
doi: 10.1098/rsta.2012.0222
, 371 2013 Phil. Trans. R. Soc. A

Christopher M. Bishop

Model-based machine learning

References
22.full.html#ref-list-1
http://rsta.royalsocietypublishing.org/content/371/1984/201202

 This article cites 11 articles

This article is free to access

Subject collections

 (2 articles)robotics �
 (5 articles)pattern recognition �
 (7 articles)artificial intelligence �

collections
Articles on similar topics can be found in the following

Email alerting service herein the box at the top right-hand corner of the article or click
Receive free email alerts when new articles cite this article - sign up

 http://rsta.royalsocietypublishing.org/subscriptions
 go to: Phil. Trans. R. Soc. ATo subscribe to

 on January 1, 2013rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/content/371/1984/20120222.full.html#ref-list-1
http://rsta.royalsocietypublishing.org/cgi/collection/artificial_intelligence
http://rsta.royalsocietypublishing.org/cgi/collection/pattern_recognition
http://rsta.royalsocietypublishing.org/cgi/collection/robotics
http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;371/1984/20120222&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/371/1984/20120222.full.pdf?keytype=ref&ijkey=tW3kh8KYGsABxwt
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

rsta.royalsocietypublishing.org

Research
Cite this article: Bishop CM. 2013
Model-based machine learning. Phil Trans R
Soc A 371: 20120222.
http://dx.doi.org/10.1098/rsta.2012.0222

One contribution of 17 to a Discussion Meeting
Issue ‘Signal processing and inference for the
physical sciences’.

Subject Areas:
artificial intelligence, pattern recognition,
robotics

Keywords:
Bayesian inference, graphical probabilistic
programming, Infer. NET

Author for correspondence:
Christopher M. Bishop
e-mail: christopher.bishop@microsoft.com

Model-based machine
learning
Christopher M. Bishop

Microsoft Research, Cambridge CB3 0FB, UK

Several decades of research in the field of machine
learning have resulted in a multitude of different
algorithms for solving a broad range of problems.
To tackle a new application, a researcher typically
tries to map their problem onto one of these
existing methods, often influenced by their familiarity
with specific algorithms and by the availability
of corresponding software implementations. In this
study, we describe an alternative methodology for
applying machine learning, in which a bespoke
solution is formulated for each new application.
The solution is expressed through a compact modelling
language, and the corresponding custom machine
learning code is then generated automatically. This
model-based approach offers several major advantages,
including the opportunity to create highly tailored
models for specific scenarios, as well as rapid
prototyping and comparison of a range of alternative
models. Furthermore, newcomers to the field of
machine learning do not have to learn about the
huge range of traditional methods, but instead can
focus their attention on understanding a single
modelling environment. In this study, we show
how probabilistic graphical models, coupled with
efficient inference algorithms, provide a very flexible
foundation for model-based machine learning, and we
outline a large-scale commercial application of this
framework involving tens of millions of users. We
also describe the concept of probabilistic programming
as a powerful software environment for model-
based machine learning, and we discuss a specific
probabilistic programming language called Infer.NET,
which has been widely used in practical applications.

1. Introduction
The origins of the field of machine learning go back
at least to the middle of the last century. However, it

c© 2012 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/3.0/, which permits unrestricted use, provided the original author and
source are credited.

 on January 1, 2013rsta.royalsocietypublishing.orgDownloaded from

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2012.0222&domain=pdf&date_stamp=2012-12-31
mailto:christopher.bishop@microsoft.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://rsta.royalsocietypublishing.org/

2

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120222

..

x
0

x
1

x
D

z
M

y
1

y
K

w(1)

w(2)

z
1

z
0

hidden units

inputs outputs

10

MD

w(2)
KM

Figure 1. A neural network with two layers of adjustable parameters, in which each parameter corresponds to one of the links
in the network. (Online version in colour.)

was only in the early 1990s that the field began to have widespread practical impact. Over
the last decade in particular, there has been a rapid increase in the number of successful
applications, ranging from web search to autonomous vehicles, and from medical imaging to
speech recognition. This has been driven by the increased availability of inexpensive computers,
the development of improved machine learning algorithms, greater interest in the area from
both the research community and the commercial sector, and most notably by the ‘data deluge’
characterized by an exponentially increasing quantity of data being gathered and stored on the
world’s computers.

During this time, large numbers of machine learning techniques have been developed, with
names such as logistic regression, neural networks, decision trees, support vector machines,
Kalman filters and many others. Contributions to this multi-disciplinary effort have come from
the fields of statistics, artificial intelligence, optimization, signal processing, speech, vision and
control theory, as well as from the machine learning community itself. In the traditional approach
to solving a new machine learning problem, the practitioner must select a suitable algorithm or
technique from the set with which they are familiar, and then either make use of existing software,
or write their own implementation. If the technique requires modification to meet the particular
requirements of their specific application, then they must be sufficiently familiar with the details
of the software to make the required changes.

An example of a traditional machine learning technique is the two-layer neural network [1],
illustrated diagrammatically in figure 1. The neural network can be viewed as a flexible nonlinear
parametric function from a set of inputs {xi} to a set of outputs {yk}. First, linear combinations of
the inputs are formed, and these are transformed using a nonlinear function h(·) so that

zj = h

(∑
i

w(1)

ji xi

)
, (1.1)

where h(·) is often chosen to be the ‘tanh’ function. These intermediate variables are then linearly
combined to produce the outputs

yk =
∑

j

w(2)

kj zj. (1.2)

 on January 1, 2013rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

3

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120222

..

The variables {w(1)

ji } and {w(2)

kj } are the adjustable parameters of the network, and their values are
set by minimizing an error function defined with respect to a set of training examples, each of
which consists of a set of values for the input variables together with the corresponding desired
values for the output variables. In a typical application of a neural network, the parameters
are tuned using a training dataset, with the number of hidden units optimized using separate
validation data. The network parameters are then fixed, and the neural network is then applied
to new data in which the network makes predictions for the outputs given new values for the
input variables.

