
VC dimension A measure of the complexity of a model. Knowledge of the VC dimension per-mits an estimate to be made of the di�erence between performance on the training set andperformance on a test set.
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De�ning termsClassi�cation A learning problem in which the goal is to assign input vectors to one of a numberof (usually mutually exclusive) classes.Boltzmann machine An undirected network of discrete valued random variables, where an en-ergy function is associated with each of the links, and for which a probability distribution isde�ned by the Boltzmann distribution.Cost function A function of the adaptive parameters of a model whose minimum is used to de�nesuitable values for those parameters. It may consist of a likelihood function and additionalterms.Decision tree A network that performs a sequence of classi�catory decisions on an input vectorand produces an output vector that is conditional on the outcome of the decision sequence.Density estimation The problem of modeling a probability distribution from a �nite set of ex-amples drawn from that distribution.Discriminant function A function of the input vector which can be used to assign inputs toclasses in a classi�cation problem.Hidden Markov model A graphical probabilistic model characterized by a state vector, an out-put vector, a state transition matrix, an emission matrix and an initial state distribution.Likelihood function The probability of observing a particular data set under the assumption ofa given parametrized model, expressed as a function of the adaptive parameters of the model.Mixture model A probability model which consists of a linear combination of simpler componentprobability models.Multilayer perceptron The most common form of neural network model, consisting of successivelinear transformations followed by processing with nonlinear activation functions.Over�tting The problem in which a model which is too complex captures too much of the noisein the data, leading to poor generalization.Radial basis function network A common network model consisting of a linear combination ofbasis functions each of which is a function of the di�erence between the input vector and acenter vector.Regression A learning problem in which the goal is to map each input vector to a real-valuedoutput vector.Regularization A technique for controlling model complexity and improving generalization bythe addition of a penalty term to the cost function.28
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XmXl XnFigure 7: The basic structure of the junction tree algorithm for undirected graphs. The graph in (a)is �rst triangulated (b), then the cliques are identi�ed (c), and arranged into a tree (d). Productsof potential functions on the nodes in (d) yield probability distributions on the nodes in (a).case is the state estimation algorithm of the Kalman �lter [Shachter and Kenley, 1989]. Finally,there are a variety of special cases of the Boltzmann machine which are amenable to the exactcalculations of the junction tree algorithm [Saul and Jordan, 1995].For graphs that are outside of the tractable categories of trees and chains, the junction treealgorithm often performs surprisingly well, but for highly connected graphs the algorithm can betoo slow. In such cases, approximate algorithms such as Gibbs sampling are utilized. A virtue ofthe graphical framework is that Gibbs sampling has a generic form, which is based on the notion ofa Markov boundary [Pearl, 1988]. A special case of this generic form is the stochastic update rulefor general Boltzmann machines.Our discussion has emphasized the unifying framework of graphical models both for expressingprobabilistic dependencies in graphs and for describing algorithms that perform the inferentialstep of calculating posterior probabilities on these graphs. The uni�cation goes further, however,when we consider learning. A generic methodology known as the Expectation-Maximization (EM)algorithm is available for MAP and Bayesian estimation in graphical models [Dempster, Laird, andRubin, 1977]. EM is an iterative method, based on two alternating steps: an E step, in whichthe values of hidden variables are estimated, based on the current values of the parameters andthe values of visible variables, and an M step, in which the parameters are updated based onthe estimated values obtained from the E step. Within the framework of the EM algorithm, thejunction tree algorithm can readily be viewed as providing a generic E step. Moreover, once theestimated values of the hidden nodes are obtained from the E step, the graph can be viewed asfully observed, and the M step is a standard MAP or ML problem. The standard algorithms for allof the tractable architectures described above (mixtures, trees and chains) are in fact instances ofthis general graphical EM algorithm, and the learning algorithm for general Boltzmann machinesis a special case of a generalization of EM known as GEM [Dempster, et al., 1977].What about the case of feedforward neural networks such as the multilayer perceptron? It24



variables Oi are generally treated as visible, and it is desired to calculate a probability distributionon the hidden states Hi. A similar inferential calculation is required in the mixture models and theBoltzmann machine.Generic algorithms have been developed to solve the inferential problem of the calculation ofposterior probabilities in graphs. Although a variety of inference algorithms have been developed,they can all be viewed as essentially the same underlying algorithm [Shachter, Andersen, andSzolovits, 1994]. Let us consider undirected graphs. A special case of an undirected graph is atriangulated graph [Spiegelhalter, et al., 1993], in which any cycle having four or more nodes hasa chord. For example, the graph in Figure 5(a) is not triangulated, but becomes triangulatedwhen a link is added between nodes Xi and Xj . In a triangulated graph, the cliques of the graphcan be arranged in the form of a junction tree, which is a tree having the property that anynode that appears in two di�erent cliques in the tree also appears in every clique on the paththat links the two cliques (the \running intersection property"). This cannot be achieved in non-triangulated graphs. For example, the cliques in Figure 5(a) are fXi; Xkg, fXk; Xjg, fXj ; Xlg,and it is not possible to arrange these cliques into a tree that obeys the running intersectionproperty. If a chord is added the resulting cliques are fXi; Xj ; Xkg and fXi; Xj; Xlg, and thesecliques can be arranged as a simple chain that trivially obeys the running intersection property.In general, it turns out that the probability distributions corresponding to triangulated graphs canbe characterized as decomposable, which implies that they can be factorized into a product of localfunctions (\potentials") associated with the cliques in the triangulated graph.1 The calculation ofposterior probabilities in decomposable distributions is straightforward, and can be achieved via alocal message-passing algorithm on the junction tree [Spiegelhalter, et al., 1993].Graphs that are not triangulated can be turned into triangulated graphs by the addition oflinks. If the potentials on the new graph are de�ned suitably as products of potentials on theoriginal graph, then the independencies in the original graph are preserved. This implies that thealgorithms for triangulated graphs can be used for all undirected graphs; an untriangulated graphis �rst triangulated (see Figure 7). Moreover, it is possible to convert directed graphs to undirectedgraphs in a manner that preserves the probabilistic structure of the original graph [Spiegelhalter,et al., 1993]. This implies that the junction tree algorithm is indeed generic; it can be applied toany graphical model.The problem of calculating posterior probabilities on graphs is NP-hard; thus, a major issue inthe use of the inference algorithms is the identi�cation of cases in which they are e�cient. Chainstructures such as HMM's yield e�cient algorithms, and indeed the classical forward-backwardalgorithm for HMM's is a special, e�cient case of the junction tree algorithm [Heckerman, Jordan,and Smyth, 1996]. Decision tree structures such as the hierarchical mixture of experts yield e�-cient algorithms, and the recursive posterior probability calculation of [Jordan and Jacobs, 1994]described earlier is also a special case of the junction tree algorithm. All of the simpler mixturemodel calculations described earlier are therefore also special cases. Another interesting special1An interesting example is a Boltzmann machine on a triangulated graph. The potentials are products of exp(Jij)factors, where the product is taken over all (i; j) pairs in a particular clique. Given that the product across potentialsmust be the joint probability, this implies that the partition function (the denominator of Eq. 35) must be unity inthis case. 23
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 e�E
=T ; (35)where the temperature T provides a scale for the energy.An example of a directed probabilistic graph is the hidden Markov model (HMM). An HMMis de�ned by a set of state variables Hi, where i is generally a time or a space index, a set of outputvariables Oi, a probability transition matrix A = p(HijHi�1), and an emission matrix B = p(OijHi).The directed graph for an HMM is shown in Figure 6(a). As can be seen from considering theseparatory properties of the graph, the conditional independencies of the HMM are de�ned by the21



