International Journal of Neural Systems, Vol. 2, No. 3 (1991) 229-236

© World Scientific Publishing Company

A FAST PROCEDURE FOR RETRAINING THE MULTILAYER PERCEPTRON

Chris Bishop
Neural Networks Group, AEA Technology, Harwell Laboratory, Oxfordshire OX11 ORA, UK

Received 22 May 1991
Revised 26 July 1991

In this paper we describe a fast procedure for retraining a feedforward network, previously trained by error
backpropagation, following a small change in the training data. This technique would permit fine calibration of
individual neural network based control systems in a mass-production environment. We also derive a generalised
error backpropagation algorithm which allows an exact evaluation of all of the terms in the Hessian matrix. The
fast retraining procedure is illustrated using a simple example.

1. Introduction

Multilayer perceptron neural networks are being ex-
ploited in an increasing number of applications as
nonlinear control systems. The ability of such net-
works to generate a large class of nonlinear multivari-
ate mappings, !> as well as their speed in feedforward
mode, makes possible a number of new approaches to
the control of a nonlinear plant. However, in setting
up controllers for mass produced items, there is often
sufficient variation from one item to the next to make
individual fine calibration of the control systems
worthwhile. This represents a drawback for neural
controllers since the training of multilayer perceptrons
is a nonlinear optimisation problem, and is computa-
tionally very intensive. The training of a network for
each system would therefore be very time consuming.
In this paper we seek a fast procedure for training a
network on a new dataset, given the corresponding
weights and thresholds for a network of the same
topology obtained for a dataset differing by a small
amount from the new one. This retraining procedure
allows the neural network to be set up quickly once a
set of calibration measurements have been made on the
plant.

In Sec. 2 we describe the fast one-step method for
retraining the network. Some of the mathematical
details of the learning algorithm are presented in the
Appendix. In particular, we derive an extended back-
propagation algorithm which allows the full Hessian
matrix to be evaluated for a network of arbitrary
feedforward topology. The retraining algorithm is
illustrated in Sec. 3 using simulation results from a
simple problem, and in Sec. 4 we contrast this retrain-
ing method with standard second-order training proce-

229

dures. A brief summary is given in Sec. 5.

2. Fast Retraining

Consider a feedforward network with N inputs and M
outputs, in which the activation of each unit is given
by a nonlinear function of the weighted sum of its
inputs:

z; = f(ay), a; = 2 wiz; + 0, D
J

where z; is the activation of unit i, w;; is the synaptic
weight between units i and j, and 6; is a bias
associated with unit i. The bias terms can be consi-
dered as weights from an extra unit whose activation is
fixed at z; = +1. From now on, the bias terms will
be absorbed into the weight matrix, without loss ‘of
generality, thereby simplifying the algebra. The activa-
tion of output unit m (m = 1, . . . , M) can be written

Ym = Ym({Xns wii}) , @)

where x, is the activation of input unit n
(n=1,...,N). The functional form of Egq. (2)
depends on the topology of the network and will be
assumed to be fixed. Training data consists of a set of
input vectors x,,, (p = 1, . . . , P), and corresponding
target vectors ¢,,,, where t,, is the target activation for
output unit m, and p labels the pattern. The standard
backpropagation procedure provides an efficient
method for evaluating the derivatives of an error
function with respect to the weights {w;;}. These
derivatives are then used in optimisation algorithms
based on gradient descent, conjugate gradients, quasi-

10

—




230 C. Bishop

Newton methods, etc., to minimise the error. Note
that we use the term ‘backpropagation’ to describe the
evaluation of the derivatives of the error function,
(since it is here that errors are propagated backwards
through the network), rather than the particular opti-
misation strategy of gradient descent. The usual choice
of error function is the sum-of-squares error, defined
by

E=>E,, A3)
p
where the error E, for pattern p is given by
1 2
E 2 [ymp - tmp] ’ (4)

and ymp = ym({xnp; Wij})-

Suppose the network has been trained using this
data set, to give a minimum of E, and we wish to find
a set of weights {#;} which minimise the error E
corresponding to a new data set given by

Knp = Xpp + Axpp 5)

tmp = tp + Aty ©6)

where Ax,, and At,,, are small shifts in the input and
target vectors respectively for pattern p. We write the
new set of weights in the form

Wi = wi + Aw;;, )]

and we now seek to calculate Aw;;. The error function
for the new data set can be written

E = ; EP = E E [ym(xnp, wl_]) mp] ( )

A schematic illustration of the error functions E and E
is shown in Fig. 1. Using Egs. (5), (6) and (7) we can
Taylor expand in the A’s to give

3E, O
Aw; —2 At,,
wij + 2 ot P

{7} owi; m Omp

E,=E, +

1 0’E,
2 G5 fay Owyowy

+2 "Ax,,,,+

AW,JAWH

1
5 ;n: ; AtypAt sy

at,,, "

Wy

8T

Fig. 1. Schematic illustration of the error function E defined
with respect to the original data set, and the new error
function £ defined with respect to the perturbed data set, as
a function of the synaptic weights. The function E has its
minimum at w;;, which differs by a small amount from the
location w;; of the minimum of E.