A recent example of a very successful application of traditional machine learning is the skeletal
tracking system in Kinect [2], which uses the signals from a depth video camera to perform real-
time tracking of the full human skeleton on low-cost hardware. It is based on a technique known
as random forests of decision trees, and the training data consists of one million depth images
of human body poses, each of which is labelled with body parts (right hand, left knee, etc.).
Again, this example follows a typical workflow for traditional machine learning applications.
The parameters of the system, in this case, the selected features and thresholds at the nodes of
the decision trees, as well as the depths of the trees themselves, are determined in the laboratory
during the training phase. Once the performance of the system is satisfactory, the parameters are
then fixed, and identical copies of the trained system are provided to its millions of users.

While the traditional approach to machine learning has resulted in numerous successful
applications, and will undoubtedly continue to be an important paradigm for many years to
come, it suffers from some notable limitations. Foremost of these is the difficulty of adapting
a standard algorithm to match the particular requirements of a specific application. While
some problems can be tackled using off-the-shelf machine learning methods, others will require
appropriate modifications, which in turn requires an understanding both of the underlying
algorithms and of the software implementation. Moreover, there are many applications for which
it is difficult to cast a solution in the form of a standard machine learning algorithm. The Bayesian
ranking problem, discussed in §6, in which the set of variables and their connectivity grows
through time in a way that cannot be predicted in advance, is a good example.

Furthermore, the popularity and importance of machine learning means that it has moved
beyond the domain of the machine learning community to the point where many researchers
whose expertise lies in other fields, such as the physical and biological sciences, statistics,
medicine, finance and many others, are interested in solving practical problems using machine
learning techniques. The variety of algorithms, as well as the complex nomenclature, can make
the field challenging for newcomers. More broadly, the ‘data revolution’ is creating many new
opportunities for application developers to exploit the power of learning from data, few of whom
will have a background in machine learning.

With the explosion in the quantity of data in the world, and the opportunities afforded by cloud
computing whereby many datasets reside in data centres where they can be combined and where
there is access to substantial computing resources, there is a significant opportunity to broaden
the impact of machine learning. We therefore turn to an alternative paradigm for the creation
of machine learning solutions, in order to address these issues. After summarizing the goals of
model-based machine learning in §2, we show how these may be realized through the adoption
of a Bayesian viewpoint (§3) coupled with probabilistic graphical models (§4) and deterministic
approximate inference algorithms (§5). In §6, we consider a large-scale case study based on this
framework, and in §7, we explain how probabilistic programming languages provide a powerful
software environment for model-based machine learning, before drawing conclusions in §8.

2. Model-based machine learning
The central idea of the model-based approach to machine learning is to create a custom bespoke
model tailored specifically to each new application. In some cases, the model (together with an
associated inference algorithm) might correspond to a traditional machine learning technique,

 on January 1, 2013rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

4

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120222

..

while in many cases it will not. Typically, model-based machine learning will be implemented
using a model specification language in which the model can be defined using compact code,
from which the software implementing that model can be generated automatically.

The key goals of a model-based approach include the following

— The ability to create a very broad range of models, along with suitable inference or
learning algorithms, in which many traditional machine learning techniques appear as
special cases.

— Each specific model can be tuned to the individual requirements of the particular
application: for example, if the application requires a combination of clustering and
classification in the context of time-series data, it is not necessary to mash together
traditional algorithms for each of these elements (Gaussian mixtures, neural networks
and hidden Markov models (HMMs), for instance), but instead a single, integrated model
capturing the desired behaviour can be constructed.

— Segregation between the model and the inference algorithm: if changes are made to
the model, the corresponding modified inference software is created automatically.
Equally, advances in techniques for efficient inference are available to a broad range
of models.

— Transparency of functionality: the model is described by compact code within a
generic modelling language, and so the structure of the model is readily apparent.
Such modelling code can easily be shared and extended within a community of
model builders.

— Pedagogy: newcomers to the field of machine learning have only to learn a single
modelling environment in order to be able to access a wide range of modelling solutions.
Because many traditional methods will be subsumed as special cases of the model-based
environment, there is no need for newcomers to study these individually, or indeed to
learn the specific terminology associated with them.

A variety of different approaches could be envisaged for achieving the aims of model-based
machine learning. In this study, we focus on a powerful framework based on Bayesian inference
in probabilistic graphical models, and so we begin with a brief introduction to the Bayesian view
of machine learning.

3. Bayesian inference
In many traditional machine learning methods, the adaptive parameters of the model are assigned
point values that are determined by using an optimization algorithm to minimize a suitable cost
function. By contrast, in a Bayesian setting, unknown variables are described using probability
distributions, and the observation of data allows these distributions to be updated through
Bayes’ theorem. More generally, the Bayesian viewpoint involves the consistent quantification of
uncertainty using probabilities. For each new observation or data point, the current distribution
can be viewed as a prior distribution, from which Bayes’ theorem allows the corresponding
posterior distribution to be evaluated by incorporating the effect of the new data point. This
posterior distribution in turn becomes the prior for use with the next observation. Note that
this process is intrinsically sequential and is therefore well suited to online learning. Parameter
optimization, which is widely used in traditional machine learning, is replaced in the Bayesian
setting by inference in which the distributions over quantities of interest are evaluated, conditioned
on the observed data.

A powerful feature of the Bayesian framework is the ease with which hierarchical models
can be constructed. For example, we may wish to learn from data derived from a community of
people while also personalizing the results for each individual by adapting to their specific data.

 on January 1, 2013rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

5

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120222

..

This is readily achieved by using a model in which the individuals have their own parameter
values whose prior distributions are governed by hyper-parameters, which themselves are drawn
from a hyper-prior that is shared across the population.