network to map from the input image to a set of 10 output values representing posterior probabilitiesfor the 10 classes. However, we know that the classi�cation of a digit should be independent of itsposition within the input image. One way of achieving such translation invariance is to make useof the technique of shared weights. This involves a network architecure having many hidden layersin which each unit takes inputs only from a small patch, called a receptive �eld, of units in theprevious layer. By a process of constraining neighboring units to have common weights, it can bearranged that the output of the network is insensitive to translations of the input image. A furtherbene�t of weight sharing is that the number of independent parameters is much smaller than thenumber of weights, which assists with the problem of model complexity. This approach is the basisfor the highly successful US postal code recognition system of [LeCun, et al., 1989]. An alternativeto shared weights is to enlargen the training set arti�cially by generating \virtual examples" basedon applying translations and other transformations to the original training set [Poggio and Vetter,1992].4 Graphical modelsNeural networks express relationships between variables by utilizing the representational languageof graph theory. Variables are associated with nodes in a graph and transformations of variablesare based on algorithms that propagate numerical messages along the links of the graph. More-over, the graphs are often accompanied by probabilistic interpretations of the variables and theirinterrelationships. As we have seen, such probabilistic interpretations allow a neural network to beunderstood as a form of probabilistic model, and reduce the problem of learning the weights of anetwork to a problem in statistics.Related graphical models have been studied throughout statistics, engineering and AI in recentyears. Hidden Markov models, Kalman �lters, and path analysis models are all examples of graph-ical probabilistic models that can be �tted to data and used to make inferences. The relationshipbetween these models and neural networks is rather strong; indeed it is often possible to reduceone kind of model to the other. In this section, we examine these relationships in some detail andprovide a broader characterization of neural networks as members of a general family of graphicalprobabilistic models.Many interesting relationships have been discovered between graphs and probability distribu-tions [Spiegelhalter, et al., 1993]; [Pearl, 1988]. These relationships derive from the use of graphsto represent conditional independencies among random variables. In an undirected graph, thereis a direct correspondence between conditional independence and graph separation|random vari-ables Xi and Xk are conditionally independent given Xj if nodes Xi and Xk are separated bynode Xj (we use the symbol \Xi" to represent both a random variable and a node in a graph).This statement remains true for sets of nodes (see Figure 5(a)). Directed graphs have a somewhatdi�erent semantics, due to the ability of directed graphs to represent \induced dependencies." Aninduced dependency is a situation in which two nodes which are marginally independent becomeconditionally dependent given the value of a third node (see Figure 5(b)). Suppose, for example,that Xi and Xk represent independent coin tosses, and Xj represents the sum of Xi and Xk. ThenXi and Xk are marginally independent but are conditionally dependent given Xj . The semantics of20



to linearize p(tjx;w) about wMP so that the integration can be performed analytically [MacKay,1992]. Alternatively, sophisticated Monte Carlo methods can be employed to evaluate the integralsnumerically [Neal, 1994]. An important aspect of the Bayesian approach is that there is no needto keep data aside in a validation set as is required when using maximum likelihood. In practi-cal applications for which the quantity of available data are limited, it is found that a Bayesiantreatment generally outperforms other approaches.3.7 Pre-processing, invariances and prior knowledgeWe have already seen that neural networks can approximate essentially arbitrary nonlinear func-tional mappings between sets of variables. In principle we could therefore use a single networkto transform the raw input variables into the required �nal outputs. However, in practice for allbut the simplest problems the results of such an approach can be improved upon considerably byincorporating various forms of pre-processing, for reasons which we shall outline below.One of the simplest and most common forms of pre-processing consists of a simple normaliza-tion of the input, and possibly also target, variables. This may take the form of a linear rescalingof each input variable independently to give it zero mean and unit variance over the training set.For some applications the original input variables may span widely di�erent ranges. Although alinear rescaling of the inputs is equivalent to a di�erent choice of �rst-layer weights, in practicethe optimization algorithm may have considerable di�culty in �nding a satisfactory solution whentypical input values are substantially di�erent. Similar rescaling can be applied to the output valuesin which case the inverse of the transformation needs to be applied to the network outputs whenthe network is presented with new inputs. Pre-processing is also used to encode data in a suitableform. For example, if we have categorical variables such as `red', `green' and `blue', these may beencoded using a 1-of-3 binary representation.Another widely used form of pre-processing involves reducing the dimensionality of the inputspace. Such transformations may result in loss of information in the data, but the overall e�ectcan be a signi�cant improvement in performance as a consequence of the curse of dimensionalitydiscussed in Section 3.5. The �nite data set is better able to specify the required mapping inthe lower-dimensional space. Dimensionality reduction may be accomplished by simply selectinga subset of the original variables, but more typically involves the construction of new variablesconsisting of linear or nonlinear combinations of the original variables called features. A standardtechnique for dimensionality reduction is principal component analysis [Anderson, 1984]. Suchmethods, however, make use only of the input data and ignore the target values, and can sometimesbe signi�cantly sub-optimal.Yet another form of pre-processing involves correcting de�ciencies in the original data. Acommon occurrence is that some of the input variables are missing for some of the data points.Correction of this problem in a principled way requires that the probability distribution p(x) ofinput data be modeled.One of the most important factors determining the performance of real-world applications ofneural networks is the use of prior knowledge which is information additional to that present in thedata. As an example, consider the problem of classifying hand-written digits discussed in Section 1.The most direct approach would be to collect a large training set of digits and to train a feedforward19