’E,
+§§")2—

Ax,,Ax,,
W0y PP

o’E,

—2L _ Ax, Aw;;
{7y Xnpowi; S

o’E,
+ 2 AW,’jAtmp
{7} m W0ty
+ > > —F— Ax,,At,, + O(A3) )
n m a-xnpa mp

where {ij} denotes the pair of indices corresponding
to the units linked by the weight w;;. We now demand
that £ be minimised with respect to the w;; so that

E
aAW,'j B

(10)

From Egs. (3) and (9) we obtain, to lowest order in
the A’s,

oE, 11
o ow;; h

Equation (11) is identically satisfied since this is
simply the condition that £ be a minimum with respect
to the {w;;}. We therefore go to next order in the A’s
to give




9’E 9’E
2 AWk[ + E 2 £ A.an
7 () oW iowy T 0xp0w;;
+> > L, At,, =0 (12)
p m Bt,,,paw,-j P
This can be rewritten in the form
2 Aij,klAWij = —ATy, (13)
{ij}
where we have defined
: 9°E
Aju=> —2, (14)
M ; aw,-jawk,
ATy = A 'y +
K 2 2 (')x,,p . P 2 2 aW]datmp
(15)

Equation (13) represents a set of N inhomogeneous
coupled linear equations (where N is the total number
of weights and thresholds in the network) which
determine the required Aw;;. The various derivative
terms appearing in Eqs. (14) and (15), including all
elements of the Hessian matrix A, can be obtained
using forward and backward propagation through the
original network. Details are given in the Appendix.
Inversion of the N X N matrix A then leads to the
formal solution:

Aw,; = E A; ATy . (16)

In practice the inversion would be performed using
singular value decomposition to allow for possible
ill-conditioning of the matrix A. Note that the deriva-
tives of E, depend only on the weights and the
training data corresponding to the original network.
Thus the evaluation of the derivatives, and the singular
value decomposition of A, need only be done once.
Given a set of values for Ax,, and At,,,, the setting
up of each new network then simply involves evalua-
tion of expressions (15) and (16), and is clearly a very
fast procedure.

3. Simulation Results

In this section we present results from a software
simulation of the fast retraining algorithm. For sim-
plicity, we consider a network with a single input and
a single output, so that the network transfer function
can be visualised graphically. The network has a linear

Fast Retraining 231

output unit, a single layer of hidden units, and no
direct connection between the input and output units.
Consider the following function

y = x2t*, an

We shall first of all train a network to learn this
function for A = 0, and then use fast retraining to
generate a network: whose transfer function corres-
ponds to A # 0. The function is chosen so that the
effect of nonzero A does not correspond to a linear
rescaling of either x or y, and hence cannot be
absorbed by a simple rescaling of the weights. Data is
generated by sampling Eq. (17), with A = 0, at 13
points equally spaced on the interval (0, 1), and is
shown by the circles in Fig. 2. The initial training of
the network was performed using the memoryless
BFGS algorithm,? which has been found to be much
faster and more robust than techniques based on
gradient descent with momentum. A network with 13
hidden units was trained on this data, to give a
residual error of 3.9 X 1078, The resulting network
function is shown by the curve in Fig. 2. Note that, in
this example, the number of hidden units is sufficient
to allow the error to be made arbitrarily small. This is
not an essential feature, and the method is equally
applicable when the minimum of the error function
occurs at some nonzero value.

0.5 1

0.0

0.0 0.5 1.0

Fig. 2. Circles show the training data set obtained by sam-
pling the function y = x®*2, for A = 0, at equal intervals of
x. The curve shows the corresponding network function after
training, using the memoryless BFGS algorithm, to give an
error of 3.9 X 1078,




232 C. Bishop

The next step is the evaluation of the various
derivatives of the error function and the inversion
(singular value decomposition) of the Hessian. The
parameter A in Eq: (17) can now be varied and for
each value of A a new set of training data generated.
The values of x chosen for the training data should be
close to the original values, and we take them to equal
the original values. This corresponds to a situation
typical of a practical application of the method in
which a fixed set of inputs is applied to the plant to
be controlled and the corresponding outputs measured.
For each new training set it is now a very fast
procedure, using Egs. (15) and (16), to calculate the
corresponding set of network weights and thresholds
which minimise the error function. The curve in Fig. 3
shows the behaviour of Eq. (17), as a function A, for
x = 0.5. The circles show the output of the retrained
network, for the corresponding value of A, with an
input of x = 0.5. It is clear that the network mapping
is changing so as to follow the modifications to the
training set.