Bayesian methods are at their most powerful when the supply of data is limited, and the
resulting uncertainty in model parameters is significant. In such settings, traditional methods
based on parameter optimization are prone to suffer from ‘over-fitting’, in which parameters are
tuned to noise on the data, leading to poor predictions.

For large datasets, the probability distributions in a Bayesian model can, in some cases,
become relatively narrow and the model can give results that are similar to those obtained using
traditional point-based methods. Care must be taken, however, to understand the meaning of
‘large’ in this context. Here, the size of the dataset does not refer to its computational size,
measured in bytes, but instead its statistical size in relation to the model being considered. For
example, in a problem where it is necessary to predict the value of a single output variable
y given the value of a single input value x, and where it is known that these two variables
have a linear relationship with the addition of a low level of Gaussian noise, then a relatively
modest number of data points (say 10–20) may be sufficient to give accurate predictions with
little residual uncertainty because, in the absence of noise, just two points would be sufficient to
determine the linear relationship. Such a dataset is computationally small but statistically large.
By contrast, a dataset consisting of a million images, each of several mega-pixels, containing
labelled objects (cars, bicycles, animals, etc.) will be computationally large. However, when used
for object recognition, such a dataset may be statistically small in that it may contain only a tiny
fraction of the possible combinations of object class, object size and orientation, object colour,
lighting, occlusion and so on.

Many of the new applications for machine learning arising from the data explosion are
characterized by datasets that are computationally large but statistically small. There is therefore
a need to develop methods for Bayesian inference that are computationally efficient and that
scale well to computationally large datasets. Before discussing such methods, we first introduce
a graphical framework that can be used to construct models.

4. Probabilistic graphical models
In a Bayesian setting, a ‘model’ consists of a specification of the joint distribution over all of the
random variables in the problem

p(x1, . . . , xK), (4.1)

where {x1, . . . , xK} includes any ‘parameters’ in the model as well as any latent (i.e. hidden)
variables, along with the variables whose values are to be observed or predicted. Working
with fully flexible joint distributions is, in general, intractable, and inevitably we must deal
with structured models. One very flexible framework for specifying such structure is given by
probabilistic graphical models [3,4]. In this study, we focus on a particular form of graphical model
based on directed acyclic graphs. These represent a pictorial way of expressing how the joint
distribution is factored into the product of distributions over smaller subsets of variables.

Consider a general distribution over three variables a, b and c. Using the product rule of
probability [1], this can be factorized, without loss of generality, in the form

p(a, b, c) = p(c|a, b)p(b|a)p(a). (4.2)

Here, the notation p(x|y) denotes a conditional probability in which the distribution of x depends
on the value of y. Note that we have not yet specified whether these variables are continuous or
discrete, nor have we specified the functional form of the various factors on the right-hand side
of (4.2), such as Gaussian, Bernoulli or gamma distributions. The decomposition is therefore very
general and applies to a whole family of models. We now represent the right-hand side of (4.2) in
terms of a simple graphical model as shown in figure 2. To construct this graph, we first introduce
a node for each of the random variables a, b and c, and associate each node with the corresponding

 on January 1, 2013rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

6

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120222

..

a

b

c

Figure 2. A directed graphical model representing the joint probability distribution over three variables a, b and c,
corresponding to the decomposition on the right-hand side of (4.2). (Online version in colour.)

x1

x2

x4 x5

x3

x6 x7

Figure 3. A directed acyclic graph over seven variables. This graph expresses a decomposition of the joint distribution given
by (4.3). (Online version in colour.)

conditional distribution on the right-hand side of (4.2). Then, for each conditional distribution, we
add directed links (arrows) from whichever other nodes correspond to the variables on which that
distribution is conditioned. Thus, for the factor p(c|a, b), there will be links from nodes a and b to
node c, for the factor p(b|a), there is a single link from node a to node b, and for the factor p(a),
there will be no incoming links. If there is a link going from a node a to a node b, then we say that
node a is the parent of node b, and we say that node b is the child of node a.

So far, we have worked with completely general joint distributions, so that the decompositions,
and their representations as fully connected graphs, will be applicable to any choice of
distribution. However, it is the absence of links in the graph that conveys interesting information
about the properties of the class of distributions that the graph represents. Consider the graph
shown in figure 3. This graph represents a factorization of the joint probability distribution in
terms of the product of a set of conditional distributions, one for each node in the graph. Each
such conditional distribution will be conditioned only on the parents of the corresponding node
in the graph. For instance, x5 will be conditioned on x1 and x3. The joint distribution of all seven
variables is therefore given by

p(x1)p(x2)p(x3)p(x4|x1, x2, x3)p(x5|x1, x3)p(x6|x4)p(x7|x4, x5). (4.3)

This is not a fully connected graph because, for instance, there is no link from x1 to x2 or from
x3 to x7.

 on January 1, 2013rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

7

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120222

..

zn−1 zn
zn+1

xn−1 xn
xn+1

z1 z2

x1 x2

Figure 4. Graphical model representation of a hidden Markov model. This same graph also represents a linear dynamical
system. Here, the shaded nodes represent observed variables, i.e. ones whose values are fixed by the dataset. (Online version in
colour.)

This factorization is readily extended to K variables, in which the joint distribution is given by

p(x) =
K∏

k=1

p(xk|pak), (4.4)

where pak denotes the set of parents of xk, and x = {x1, . . . , xK}.
The key point of this representation is that it allows the joint distribution over the potentially

very large set of variables in the problem (millions of variables in some applications) to be
expressed in terms of the product of factors, each of which typically depends only on a small
subset of variables. This produces a substantial computational simplification and renders the
models tractable. Analogous simplifications are a key aspect of traditional machine learning
methods as well.

