gives a signifi-
cantly closer fit to the LIDAR profiles than does
the Abel reconstruction.

6. Discussion

In this paper we have developed a neural network
approach to the problem of reconstructing profile

I |




16

approach to tokamak equilibrium control. Proceedings
of the NCM’91 Conference: Applications of Neural
Networks. London: Springer-Verlag, 1991

. Allen L, Bishop CM. Neural network approach

to energy confinement scaling in tokamaks. AEA
Technology, UK, Report AEA-FUS-120, 1991
accepted for publication in plasma

. Bishop CM, Roach CM. Fast curve fitting using

neural networks. (submitted to Review of Scientific
Instruments)

. Braithwaite G, Gottardi N, Magayar G, O’Rourke

J, Ryan J, Veron D. The JET Polari-interferometer.
Review of Scientific Instruments 1989; 60: 2825

. Salzmann H, Bundgaard J, Gadd C, Gowers C,

Hansen KB, Hirsch K, Nielsen P, Reed K, Schrodter
C, Weisberg K. The LIDAR Thomson Scattering
Diagnostic on JET. Review of Scientific Instruments
1989; 59: 1451

. Hadamard J. Lectures on the Cauchy Problem in

Linear Partial Differential Equations. Yale University
Press, 1923

. Morozov VA. Methods for Solving Incorrectly Posed

Problems. New York: Springer-Verlag, 1984

. Tikhonov AN, Arsenin VY. Solution of Ill Posed

Problems. New York: Wiley, 1977

. Bishop CM. Curvature-Driven Smoothing in Backpro-

10.

11.

12.

13.

14.

15.

C. M. Bishop et al.

pagation Neural Networks. Proceedings of the Inter-
national Neural Network Conference, Paris, 1990, Vol
2, 749-752; Taylor JG and Manion CLT, editors,
Theory and Applications of Neural Networks, Lon-
don: Springer-Verlag, 1990, 139-148 (submitted to
Neural Networks)

Bishop CM. Improving the Generalisation Properties
of Radial Basis Function Neural Networks. Neural
Computation 1991 2(4): 579-588

Christiansen JP. Integrated Analysis of Data from
JET. J Computat Phys 1987; 73: 85

Cottrell GW, Munro P, Zipser D. Learning Internal
Representations from Gray-Scale Images. Proceedings
of the 9th Annual Conference of the Cognitive Science
Society, 1987, 461-473

Hornik K, Stinchcombe M, White H. Multilayer
Feedforward Networks are Universal Approximators.
Neural Networks 1989; 2(5): 359-366

Baldi P, Hornik K. Neural Networks and Principal
Component Analysis: Learning from Examples With-
out Local Minima. Neural Networks 1989; 2: 53-58

Battiti R, Masulli F. BFGS Optimization for Faster
and Automated Supervised Learning. Proceedings
International Neural Network Conference, Paris, Vol
2, 1990, 757-760