The likelihood function will typically be very small except for values of w for which the networkfunction is reasonably consistent with the data. Thus the posterior distribution p(wjD) will be muchmore sharply peaked than the prior distribution p(w) (and will typically have multiple maxima).The quantity we are interested in is the predicted distribution of target values t for a new inputvector x once we have observed the data set D. This can be expressed as an integration over theposterior distribution of weights of the form:p(tjx;D) = Z p(tjx;w)p(wjD) dw (30)where p(tjx;w) is the conditional probability model discussed in the introduction.If we suppose that the posterior distribution p(wjD) is sharply peaked around a single most-probable value wMP, then we can write Eq. 30 in the form:p(tjx;D) ' p(tjx;wMP) Z p(wjD) dw (31)= p(tjx;wMP) (32)and so predictions can be made by �xing the weights to their most probable values. We can �ndthe most probable weights by maximizing the posterior distribution, or equivalently by minimizingits negative logarithm. Using Eq. 29, we see that wMP is determined by minimizing a regularizedcost function of the form in Eq. 27 in which the negative log of the prior � ln p(w) represents theregularizer �
. For example, if the prior consists of a zero-mean Gaussian with variance ��1 thenwe obtain the weight-decay regularizer of Eq. 28.The posterior distribution will become sharply peaked when the size of the data set is largecompared to the number of parameters in the network. For data sets of limited size, however,the posterior distribution has a �nite width and this adds to the uncertainty in the predictionsfor t which can be expressed in terms of error bars. Bayesian error bars can be evaluated usinga local Gaussian approximation to the posterior distribution [MacKay, 1992]. The presence ofmultiple maxima in the posterior distribution also contributes to the uncertainties in predictions.The capability to assess these uncertainties can play a crucial role in practical applications.The Bayesian approach can also deal with more general problems in complexity control. Thiscan be done by considering the probabilities of a set of alternative models, given the data set:p(HijD) = p(DjHi)p(Hi)p(D) : (33)Here di�erent models can also be interpreted as di�erent values of regularization parameters as thesetoo control model complexity. If the models are given the same prior probabilities p(Hi) then theycan be ranked by considering the evidence p(DjHi) which itself can be evaluated by integration overthe model parameters w. We can simply select the model with the greatest probability. However, afull Bayesian treatment requires that we form a linear combination of the predictions of the modelsin which the weighting coe�cients are given by the model probabilities.In general, the required integrations, such as that in Eq. 30, are analytically intractable. Oneapproach is to approximate the posterior distribution by a Gaussian centered on wMP and then18



chosen to encourage smooth functions. The simplest example is called weight decay and consists ofthe sum of the squares of all the adaptive parameters in the model:
 =Xi w2i (28)Consider the e�ect of such a term on the MLP function (Eq. 9). If the weights take very smallvalues then the network outputs become approximately linear functions of the inputs (since thesigmoidal function is approximately linear for small values of its argument). The value of � inEq. 27 controls the e�ective complexity of the model, so that for large � the model is over-smoothed(corresponding to high bias) while for small � the model can over�t (corresponding to high variance).We can therefore consider a network with a relatively large number of hidden units and control thee�ective complexity by changing �. In practice, a suitable value for � can be found by seeking thevalue which gives the best performance on a validation set.The weight decay regularizer (Eq. 28) is simple to implement but su�ers from a number oflimitations. Regularizers used in practice may be more sophisticated and may contain multipleregularization coe�cients [Neal, 1994].Regularization methods can be justi�ed within a general theoretical framework known as struc-tural risk minimization [Vapnik, 1995]. Structural risk minimization provides a quantitative mea-sure of complexity known as the VC dimension. The theory shows that the VC dimension predictsthe di�erence between performance on a training set and performance on a test set; thus, the sumof log likelihood and (some function of) VC dimension provides a measure of generalization per-formance. This motivates regularization methods (Eq. 27) and provides some insight into possibleforms for the regularizer 
.3.6 Bayesian viewpointIn earlier sections we discussed network training in terms of the minimization of a cost functionderived from the principle of maximum a posteriori or maximum likelihood estimation. This ap-proach can be seen as a particular approximation to a more fundamental, and more powerful,framework based on Bayesian statistics. In the maximum likelihood approach the weights w areset to a speci�c value wML determined by minimization of a cost function. However, we know thatthere will typically be other minima of the cost function which might give equally good results.Also, weight values close to wML should give results which are not too di�erent from those of themaximum likelihood weights themselves.These e�ects are handled in a natural way in the Bayesian viewpoint, which describes theweights not in terms of a speci�c set of values, but in terms of a probability distribution overall possible values. As discussed earlier (cf. Eq. 13), once we observe the training data set Dwe can compute the corresponding posterior distribution using Bayes' theorem, based on a priordistribution function p(w) (which will typically be very broad), and a likelihood function p(Djw):p(wjD) = p(Djw)p(w)p(D) : (29)17