In the approach to model-based machine learning discussed in this study, we construct a
probabilistic model expressed as a directed graph. The structure of the graph captures our
assumptions about the plausible class of distributions that could be relevant to our application.
The easiest way to understand the interpretation of the graph is to imagine generating synthetic
data by ancestral sampling from the graph. This is called the generative viewpoint, and can be
illustrated by considering figure 3. We draw a sample at each of the nodes in order, using the
probability distribution at that node. This starts by drawing a value from the distribution p(x1),
so that the random variable x1 takes a specific value x̂1. Likewise for x̂2 and x̂3. Next, x4 is sampled
from p(x4|x̂1, x̂2, x̂3), in which the parent variables are set to their sampled values. This process is
continued until we have a sampled value for each of the variables.

As a specific example of a graphical model, consider the HMM [5], which can be represented
using the probabilistic graphical model shown in figure 4. This model is widely used in speech
recognition [6], natural language modelling [7], analysis of biological sequences [8] and many
other fields. The HMM can be applied to datasets that consist of a sequence of observed vectors
x1, x2, The model assumes that there is a latent (hidden) process involving a Markov chain
of unobserved discrete variables z1, z2, Each observed value xk depends only on the latent
variable zk at the same time step. Inference in this model can be done efficiently using the
forward–backward algorithm [5]. It is also possible to consider the same graphical structure but
with continuous latent variables based on Gaussian distributions. In the case of figure 4, this
leads to linear dynamical systems [9]. Inference for this model corresponds to the Kalman filter and
the Kalman smoother algorithms [1,10,11].

One of the most powerful aspects of probabilistic graphical models is the relative ease with
which a model can be customized to a specific application, or modified if the requirements of the
application change. This can be illustrated by looking at some variants of the HMM.

One possible extension to the basic HMM involves the inclusion of additional links to give an
autoregressive HMM, as shown in figure 5. In this model, the observed value xn at step n depends
not only on the hidden variable zn, but also on previous observed values. Another development
of the HMM is to include ‘inputs’ as well as ‘outputs’, for example, using the graphical structure

 on January 1, 2013rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

8

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120222

..

z
n−1 z

n
z

n+1

x
n−1 x

n
x

n+1

Figure 5. An extension of the model in figure 4 to include auto-regressive dependencies. (Online version in colour.)

zn−1 zn
zn+1

xn−1 xn
xn+1

un−1 un
un+1

Figure 6. An extension of the model in figure 4 to include input variables as well as outputs. (Online version in colour.)

z(2)

xn−1 xn xn+1

n−1

z(1)
n−1

z(1)
n

z(1)
n+1

z(2)
n

z(2)
n+1

Figure 7. An extension of the model in figure 4 for multiple hidden Markov processes. (Online version in colour.)

shown in figure 6. Yet another variant is the factorial HMM [12], shown in figure 7. Here, there
are multiple hidden processes (only two are shown in the case of figure 7), and the output at
a particular time step depends on all of the hidden states at that time. This can be viewed as a
special case of an HMM with restricted structure in the hidden process, and this structure can be
exploited to give more efficient inference. An interesting development of this idea is the switching

 on January 1, 2013rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

9

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120222

..

state-space model [13], in which there are multiple independent Markov chains of latent variables,
and the distribution of the observed variable at a given time step is conditional on the state of
only one of those chains. The particular chain responsible at each step is itself determined by
the state of another discrete hidden Markov process. The key point here is that many variants are
possible, and in particular a new model can readily be developed that is tailored to each particular
application.

A high proportion of the standard techniques used in traditional machine learning can be
expressed as special cases of the graphical model framework, coupled with appropriate inference
algorithms. For example, principal component analysis (PCA), factor analysis, logistic regression,
Gaussian mixtures and similar models can all be represented using simple graphical structures.
These can then readily be combined, for example, to form a mixture of probabilistic PCA models.
To construct and use these models within a model-based machine learning framework, it is not
necessary to know their names or be familiar with the specific literature on their properties.

Note that for the detailed design of models, it is often more convenient to use a richer graphical
framework called factor graphs [1,14], which can represent a superset of directed graphs. Owing
to lack of space, we will not discuss factor graphs further in this article.

So far we have assumed that the structure of the graph is determined by the user. In practice,
there may be some uncertainty over the graph structure, for example, whether particular links
should be present or not, and so there is interest in being able to determine such structure
from data. A powerful graphical technique to help with this is called gates [15], which allows
random variables to switch between alternative graph structures, thereby introducing a higher-
level graph that implicitly includes multiple underlying graph structures. Running inference on
the gated graph then gives posterior distributions over different structures, conditioned on the
observed data.

5. Approximate inference algorithms
As we have seen, a probabilistic model defines a joint distribution over all of the variables in
our application. We can partition these variables into those that are observed x (the data), those
whose value we wish to know z, and the remaining latent variables w. The joint distribution can
therefore be written as p(x, z, w). If we had not observed x, then the marginal distribution over z
would be given by

p(z) =
∑

x

∑
w

p(x, z, w). (5.1)

Here, we assume that the variables are discrete, but the discussion in this study applies equally
to continuous variables, or to a combination of discrete and continuous variables, in which case,
the summations are replaced, where appropriate, by integrations.

Observing that x takes a specific value x̂ allows us to compute the conditional distribution

p(z|x = x̂) ∝
∑
w

p(x = x̂, z, w). (5.2)

Here, the notation x = x̂ denotes that the random variable x takes the specific value x̂. If desired,
the resulting distribution can be normalized. We can view (5.1) as a prior distribution defined
before the data are observed, with (5.2) as the corresponding posterior distribution. The change
in distribution in going from the prior to the posterior reflects the information gained as a result
of observing the data, and represents the modern Bayesian perspective on what it means for a
machine to ‘learn from data’.

In most applications, we limit our attention to the determination of the posterior marginals of
individual variables of the form

p(zi|x = x̂) ∝
∑
{zj �=i}

∑
w

p(x = x̂, z, w), (5.3)

for each of the variables zi that comprise z.

 on January 1, 2013rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

10

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120222

..

x
1

x
2

x
3

x
4

Figure 8. A simple Markov chain of variables. (Online version in colour.)

For essentially all problems of practical interest, the exact evaluation of (5.2) or (5.3)
is infeasible. We must therefore resort to approximations, which themselves need to be
computationally efficient while achieving sufficient accuracy for the particular application.

Let us begin by looking at the question of computational efficiency. Consider the case of
a model with M discrete latent variables comprising the vector w, each having cardinality K.
The summation over w in (5.2) then involves KM terms, and so the storage and computational
requirements grow exponentially with the number of variables. Even for binary variables, this
becomes intractable for many real-world applications, which may involve thousands or millions
of variables.

We can often improve the situation dramatically by making use of structure within the model.
Consider a model specified by a directed graph, in which the joint distribution has a factorization
specified by (4.4). If the individual factors depend only on small subsets of the variables, then
we can exploit the factorization to obtain a more efficient inference procedure. To illustrate this,
consider a toy example involving two binary variables a and b, and a function given simply by
the product ab. If we sum this function over all values of a and b, we obtain∑

a

∑
b

ab = a1b1 + a1b2 + a2b1 + a2b2. (5.4)

We see that evaluation of the right-hand side requires seven operations (four multiplications and
three additions). However, we can exploit the fact that the function ab factorizes into the product
of a function of a and a function of b to enable us to rewrite (5.4) in the analytically equivalent form∑

a

∑
b

ab = (a1 + a2)(b1 + b2), (5.5)

which now only requires three computational steps (two additions and one multiplication). We
have exploited the factorization structure to exchange summation and multiplication and thereby
achieve a form that is analytically equivalent but computationally more efficient.

Now consider a more complex example consisting of a chain of nodes, as shown in figure 8.
Again, suppose the chain has M discrete variables each of cardinality K, and that we wish to
calculate the marginal distribution of xM. A naive calculation would involve evaluation of the
joint distribution and then marginalization over the unwanted variables

p(xM) =
∑
x1

· · ·
∑
xM−1

p(x1, . . . , xM), (5.6)

which, if evaluated directly, incurs storage and computational costs that are both exponential in
the length of the chain.

To obtain a more efficient inference procedure, we make use of the factorization of the joint
distribution, given by

p(x1, . . . , xM) = p(x1)

M∏
m=2

p(xm|xm−1), (5.7)

which is obtained by applying (4.4) to the graph in figure 8. By substituting (5.7) into (5.6), and
exchanging the order of summations and products, we obtain

p(xM) =
∑
xM−1

p(xM|xM−1) · · ·
∑
x2

p(x3|x2)
∑
x1

p(x2|x1)p(x1). (5.8)

 on January 1, 2013rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

11

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120222

..

Here, the sum over x1 is evaluated first, and involves only the distributions p(x2|x1) and
p(x1). This step therefore requires storage and computation that is only O(K2). The resulting
quantity is a function only of x2 and is then multiplied by p(x3|x2) and then summed over
x2, which again is O(K2) in computation and storage. The process is repeated down the
chain, giving an overall computational cost that is O(MK2). Thus, by using the factorization
of the joint distribution, we have reduced the computation from one that is exponential in the
length of the chain to one that is linear in the length of the chain. Note that this is still an
exact calculation.

This procedure can be interpreted as a message-passing scheme in which the quantity

μx1→x2(x2) ≡
∑
x1

p(x2|x1)p(x1) (5.9)

can be viewed as a message being sent from node x1 in the graph to node x2. Similarly, a
general step in the calculation can be expressed as the evaluation of an outgoing message that
is constructed from an incoming message combined with a local conditional distribution

μxm→xm+1(xm+1) =
∑
xm

p(xm+1|xm)μxm−1→xm(xm). (5.10)

Thus, the global calculation can be broken down into local calculations involving messages
passed between adjacent nodes in the chain. In this particular example, a sequence of
messages is passed from one end of the chain to the other.

This approach can readily be generalized to an arbitrary graph that has no loops [1,3].
In this case, the marginal distributions of all of the unobserved nodes can be evaluated using
a two-stage message-passing schedule as follows. Any one of the nodes is first designated as the
‘root’. Messages are then passed sequentially out from the root via all other nodes to the ‘leaves’.
A second set of messages is then passed from the leaf nodes back to the root node. At the end of
this second pass, each link will have seen one message pass in each direction, and each node will
have received sufficient information to be able to compute its marginal distribution, conditioned
on any observed variables. Again, the computational cost scales linearly in the size of the graph.
A particular instance of this algorithm is the forward–backward algorithm for finding the posterior
marginals in an HMM, used to learn the parameters of the model [5]. Another special case is given
by the Kalman filter (forward pass) and Kalman smoother (backward pass) algorithms for linear
dynamical systems [1,11].

For graphs with loops, the situation is more complex. Exact inference can still be performed
using techniques such as the junction tree algorithm [16], but the computational cost can become
prohibitive, depending on the structure of the graph. An alternative approach, known as loopy
belief propagation [17], uses the same message-passing technique as discussed earlier for tree-
structured graphs, but simply iterates the messages to allow for the fact that, with loops present,
a standard two-pass schedule does not lead to exact marginals. Although this process may seem
ad hoc, it has been found to yield good results in many applications.