dashed curves). This data set has then been �tted by a mixture of M Gaussians by use of the EMalgorithm. We see that a model with 1 component (M = 1) gives a poor representation of the truedistribution from which the data was generated, and in particular is unable to capture the bimodalaspect. For M = 2 the model gives a good �t, as we expect since the data was itself generated froma two-component Gaussian mixture. However, increasing the number of components to M = 10gives a poorer �t, even though this model contains the simpler models as special cases.The problem is a very fundamental one and is associated with the fact that we are trying to inferan entire distribution function from a �nite number of data points, which is necessarily an ill-posedproblem. In regression for example there are in�nitely many functions which will give a perfect �tto the �nite number of data points. If the data are noisy, however, the best generalization will beobtained for a function which does not �t the data perfectly but which captures the underlyingfunction from which the data were generated. By increasing the 
exibility of the model we are ableto obtain ever better �ts to the training data, and this is re
ected in a steadily increasing value forthe likelihood function at its maximum. Our goal is to model the true underlying density functionfrom which the data was generated since this allows us to make the best predictions for new data.We see that the best approximation to this density occurs for an intermediate value of M .The same issue arises in connection with nonlinear regression and classi�cation problems. Forexample, the number M of hidden units in an MLP network controls the model complexity andmust be optimized to give the best generalization. In a practical application we can train a varietyof di�erent models having di�erent complexity, and compare their generalization performance usingan independent validation set, and then select the model with the best generalization. In fact theprocess of optimizing the complexity using a validation set can lead to some partial over�tting tothe validation data itself, and so the �nal performance of the selected model should be con�rmedusing a third independent data set called a test set.Some theoretical insight into the problem of over�tting can be obtained by decomposing theerror into the sum of bias and variance terms [Geman, et al., 1992]. A model which is too in
exibleis unable to represent the true structure in the underlying density function and this gives rise toa high bias. Conversely a model which is too 
exible becomes tuned to the speci�c details of theparticular data set and gives a high variance. The best generalization is obtained from the optimumtrade-o� of bias against variance.As we have already remarked, the problem of inferring an entire distribution function from a�nite data set is fundamentally ill-posed since there are in�nitely many solutions. The problemonly becomes well-posed when some additional constraint is imposed. This constraint might bethat we model the data using a network having a limited number of hidden units. Within the rangeof functions which this model can represent there is then a unique function which best �ts thedata. Implicitly we are assuming that the underlying density function from which the data weredrawn is relatively smooth. Instead of limiting the number of parameters in the model, we canencourage smoothness more directly using the technique of regularization. This involves adding apenalty term 
 to the original cost function J to give a total cost function eJ of the form:eJ = J + �
 (27)where � is called a regularization coe�cient. The network parameters are determined by minimizingeJ , and the value of � controls the degree of in
uence of the penalty term 
. In practice 
 is typically16
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The algorithms discussed so far are called batch since they involve using the whole data set foreach evaluation of the cost function or its gradient. There is also a stochastic or on-line version ofgradient descent in which, for each parameter update, the cost function gradient is evaluated usingjust one of the training vectors at a time (which are then cycled either in order or in a randomsequence). While this approach fails to make use of the power of sophisticated methods such asconjugate gradients, it can prove e�ective for very large data sets, particularly if there is signi�cantredundancy in the data.3.4 Hessian matrices, error bars and pruningAfter a set of weights have been found for a neural network using an optimization procedure, it isoften useful to examine second-order properties of the �tted network as captured in the Hessianmatrix H = @2J=@w@wT . E�cient algorithms have been developed to compute the Hessian matrixin time O(W 2) [Bishop, 1995]. As in the case of the calculation of the gradient by backpropagation,these algorithms are based on recursive message passing in the network.One important use of the Hessian matrix lies in the calculation of error bars on the outputsof a network. If we approximate the cost function locally as a quadratic function of the weights(an approximation which is equivalent to making a Gaussian approximation for the log likelihood),then the estimated variance of the ith output yi can be shown to be:�̂2yi = �@yi@w�T H�1�@yi@w� ; (26)where the gradient vector @yi=@w can be calculated via backpropagation.The Hessian matrix is also useful in pruning algorithms. A pruning algorithm deletes weightsfrom a �tted network to yield a simpler network that may outperform a more complex, over�ttednetwork (see below), and may be easier to interpret. In this setting, the Hessian is used to approx-imate the increase in the cost function due to the deletion of a weight. A variety of such pruningalgorithms are available [cf. Bishop, 1995].3.5 Complexity controlIn previous sections we have introduced a variety of models for representing probability distri-butions, we have shown how the parameters of the models can be optimized by maximizing thelikelihood function, and we have outlined a number of powerful algorithms for performing thisminimization. Before we can apply this framework in practice there is one more issue we need toaddress, which is that of model complexity. Consider the case of a mixture model given by Eq. 2.The number of input variables will be determined by the particular problem at hand. However,the number M of component densities has yet to be speci�ed. Clearly if M is too small the modelwill be insu�ciently 
exible and we will obtain a poor representation of the true density. Whatis not so obvious is that if M is too large we can also obtain poor results. This e�ect is knownas over�tting and arises because we have a data set of �nite size. It is illustrated using a simpleexample of mixture density estimation in Figure 4. Here a set of 100 data points in one dimensionhas been generated from a distribution consisting of a mixture of two Gaussians (shown by the14



ith component Gaussian. A learning algorithm based on this gradient will move the ith mean �itoward the data point xn, with the e�ective step size proportional to hn;i.The gradient for a mixture model will always take the form of a weighted sum of the gradientsassociated with the component models, where the weights are the posterior probabilities associatedwith each of the components. The key computational issue is whether these posterior weights canbe computed e�ciently. For Gaussian mixture models, the calculation (Eq. 24) is clearly e�cient.For decision trees there are a set of posterior weights associated with each of the nodes in the tree,and a recursion is available that computes the posterior probabilities in an upward sweep [Jordanand Jacobs, 1994]. Mixture models in the form of a chain are known as hidden Markov models,and the calculation of the relevant posterior probabilities is performed via an e�cient algorithmknown as the Baum-Welch algorithm.For general layered network structures, a generic algorithm known as \backpropagation" isavailable to calculate gradient vectors [Rumelhart, et al., 1986]. Backpropagation is essentially thechain rule of calculus realized as a graphical algorithm. As applied to layered networks it providesa simple and e�cient method that calculates a gradient in O(W ) time per training pattern, whereW is the number of weights.3.3 Optimization algorithmsBy introducing the principle of maximum likelihood in Section 1, we have expressed the problem oflearning in neural networks in terms of the minimization of a cost function J(w) which depends ona vector w of adaptive parameters. An important aspect of this problem is that the gradient vectorrwJ can be evaluated e�ciently (for example by backpropagation). Gradient-based minimizationis a standard problem in unconstrained nonlinear optimization, for which many powerful techniqueshave been developed over the years. Such algorithms generally start by making an initial guess forthe parameter vector w and then iteratively updating the vector in a sequence of steps:w(�+1) = w(�) +�w(�) (25)where � denotes the step number. The initial parameter vector w(0) is often chosen at random, andthe �nal vector represents a minimum of the cost function at which the gradient vanishes. Due tothe nonlinear nature of neural network models, the cost function is generally a highly complicatedfunction of the parameters, and may possess many such minima. Di�erent algorithms di�er in howthe update �w(�) is computed.The simplest such algorithm is called gradient descent and involves a parameter update whichis proportional to the negative of the cost function gradient � = ��rE where � is a �xed constantcalled the learning rate. It should be stressed that gradient descent is a particularly ine�cientoptimization algorithm. Various modi�cations have been proposed, such as the inclusion of amomentum term, to try to improve its performance. In fact much more powerful algorithms arereadily available, as described in standard textbooks such as [Fletcher, 1987]. Two of the bestknown are called conjugate gradients and quasi-Newton (or variable metric) methods. For theparticular case of a sum-of-squares cost function, the Levenberg{Marquardt algorithm can also bevery e�ective. Software implementations of these algorithms are widely available.13