So far, we have assumed that the local messages at each node can be computed exactly.
While this is typically true for discrete nodes, for other distributions, a closed-form evaluation
of the messages is often not possible, and it becomes necessary to resort to approximations.
One class of approximation scheme is based on sampling using techniques such as Markov chain
Monte Carlo (MCMC) [18]. A very simple, though widely applicable, MCMC method is Gibbs
sampling. Two advantages of Monte Carlo methods are their broad applicability to a wide range
of distributions, and that many of them asymptotically give exact inference in the limit of infinite
compute resources. In practice, however, Monte Carlo methods are computationally expensive,
and typically do not scale to the large datasets encountered in many technological applications,
particularly those involving internet-scale datasets. We therefore turn instead to an alternative
class of inference algorithms based on deterministic approximations.

 on January 1, 2013rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

12

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120222

..

Here, we consider a specific approximation framework called expectation propagation [19].
The local messages are approximated through minimization of the Kullback–Leibler (KL)
divergence given by

KL(p‖q) = −
∫

p(z) ln
{

q(z)

p(z)

}
dz, (5.11)

where q(z) represents a family of approximating distributions. The KL divergence measures the
extent to which the distribution q(z) differs from the given distribution p(z), and has the property
KL(p‖q) ≥ 0, with equality if, and only if, q(·) = p(·). We shall see an example of the application
of this procedure in the next section. For graphs with loops, the message-passing procedure can
again be continued iteratively until some stopping criterion is satisfied.

There are many other deterministic approximation schemes such as variational message passing
[20], tree-reweighted message passing [21], fractional belief propagation [22] and power EP [23].
Furthermore, it has been shown [24] that a broad range of message-passing algorithms can be
derived from a common framework involving the minimization of a generalization of the KL
divergence known as the alpha family of divergences.

6. Case study: Bayesian skill rating
We now consider a real-world example of the application of the framework of graphical models
and approximate deterministic inference discussed in the previous sections. The model is known
as TrueSkill [25], and it addresses the problem of determining the skill ratings of players in a series
of competitive games. It generalizes the widely used Elo system [26] that is used, for example,
in international chess gradings. TrueSkill was deployed on the Xbox Live online gaming system
in 2005, and has been operating continuously since then, processing millions of game outcomes
per day.

The goal is to assign a skill value to each of the players on the basis of game outcomes. Because
the skill si of player i is unknown, in the Bayesian setting, it is assigned a probability distribution
that, for simplicity, is given by a Gaussian with mean μi and variance σ 2

i . Under the Elo system, it
is usual to regard a player’s rating as provisional until a sufficient number of games (say 20) has
been played. This issue does not arise in a Bayesian setting since the uncertainty in the player’s
skill is quantified from the start. As new data (i.e. new game results) arrive, the skill distribution
is updated, and a reduction in the variance of this distribution represents increasing confidence
in the value of the player’s skill.

Consider a specific game between player 1 and player 2. We define for each player a performance
πi that represents how well they played on that particular game. Because the performance of a
player with a given skill can vary from game to game, the performance is a noisy version of
the skill. This is represented by giving πi a Gaussian distribution, whose mean is si and with a
variance β. The winner of the game is the player with the higher performance value. This can
be represented by introducing a variable y = π2 − π1, where y > 0 indicates that player 2 is the
winner. Draws can also be modelled as occurring when the difference in performance values is
below a threshold |y| ≤ ε. The overall graphical model for this specific game is shown in figure 9.

When the game outcome is known, the node y becomes observed, and the inference problem
involves updating the distributions over the skills s1 and s2. For this model, the graph is tree
structured. However, the exact messages from the node y are non-Gaussian, and so the posterior
distribution over skills becomes non-Gaussian. The messages are therefore approximated using
expectation propagation, in which the exact distribution is replaced by the Gaussian distribution
that locally minimizes the KL divergence (5.11). This ensures that the distributions remain within
the exponential family. The required distribution can be calculated using moment-matching,
i.e. by matching the mean and variance of the approximating Gaussian to the corresponding
values for the true distribution. Note that this Bayesian model is intrinsically sequential, with
the posterior skill distributions acting as the priors for the next round of inference once new
data are observed. The current skill distributions are used to select opponents in the online
gaming environment, and the results of the corresponding games are then used to make further

 on January 1, 2013rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

13

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120222

..

S1 S2

y

p1 p2

Figure 9. Directed graph showing the TrueSkill model for a single game between two players. See the text for details.
(Online version in colour.)

40

35

30

25

20

le
ve

l

15

char (TrueSkill)
SQLWildman (TrueSkill)

SQLWildman (Elo)
char (Elo)

10

5

100

no. of games

200 300 4000

Figure 10. Graphof skill levels for twoplayers in anonline game, showing themuch faster convergence obtainedusing TrueSkill
compared to the traditional Elo algorithm. (Online version in colour.)

refinement of the skill distributions. Thus, inference and decision are interleaved, and the
graphical model is being continuously created. This is a far cry from the traditional machine
learning paradigm in which the parameters of a model are tuned in the laboratory using a
training dataset (with cross-validation to avoid over-fitting), the parameters then frozen and the
fixed system used to make predictions on future test data.

Figure 10 shows some results obtained with TrueSkill, along with the corresponding results
using Elo. Here, we see the estimated skill level from Elo for two players in an online computer
game plotted against the number of games played. Also plotted are the posterior mean skills
for the two players obtained from TrueSkill using the same data, showing the much faster
convergence as a function of the number of games played. This improved behaviour is a
consequence of the Bayesian modelling of uncertainty in TrueSkill, in which each player has a
mean and variance for their skill level, compared with the single estimated skill value in Elo [25].

One of the powerful aspects of model-based machine learning is the ability to extend the
model to take account of more complex situations. To illustrate this, consider two of the significant
limitations of the conventional Elo system: (i) game outcomes often refer to teams of players, yet

 on January 1, 2013rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

14

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120222

..