3.2 Gradients of the cost functionOnce we have de�ned a probabilistic model, obtained a cost function and found an e�cient pro-cedure for calculating the gradient of the cost function, the problem can be handed o� to anoptimization routine. Before discussing optimization procedures, however, it is useful to exam-ine the form that the gradient takes for the examples that we have discussed in the previous twosections.The ith output unit in a layered network is endowed with a rule for combining the activationsof units in earlier layers, yielding a quantity that we denote by zi, and a function that converts ziinto the output yi. For regression problems, we assume linear output units such that yi = zi. Forbinary classi�cation problems, our earlier discussion showed that a natural output function is thelogistic: yi = 1=(1+ e�zi). For multi-way classi�cation, it is possible to generalize the derivation ofthe logistic function to obtain an analogous representation for the multi-way posterior probabilitiesknown as the softmax function [cf. Bishop, 1995]:yi = eziPk ezk ; (21)where yi represents the posterior probability of category i.If we now consider the gradient of J(w) with respect to zi, it turns out that we obtain a singlecanonical expression of the following form:@J@w =Xi (ti � yi)@zi@w : (22)As discussed by [Rumelhart, et al. 1995], this form for the gradient is predicted from the theoryof Generalized Linear Models [McCullagh and Nelder, 1983], where it is shown that the linear,logistic, and softmax functions are (inverse) canonical links for the Gaussian, Bernoulli, and multi-nomial distributions, respectively. Canonical links can be found for all of the distributions in theexponential family, thus providing a solid statistical foundation for handling a wide variety of dataformats at the output layer of a network, including counts, time intervals and rates.The gradient of the cost function for mixture models has an interesting interpretation. Takingthe partial derivative of J(w) in Eq. 20 with respect to �i, we �nd:@J@�i =Xn hn;i�i(xn � �i); (23)where hn;i is de�ned as follows:hn;i = �ij�ij�1=2 expf�12(xn � �i)T��1i (xn � �i)gPk �kj�k j�1=2 expf�12(xn � �k)T��1k (xn � �k)g : (24)When summed over i, the quantity hn;i sums to one, and is often viewed as the \responsibility" or\credit" assigned to the ith component for the nth data point. Indeed, interpreting Eq. 24 usingBayes rule shows that hn;i is the posterior probability that the nth data point is generated by the12



3.1 Likelihood-based cost functionsRegression, classi�cation and density estimation make di�erent probabilistic assumptions about theform of the data and therefore require di�erent cost functions.Eq. 3 de�nes a probabilistic model for regression. The model is a conditional density for thetargets t in which the targets are distributed as Gaussian random variables (assuming Gaussianerrors �) with mean values f(x). We now write the conditional mean as f(x;w) to make explicitthe dependence on the parameters w. Given the training set D = fxn; tngNn=1, and given ourassumption that the targets tn are sampled independently (given the inputs xn and the parametersw), we obtain: J(w) = 12Xn ktn � f(xn;w)k2; (17)where we have assumed an identity covariance matrix and dropped those terms that do not dependon the parameters. This cost function is the standard least squares cost function which is tradi-tionally used in neural network training for real-valued targets. Minimization of this cost functionis typically achieved via some form of gradient optimization, as we discuss in the following section.Classi�cation problems di�er from regression problems in the use of discrete-valued targets, andthe likelihood accordingly takes a di�erent form. For binary classi�cation the Bernoulli probabilitymodel p(tjx;w) = yt(1� y)1�t is natural, where we use y to denote the probability p(t = 1jx;w).This model yields the following log likelihood:J(w) = �Xn [tn ln yn + (1� tn) ln(1� yn)] ; (18)which is known as the cross entropy function. It can be minimized using the same generic opti-mization procedures as are used for least squares.For multi-way classi�cation problems in which there are C categories, where C > 2, themultinomial distribution is natural. De�ne tn such that its elements tn;i are one or zero accordingto whether the nth data point belongs to the ith category, and de�ne yn;i to be the network'sestimate of the posterior probability of category i for data point n; i.e., yn;i � p(tn;i = 1jxn;w).Given these de�nitions we obtain the following cost function:J(w) = �Xn Xi tn;i ln yn;i; (19)which again has the form of a cross entropy.We now turn to density estimation as exempli�ed by Gaussian mixture modeling. The prob-abilistic model in this case is that given in Eq. 2. Assuming Gaussian component densities witharbitrary covariance matrices, we obtain the following cost function:J(w) = �Xn lnXi �i 1j�ij1=2 exp��12(xn � �i)T��1i (xn � �i)� ; (20)where the parameters w are the collection of mean vectors �i, the covariance matrices �i, andthe mixing proportions �i. A similar cost function arises for the generalized mixture models (cf.Eq. 12). 11



3 Learning from DataThe previous section has provided a selection of models to choose from; we now face the problemof matching these models to data. In principle the problem is straightforward: given a family ofmodels of interest we attempt to �nd out how probable each of these models is in the light of thedata. We can then select the most probable model (a selection rule known as maximum a posteriorior MAP estimation), or we can select some highly probable subset of models, weighted by theirprobability (an approach that we discuss below in the section on Bayesian methods). In practicethere are a number of problems to solve, beginning with the speci�cation of the family of modelsof interest. In the simplest case, in which the family can be described as a �xed structure withvarying parameters (e.g., the class of feedforward MLP's with a �xed number of hidden units), thelearning problem is essentially one of parameter estimation. If on the other hand the family is noteasily viewed as a �xed parametric family (e.g., feedforward MLP's with variable number of hiddenunits), then we must solve the model selection problem.In this section we discuss the parameter estimation problem. The goal will be to �nd MAPestimates of the parameters by maximizing the probability of the parameters given the data D. Wecompute this probability using Bayes rule:p(wjD) = p(Djw)p(w)p(D) ; (13)where we see that to calculate MAP estimates we must maximize the expression in the numerator(the denominator does not depend on w). Equivalently we can minimize the negative logarithm ofthe numerator. We thus de�ne the following cost function J(w):J(w) = � ln p(Djw)� ln p(w); (14)which we wish to minimize with respect to the parameters w. The �rst term in this cost functionis a (negative) log likelihood. If we assume that the elements in the training set D are conditionallyindependent of each other given the parameters, then the likelihood factorizes into a product form.For density estimation we have: p(Djw) = NYn=1 p(xnjw) (15)and for classi�cation and regression we have:p(Djw) = NYn=1 p(tnjxn;w): (16)In both cases this yields a log likelihood which is the sum of the log probabilities for each individualdata point. For the remainder of this section we will assume this additive form; moreover, we willassume that the log prior probability of the parameters is uniform across the parameters anddrop the second term. Thus we focus on maximum likelihood (ML) estimation, where we chooseparameter values wML that maximize ln p(Djw).10



reject noisy input variables that carry little information about the output. Overlapping basisfunctions are often viewed as yielding lower variance predictions and as being more robust.2.5 General mixture modelsThe use of mixture models is not restricted to density estimation; rather, the mixture approach canbe used quite generally to build complex models out of simple parts. To illustrate, let us considerusing mixture models to model a conditional density in the context of a regression or classi�cationproblem. A mixture model in this setting is referred to as a \mixtures of experts" model [Jacobs,et al., 1991].Suppose that we have at our disposal an elemental conditional model p(tjx;w). Consider asituation in which the conditional mean or discriminant exhibits variation on a local scale that isa good match to our elemental model, but the variation di�ers in di�erent regions of the inputspace. We could use a more complex network to try to capture this global variation; alternativelywe might wish to combine local variants of our elemental models in some manner. This can beachieved by de�ning the following probabilistic mixture:p(tjx;w) = MXi=1 p(ijx;v)p(tjx; i;wi): (11)Comparing this mixture to the unconditional mixture de�ned earlier (Eq. 2), we see that boththe mixing proportions and the component densities are now conditional densities dependent onthe input vector x. The former dependence is particularly important|we now view the mixingproportion p(ijx;v) as providing a probabilistic device for choosing di�erent elemental models(\experts") in di�erent regions of the input space. A learning algorithm that chooses values for theparameters v as well as the values for the parameters wi can be viewed as attempting to �nd botha good partition of the input space and a good �t to the local models within that partition.This approach can be extended recursively by considering mixtures of models where eachmodel may itself be a mixture model [Jordan and Jacobs, 1994]. Such a recursion can be viewed asproviding a probabilistic interpretation for the decision trees discussed in the previous section. Weview the decisions in the decision tree as forming a recursive set of probabilistic selections amonga set of models. The total probability of a target t given an input x is the sum across all pathsdown the tree: p(tjx;w) = MXi=1 p(ijx;u) MXj=1 p(jjx; i;vi) � � �p(tjx; i; j; : : : ;wij���); (12)where i and j are the decisions made at the �rst level and second level of the tree, respectively,and p(tjx; i; j; : : : ;wij:::) is the elemental model at the leaf of the tree de�ned by the sequence ofdecisions. This probabilistic model is a conditional hierarchical mixture. Finding parameter valuesu, vi, etc. to �t this model to data can be viewed as �nding a nested set of partitions of the inputspace and �tting a set of local models within the partition.The mixture model approach can be viewed as a special case of a general methodology knownas learning by committee. Bishop [1995] provides a discussion of committees; we will also meetthem in the section on Bayesian methods later in the chapter.9



The second common network model is obtained by choosing the basis functions �j(x) in Eq. 8to be functions of the radial variable x��j where �j is the center of the jth basis function, whichgives rise to the radial basis function (RBF) network model. The most common example usesGaussians of the form: �j(x) = exp��12(x� �j)T��1j (x� �j)� : (10)Here both the mean vector �j and the covariance matrix �j are considered to be adaptive param-eters. The curse of dimensionality is alleviated because the basis functions can be positioned andoriented in input space such as to overlay the regions of high data density and hence to capturethe nonlinear correlations between input variables. Indeed, a common approach to training anRBF network is to use a two-stage procedure [Bishop, 1995]. In the �rst stage the basis functionparameters are determined using the input data alone, which corresponds to a density estimationproblem using a mixture model in which the component densities are given by the basis functions�j(x). In the second stage the basis function parameters are frozen and the second-layer weightswkj are found by standard least-squares optimization procedures.2.4 Decision treesMLP and RBF networks are often contrasted in terms of the support of the basis functions thatcompose them. MLP networks are often referred to as \global," given that linear-logistic basisfunctions are bounded away from zero over a signi�cant fraction of the input space. Accordingly, inan MLP, each input vector generally gives rise to a distributed pattern over the hidden units. RBFnetworks, on the other hand, are referred to as \local," due to the fact that their Gaussian basisfunctions typically have support over a local region of the input space. It is important to note,however, that local support does not necessarily mean non-overlapping support; indeed, there isnothing in the RBF model that prefers basis functions that have non-overlapping support. A thirdclass of model that does focus on basis functions with non-overlapping support is the decision treemodel [Breiman, et al., 1984]. A decision tree is a regression or classi�cation model that can beviewed as asking a sequence of questions about the input vector. Each question is implemented asa linear discriminant, and a sequence of questions can be viewed as a recursive partitioning of theinput space. All inputs that arrive at a particular leaf of the tree de�ne a polyhedral region in theinput space. The collection of such regions can be viewed as a set of basis functions. Associatedwith each basis function is an output value which (ideally) is close to the average value of theconditional mean (for regression) or discriminant function (for classi�cation; a majority vote is alsoused). Thus the decision tree output can be written as a weighted sum of basis functions in thesame manner as a layered network.As this discussion suggests, decision trees and MLP/RBF neural networks are best viewed asbeing di�erent points along the continuum of models having overlapping or non-overlapping basisfunctions. Indeed, as we show in the following section, decision trees can be treated probabilisticallyas mixture models, and in the mixture approach the sharp discriminant function boundaries ofclassical decision trees become smoothed, yielding partially-overlapping basis functions.There are tradeo�s associated with the continuum of degree-of-overlap|in particular, non-overlapping basis functions are generally viewed as being easier to interpret, and better able to8
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Figure 3: An example of a feed-forward network having two layers of adaptive weights. The biasparameters in the �rst layer are shown as weights from an extra input having a �xed value of x0 = 1.Similarly, the bias parameters in the second layer are shown as weights from an extra hidden unit,with activation again �xed at z0 = 1.the two most common examples. The �rst of these is called the multilayer perceptron (MLP) andis obtained by choosing the basis functions to be given by linear-logistic functions (Eq. 6). Thisleads to a multivariate nonlinear function that can be expressed in the form:yk(x) = MXj=1wkjg dXi=1wjixi + wj0!+ wk0: (9)Here wj0 and wk0 are bias parameters, and the basis functions are called hidden units. The functiong(�) is the logistic sigmoid function of Eq. 6. This can also be represented as a network diagramas in Figure 3. Such a model is able to take account of the intrinsic dimensionality of the databecause the �rst-layer weights wji can adapt and hence orient the surfaces along which the basisfunction response is constant. It has been demonstrated that models of this form can approximateto arbitrary accuracy any continuous function, de�ned on a compact domain, provided the numberM of hidden units is su�ciently large. The MLP model can be extended by considering severalsuccessive layers of weights. Note that the use of nonlinear activation functions is crucial, since ifg(�) in Eq. 9 were replaced by the identity, the network would reduce to several successive lineartransformations which would itself be linear. 7