S1

tA tB

yAB
yBC

tC

S2 S3 S4

Figure 11. Modified skill rating graph showing the inclusion of three teams A, B and C, in which team B has two players.
(Online version in colour.)

for matchmaking purposes we need the skills of individual players, and (ii) many games involve
more than two players (or more than two teams of players). These limitations are significant in
the context of online computer games, and can be overcome in TrueSkill by a simple extension
of the model, as shown by the graph in figure 11. Note that, with more than two players, the
message-passing algorithm must be run iteratively until a suitable stopping criterion is met.

Further extensions to the model are easily made. For example, we can take account of the
evolution of a player’s skill through time (e.g. as a result of gaining experience) by introducing
some Gaussian diffusion in the spirit of the Kalman filter. Again, this is easily accommodated by
modifying the underlying probabilistic graph [25,27].

7. Probabilistic programming
In this study, we have outlined a framework for model-based machine learning built on
approximate Bayesian inference in graphical models using local message-passing algorithms.
In order to apply this framework in practice, we need appropriate software development tools.
A very flexible environment for model-based machine learning is known as probabilistic
programming [28]. This can be viewed as an extension of classical programming to include random
variables as first-class citizens alongside conventional deterministic variables, in which standard
operators are overloaded, allowing them to manipulate both deterministic and random variables.
The random variables themselves might be represented in terms of specific distributions,
for example, from the exponential family, or using some non-parametric or sample-based
representation.

We can illustrate the key ideas of probabilistic programming using Csoft (J. Winn & T. Minka
2012, personal communication), which is an extension of the C# programming language to
include support for random variables. Three new features are required. First, random variables
can be defined using the keyword ‘random’, for example,

int length = random(Uniform(0, 4)),

which says that length is a random variable that is uniformly distributed over the interval
(0, 4). Second, constraints involving random variables can be including using the ‘constrain’
keyword, as in

constrain(height == length),

which says that the random variable height must be equal to the random variable length.
Similarly, we can constrain random variables to take on specific values, as in

constrain(length == 3),

 on January 1, 2013rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

15

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120222

..

Figure 12. Csoft code for the TrueSkill model.

which would be used to set random variables to their observed values and hence to incorporate
data into a model. Finally, the distributions of random variables can be obtained using the ‘infer’
keyword, for example,

Bernoulli b = infer(height > 2),

which returns a Bernoulli distribution giving the probability that the random variable height

takes a value greater than 2. Figure 12 shows the Csoft code corresponding to the TrueSkill model
discussed in §6.

A language such as Csoft allows probabilistic and conventional deterministic code to be
combined, and provides a flexibility of modelling that goes beyond conventional graphical model
notation. For example, jagged arrays can capture a complex sparse connectivity structure that is
difficult to express succinctly in the standard graphical formalism.

Conceptually, we can interpret a probabilistic program from a sampling perspective.
For each occurrence of random, we draw a sample from the corresponding distribution; for
each occurrence of constrain, the program terminates if the constraint is violated; and for each
occurrence of infer, the program collects the values of the required variables into a persistent
memory. If the code is then run a large number of times, the persistent memory accumulates
a sample-based representation of the required distributions. Obviously, this ‘rejection sampling’
technique is too slow for most practical applications, and more efficient inference techniques are
required, for example, based on local message passing.

An example of a probabilistic programming language is Infer.NET [29]. This supports a wide
range of distributions involving both discrete and continuous variables, and has a modular
framework that is readily extended to new distributions. Typically, we expect general-purpose
software to have a computational efficiency that is poor compared with model-specific software.
However, Infer.NET is able to achieve efficiency that is often close to hand-tuned code, by adopting
a compiler technology as illustrated in figure 13. Note that in this diagram, the .NET program
that specifies the ‘model’ includes a description of which variables are observed (but without
the values of those observations). This allows the compiler to generate inference code that is
optimized for the particular partition of observed and hidden variables. In some applications, it
might not be known which variables will be observed until run time, and in such cases, the model
can be extended with additional variables that allow for observing the partition at run time. For
example, a model could be extended to include binary variables specifying, for each potentially
observable variable, whether or not that variable is in fact observed. The Infer.NET compiler
encapsulates numerous optimizations regarding the choice of message-passing schedule in order
to generate efficient inference code. Currently, Infer.NET supports two deterministic inference
algorithms (expectation propagation and variational message passing), as well as a Monte Carlo
method (Gibbs sampling).

Another probabilistic programming language, with some similarities to Infer.NET, is Bayesian
inference using Gibbs sampling (BUGS) [30]. BUGS uses Monte Carlo methods, which give it
great flexibility in the range of models that it can accommodate, but owing to the computational

 on January 1, 2013rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

16

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120222

..

model
(small .NET program)

Infer.NET compiler

optimized runtime
inference code

answers!data

Figure 13. Flow diagram showing the operation of Infer.NET. (Online version in colour.)

cost of Monte Carlo inference, it does not scale well to large datasets. There are many other
languages currently in development, and probabilistic programming has become a very active
field of research.

8. Conclusions
In this study, we have given an overview of the model-based approach to machine learning, and
discussed its advantages compared with traditional approaches, including the ability to develop
custom models that are optimized for each application. We have outlined a particular framework
for model-based machine learning based on deterministic inference in probabilistic graphical
models using local message-passing algorithms. We have also discussed a very general software
development environment for model-based machine learning called probabilistic programming,
and described a specific instantiation in the form of Infer.NET. Model-based machine learning,
particularly in the form of probabilistic programming, is a highly active field of research, and
offers great potential to capitalize on the new era of data-driven computing.

I thank John Bronskill, Thore Graepel, John Guiver, Tom Minka and John Winn for providing valuable
feedback on an early draft of this paper.

References
1. Bishop CM. 2005 Pattern recognition and machine learning. Berlin, Germany: Springer.
2. Shotton J, Fitzgibbon A, Cook M, Sharp T, Finocchio M, Moore R, Kipman A, Blake A. 2011

Real-time human pose recognition in parts a single depth image. In IEEE Int. Conf. Computer
Vision and Pattern Recognition, Barcelona, Spain, November 2011, pp. 415–422. IEEE.

 on January 1, 2013rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

17

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120222

..