characterized by the linear-logistic form. Nonetheless it is still useful to retain the logistic functionand focus on nonlinear representations for the function z. This is the approach taken within theneural network �eld.To summarize, we have identi�ed two functions that are important for regression and clas-si�cation, respectively: the conditional mean and the discriminant function. These are the twofunctions that are of concern for simple linear models and, as we now discuss, for more complexnonlinear models as well.2.3 Nonlinear regression and nonlinear classi�cationThe linear regression and linear discriminant functions introduced in the previous section have themerit of simplicity, but are severely restricted in their representational capabilities. A convenientway to see this is to consider the geometrical interpretation of these models. When viewed in thed-dimensional x-space, the linear regression function wTx+ w0 is constant on hyper-planes whichare orthogonal to the vector w. For many practical applications we need to consider much moregeneral classes of function. We therefore seek representations for nonlinear mappings which canapproximate any given mapping to arbitrary accuracy. One way to achieve this is to transform theoriginal x using a set ofM nonlinear functions �j(x) where j = 1; : : : ;M , and then to form a linearcombination of these functions, so that:yk(x) =Xj wkj�j(x): (8)For a su�ciently large value of M , and for a suitable choice of the �j(x), such a model has thedesired `universal approximation' properties. A familiar example, for the case of 1-dimensionalinput spaces, is the simple polynomial, for which the �j(x) are simply successive powers of x andthe w's are the polynomial coe�cients. Models of the form in Eq. 8 have the property that theycan be expressed as network diagrams in which there is a single layer of adaptive weights.There are a variety of families of functions in one dimension that can approximate any con-tinuous function to arbitrary accuracy. There is, however, an important issue which must be ad-dressed, called the curse of dimensionality. If, for example, we consider an M th-order polynomialthen the number of independent coe�cients grows as dM [Bishop, 1995]. For a typical medium-scale application with, say, 30 inputs a fourth-order polynomial (which is still quite restricted inits representational capability) would have over 46,000 adjustable parameters. As we shall see inSection 3.3 in order to achieve good generalization it is important to have more data points thanadaptive parameters in the model, and this is a serious problem for methods that have a power lawor exponential growth in the number of parameters.A solution to the problem lies in the fact that, for most real-world data sets, there are strong(often nonlinear) correlations between the input variables such that the data does not uniformly�ll the input space but is e�ectively con�ned to a sub-space whose dimensionality is called theintrinsic dimensionality of the data. We can take advantage of this phenomenon by consideringagain a model of the form in Eq. 8 but in which the basis functions �j(x) are adaptive so that theythemselves contain weight parameters whose values can be adjusted in the light of the observeddata set. Di�erent models result from di�erent choices for the basis functions, and here we consider6
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Figure 2: This shows the Gaussian class-conditional densities p(xjC1) (dashed curves) for a two-class problem in one dimension, together with the corresponding posterior probability p(C1jx) (solidcurve) which takes the form of a logistic sigmoid. The vertical line shows the decision boundaryfor y = 0:5 which coincides with the point at which the two density curves cross.It is easily veri�ed that if the class conditional densities are multivariate Gaussians with identi-cal covariance matrices, then z is a linear function of x: z = wTx+w0. Moreover this representationis appropriate for any distribution in a broad class of densities known as the exponential family(which includes the Gaussian, the Poisson, the gamma, the binomial, and many other densities).All of the densities in this family can be put in the following form:g(x; �; �) = expf(�Tx� b(�))=a(�) + c(x; �)g; (7)where � is the location parameter, and � is the scale parameter. Substituting this general form inEq. 5, where � is allowed to vary between the classes and � is assumed to be constant betweenclasses, we see that z is in all cases a linear function. Thus the choice of a linear-logistic model israther robust.The geometry of the two-class problem is shown in Figure 2, which shows Gaussian class-conditional densities, and suggests the logistic form of the posterior probability.The function z in our analysis is an example of a discriminant function. In general a discrim-inant function is any function that can be used to decide on class membership (Duda and Hart,1972); our analysis has produced a particular form of discriminant function that is an intermediatestep in the calculation of a posterior probability. Note that if we set z = 0, from the form of thelogistic function we obtain a probability of 0.5, which shows that z = 0 is a decision boundarybetween the two classes.The discriminant function that we found for exponential family densities is linear under thegiven conditions on �. In more general situations, in which the class-conditional densities aremore complex than a single exponential family density, the posterior probability will not be well5



estimation and factor analysis [Anderson, 1984].2.2 Linear regression and linear discriminantsRegression models and classi�cation models both focus on the conditional density p(tjx). Theydi�er in that in regression the target vector t is a real-valued vector, whereas in classi�cation ttakes its values from a discrete set representing the class labels.The simplest probabilistic model for regression is one in which t is viewed as the sum of anunderlying deterministic function f(x) and a Gaussian random variable �:t = f(x) + �: (3)If � has zero mean, as is commonly assumed, f(x) then becomes the conditional mean E(tjx). Itis this function that is the focus of most regression modeling. Of course, the conditional meandescribes only the �rst moment of the conditional distribution, and, as we discuss in a later section,a good regression model will also generally report information about the second moment.In a linear regression model the conditional mean is a linear function of x: E(tjx) = Wx, fora �xed matrix W . Linear regression has a straightforward representation as a network diagram inwhich the jth input unit represents the jth component of the input vector xj , each output unit itakes the weighted sum of the input values, and the weight wij is placed on the link between thejth input unit and the ith output unit.The conditional mean is also an important function in classi�cation problems, but most of thefocus in classi�cation is on a di�erent function known as a discriminant function. To see how thisfunction arises and to relate it to the conditional mean, we consider a simple two-class problem inwhich the target is a simple binary scalar that we now denote by t. The conditional mean E(tjx)is equal to the probability that t equals one, and this latter probability can be expanded via Bayesrule: p(t = 1jx) = p(xjt = 1)p(t = 1)p(x) (4)The density p(tjx) in this equation is referred to as the posterior probability of the class given theinput, and the density p(xjt) is referred to as the the class-conditional density. Continuing thederivation, we expand the denominator and (with some foresight) introduce an exponential:p(t = 1jx) = p(xjt = 1)p(t = 1)p(xjt = 1)p(t = 1) + p(xjt = 0)p(t = 0)= 11 + expn� ln hp(xjt=1)p(xjt=0)i� ln hp(t=1)p(t=0)io (5)We see that the posterior probability can be written in the form of the logistic function:y = 11 + e�z ; (6)where z is a function of the likelihood ratio p(xjt = 1)=p(xjt = 0), and the prior ratio p(t = 1)=p(t =0). This is a useful representation of the posterior probability if z turns out to be simple.4
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µ1 µMFigure 1: A network representation of a Gaussian mixture distribution. The input pattern x isrepresented by numerical values associated with the input nodes in the lower level. Each link hasa weight �ij , which is the jth component of the mean vector for the ith Gaussian. The ith interme-diate node contains the covariance matrix �i and calculates the Gaussian conditional probabilityp(xji;�i;�i). These probabilities are weighted by the mixing proportions �i and the output nodecalculates the weighted sum p(x) =Pi �ip(xji;�i;�i).in turn provides us with the necessary information to estimate the \inverse" conditional densityp(xjt). The calculation of such inverses is important for applications in control and optimization.A general and 
exible approach to density estimation is to treat the density as being composedof a set of M simpler densities. This approach involves modeling the observed data as a samplefrom a mixture density: p(xjw) = MXi=1 �ip(xji;wi); (2)where the �i are constants known as mixing proportions, and the p(xji;wi) are the componentdensities, generally taken to be from a simple parametric family. A common choice of componentdensity is the multivariate Gaussian, in which case the parameterswi are the means and covariancematrices of each of the components. By varying the means and covariances to place and orientthe Gaussians appropriately, a wide variety of high-dimensional, multi-modal data can be modeled.This approach to density estimation is essentially a probabilistic form of clustering.Gaussian mixtures have a representation as a network diagram as shown in Figure 1. Theutility of such network representations will become clearer as we proceed; for now, it su�ces tonote that not only mixture models, but also a wide variety of other classical statistical models fordensity estimation are representable as simple networks with one or more layers of adaptive weights.These methods include principal component analysis, canonical correlation analysis, kernel density3



al., 1991]. The network input x consists of one in-focus and one de-focused image of a star andthe output t consists of a set of coe�cients that describe the phase distortion due to atmosphericturbulence. These output values are then used to make real-time adjustments of the multiple mirrorsegments to cancel the atmospheric distortion.Classi�cation and regression problems can also be viewed as special cases of density estimation.The most general and complete description of the data is given by the probability distributionfunction p(x; t) in the joint input-target space. However, the usual goal is to be able to make goodpredictions for the target variables when presented with new values of the inputs. In this case it isconvenient to decompose the joint distribution in the form:p(x; t) = p(tjx)p(x) (1)and to consider only the conditional distribution p(tjx), in other words the distribution of t giventhe value of x. Thus classi�cation and regression involve the estimation of conditional densities, aproblem which has its own idiosyncracies.The organization of the chapter is as follows. In Section 2 we present examples of networkrepresentations of unconditional and conditional densities. In Section 3 we discuss the problem ofadjusting the parameters of these networks to �t them to data. This problem has a number ofpractical aspects, including the choice of optimization procedure and the method used to controlnetwork complexity. We then discuss a broader perspective on probabilistic network models inSection 4. The �nal section presents further information and pointers to the literature.2 RepresentationIn this section we describe a selection of neural network architectures that have been proposedas representations for unconditional and conditional densities. After a brief discussion of densityestimation, we discuss classi�cation and regression, beginning with simple models that illustratethe fundamental ideas and then progressing to more complex architectures. We focus here onrepresentational issues, postponing the problem of learning from data until the following section.2.1 Density estimationWe begin with a brief discussion of density estimation, utilizing the Gaussian mixture model as anillustrative model. We return to more complex density estimation techniques later in the chapter.Although density estimation can be the main goal of a learning system, as in the diagnosisexample mentioned in the introduction, density estimation models arise more often as componentsof the solution to a more general classi�cation or regression problem. To return to Eq. 1, notethat the joint density is composed of p(tjx), to be handled by classi�cation or regression models,and p(x), the (unconditional) input density. There are several reasons for wanting to form anexplicit model of the input density. First, real-life data sets often have missing components in theinput vector. Having a model of the density allows the missing components to be \�lled in" in anintelligent way. This can be useful both for training and for prediction [cf. Bishop, 1995]. Second,as we see in Eq. 1, a model of p(x) makes possible an estimate of the joint probability p(x; t). Thus2



1 IntroductionWithin the broad scope of the study of arti�cial intelligence, research in neural networks is charac-terized by a particular focus on pattern recognition and pattern generation. Many neural networkmethods can be viewed as generalizations of classical pattern-oriented techniques in statistics andthe engineering areas of signal processing, system identi�cation and control theory. As in these par-ent disciplines, the notion of \pattern" in neural network research is essentially probabilistic andnumerical. Neural network methods have had their greatest impact in problems where statisticalissues dominate and where data are easily obtained.A neural network is �rst and foremost a graph, with patterns represented in terms of numericalvalues attached to the nodes of the graph, and transformations between patterns achieved viasimple message-passing algorithms. Many neural network architectures, however, are also statisticalprocessors, characterized by making particular probabilistic assumptions about data. As we will see,this conjunction of graphical algorithms and probability theory is not unique to neural networks,but characterizes a wider family of probabilistic systems in the form of chains, trees, and networksthat are currently being studied throughout AI [Spiegelhalter, et al., 1993].Neural networks have found a wide range of applications, the majority of which are associatedwith problems in pattern recognition and control theory. In this context, neural networks canbest be viewed as a class of algorithms for statistical modeling and prediction. Based on a sourceof training data, the aim is to produce a statistical model of the process from which the data aregenerated, so as to allow the best predictions to be made for new data. We shall �nd it convenient todistinguish three broad types of statistical modeling problem, which we shall call density estimation,classi�cation and regression.For density estimation problems (also referred to as unsupervised learning problems), the goalis to model the unconditional distribution of data described by some vector x. A practical exampleof the application of density estimation involves the interpretation of X-ray images (mammograms)used for breast cancer screening [Tarassenko, 1995]. In this case the training vectors x form a sampletaken from normal (non-cancerous) images, and a network model is used to build a representationof the density p(x). When a new input vector x0 is presented to the system, a high value for p(x0)indicates a normal image while a low value indicates a novel input which might be characteristic ofan abnormality. This is used to label regions of images which are unusual, for further examinationby an experienced clinician.For classi�cation and regression problems (often referred to as supervised learning problems),we need to distinguish between input variables, which we again denote by x, and target variableswhich we denote by the vector t. Classi�cation problems require that each input vector x beassigned to one of C classes C1; : : : ; CC, in which case the target variables represent class labels. Asan example, consider the problem of recognizing handwritten digits [LeCun, et al., 1989]. In thiscase the input vector would be some (pre-processed) image of the digit, and the network wouldhave ten outputs, one for each digit, which can be used to assign input vectors to the appropriateclass (as discussed in Section 2).Regression problems involve estimating the values of continuous variables. For example, neuralnetworks have been used as part of the control system for adaptive optics telescopes [Sandler, et1
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