3. Pearl J. 1988 Probabilistic reasoning in intelligent systems. San Francisco, CA: Morgan Kaufmann.
4. Koller D, Friedman N. 2009 Probabilistic graphical models: principles and techniques. Cambridge,

MA: MIT Press.
5. Rabiner LR. 1989 A tutorial on hidden Markov models and selected applications in speech

recognition. Proc. IEEE 77, 257–285. (doi:10.1109/5.18626)
6. Jelinek F. 1997 Statistical methods for speech recognition. Cambridge, MA: MIT Press.
7. Manning CD, Schütze H. 1999 Foundations of statistical natural language processing. Cambridge,

MA: MIT Press.
8. Durbin R, Eddy S, Krogh A, Mitchison G. 1998 Biological sequence analysis. Cambridge, UK:

Cambridge University Press.
9. Roweis S, Ghahramani Z. 1999 A unifying review of linear Gaussian models. Neural Comput.

11, 305–345. (doi:10.1162/089976699300016674)
10. Kalman RE. 1060 A new approach to linear filtering and prediction problems. Trans. Am. Soc.

Mech. Eng. D, J. Basic Eng. 82, 35–45. (doi:10.1115/1.3662552)
11. Minka T. 1998 From hidden Markov models to linear dynamical systems. MIT Technical

Report no. TR531, MIT Press, Cambridge, MA.
12. Ghahramani Z, Jordan MI. 1997 Factorial hidden Markov models. Mach. Learn. 29, 245–275.

(doi:10.1023/A:1007425814087)
13. Ghahramani Z, Hinton GE. 1998 Variational learning for switching state-space models. Neural

Comput. 12, 963–996. (doi:10.1162/089976600300015619)
14. Kschischnang FR, Frey BJ, Loeliger HA. 2001 Factor graphs and the sum-product algorithm.

IEEE Trans. Inf. Theory 47, 498–519. (doi:10.1109/18.910572)
15. Minka T, Winn J. 2008 Gates: a graphical notation for mixture models. In Advances in Neural

Information Processing Systems (NIPS), vol. 21. NIPS Foundation.
16. Lauritzen SL, Spiegelhalter DJ. 1988 Local computations with probabilities on graphical

structures and their application to expert systems. J. R. Stat. Soc. 50, 157–224.
17. Frey BJ, MacKay DJC. 1998 A revolution: belief propagation in graphs with cycles. In Advances

in Neural Information Processing Systems (NIPS), vol. 10. NIPS Foundation.
18. Metropolis N, Rosenblutt AW, Rosenbluth MN, Teller AH, Teller E. 1953 Equation of state

calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092. (doi:10.1063/1.1699114)
19. Minka T 2001 Expectation propagation for approximate Bayesian inference. In Proc. 17th Conf.

Uncertainty in Artificial Intelligence, Barcelona, Spain, July 2001, pp. 362–369. San Francisco, CA:
Morgan Kaufmann.

20. Winn J, Bishop CM. 2005 Variational message passing. J. Mach. Learn. Res. 6, 661–694.
21. Wainwright MJ, Jaakkola TS, Willsky AS. 2005 A new class of upper bounds on the log

partition function. IEEE Trans. Inf. Theory 51, 2313–2335. (doi:10.1109/TIT.2005.850091)
22. Wiegerinck W, Heskes T. 2003 Fractional belief propagation. In Advances in Neural Information

Processing Systems (NIPS), vol. 15. NIPS Foundation.
23. Minka T. 2004 Power EP. Technical Report MSR-TR-2004-149, Microsoft Research, Cambridge,

UK.
24. Minka T. 2005 Divergence measures and message passing. Technical Report no. MSR-TR-2005-

173, Microsoft Research, Cambridge, UK.
25. Herbrich R, Minka T, Graepel T. 2007 TrueSkill: a Bayesian skill rating system. In Advances in

Neural Information Processing Systems (NIPS), vol. 20. NIPS Foundation.
26. Elo AE. 1978 The rating of chess players: past and present. New York, NY: Arco Publishing.
27. Dangauthier P, Herbrich R, Minka T, Graepel T. 2008 TrueSkill through time: revisiting the

history of chess. In Advances in Neural Information Processing Systems (NIPS), vol. 20. NIPS
Foundation.

28. Roy DM. 2011 Computability, inference and modeling in probabilistic programming. PhD
thesis, MIT Press, Cambridge, MA.

29. Minka T, Winn J, Guiver J, Knowles D. 2010 Infer.NET. Microsoft Research Cambridge. See
http://research.microsoft.com/infernet.

30. Lunn D, Spiegelhalter D, Thomas A, Best N. 2009 The BUGS project: evolution, critique and
future directions. Stat. Med. 28, 3049–3067. (doi:10.1002/sim.3680)

 on January 1, 2013rsta.royalsocietypublishing.orgDownloaded from

http://dx.doi.org/doi:10.1109/5.18626
http://dx.doi.org/doi:10.1162/089976699300016674
http://dx.doi.org/doi:10.1115/1.3662552
http://dx.doi.org/doi:10.1023/A:1007425814087
http://dx.doi.org/doi:10.1162/089976600300015619
http://dx.doi.org/doi:10.1109/18.910572
http://dx.doi.org/doi:10.1063/1.1699114
http://dx.doi.org/doi:10.1109/TIT.2005.850091
http://research.microsoft.com/infernet
http://dx.doi.org/doi:10.1002/sim.3680
http://rsta.royalsocietypublishing.org/

	Introduction
	Model-based machine learning
	Bayesian inference
	Probabilistic graphical models
	Approximate inference algorithms
	Case study: Bayesian skill rating
	Probabilistic programming
	Conclusions
	References