In Fig. 4 we show the behaviour of the error,
defined by Egs. (3) and (4), and evaluated using the
new data set, as A is varied. The triangles show the
error between the new data set and the original
network function, while the circles show the error

0.75 |

A

Fig. 3. The curve shows the function y = x*** as function
of A for x =0.5. The circles show the output of the
retrained network, at the corresponding value of A, for an
input of x = 0.5. This shows that retraining allows the
network to generate a much improved prediction for the
function, since without retraining the network output would
be fixed at y = 0.25.

a 0.2
E
A
0.1
a
A
Ao
A
A
A
A
[e] a

= o Q o o A A o o fo o] Q
-1 0 1

Fig. 4. Triangles denote the error function evaluated using
the perturbed dataset together with the original network
function, showing that the error gets rapidly worse as |A| is
increased. Circles denote the error evaluated using the
perturbed data together with the network function from the
retrained network for the corresponding value of A, demon-
strating the substantial reduction in error resulting from
retraining.

between the new data set and the network function
obtained from the corresponding retrained network.
The substantial reduction in the error resulting from
retraining is clear.

Although fast retraining is limited to small values
of Ax and At, as a consequence of the expansion
introduced in Eq. (9), it is clear from Figs. 3 and 4
that substantial variations in the training data can be
accommodated. For instance, a value of A =0.5
produces a change in y (at x = 0.5) which is 7% of
its full scale range.

As an indication of the speed of the fast retraining
procedure, we compare the time taken to train the
network for the new data corresponding to A = 0.1,
using a variety of methods. The original network
weights (corresponding to A = 0.0) gave an error of
9.0 X 107*, while the fast retraining procedure re-
duced this by some two orders of magnitude to
8.6 X 1075, For comparison we consider the time
taken to reduce the error to the same level using BFGS
starting from random initial weights, and starting from
the original network weights. The results are summa-
rised in Table I.

Note that one cycle of the BFGS algorithm involves
N line minimisations, and for this problem takes about

I




0.7 sec. (running on an IBM RS6000 UNIX worksta-
tion). Starting from random initial weights the BFGS
algorithm takes some 30 cycles (depending on the
particular weight values ) to reduce the error to the
target value. When started with the original network
weights only a single BFGS cycle is needed. The
calculation and inversion of A, however, need only be
done once, and the results then used to evaluate the
weights for a number of different training datasets.

Table 1.

Timing results for test problem

Method Time (seconds)
BFGS starting from random weights 21.0
BFGS starting from original weights 0.7
Calculation and inversion of A 0.035

Evaluation of new weights 8 x 1073

We see from Table I that the fast retraining proce-
dure can evaluate the weights for a new network some
four orders of magnitude faster than the BFGS algor-
ithm. (This ratio would be expected to be even larger
for algorithms based on gradient descent with momen-
tum, since such methods tend to have poor perform-
ance close to a minimum.)

An important consideration is the way in which
these timing results can be expected to scale up from
this simple example to large-scale applications. If we
assume that the appropriate number of patterns for
training a network is proportional to the number N of
weights in the network, then both the inversion of the
Hessian A, and a single cycle of the BFGS algorithm,
will scale like N3. The evaluation of the weights in
fast retraining (using Egs. (15) and (16)) scales like
NZ2. Thus the improvement in speed is likely to be
even more marked for large networks.

4. Relation to Second-Order Training Algorithms

It is instructive to compare the algorithm presented in
this paper with standard second-order optimisation
methods for training feedforward networks.* We begin
by expanding the error function E up to second order
in Aw to give

Aw,j

Ew) + 2
{ij}

Ew + Aw) =

1 PE
23 2 T
]

i owowy

: AwijAwkl + @(A3) . (18)

Fast Retraining 233

At a minimum of E we can apply Eq. (10) from
which we obtain, to leading order,

- > Ak 19)

Aw; =
() awkl

where we have used Eq. (14) together with the fact
that E = E + O(A). Equation (19) forms the basis for
standard second-order training algorithms. Its relation
to the formalism of Sec. 2 can be seen by using
Egs. (5), (6) and (11) to give

——22 g N+ 2 2

7 Bx,,p Pt

(20)

Bwklatmp

Substitution of Eq. (20) into Eq. (19) gives rise to
Eq. (16), showing that the two approaches are formal-
ly equivalent. In practice, however, there exist several
important differences. First, the evaluation and inver-
sion of the full Hessian matrix is computationally
intensive. In an iterative training scheme, therefore, it
is in general not feasible to calculate the inverse
Hessian matrix at each step. Instead, the Hessian is
approximated, for instance, by retaining only the terms
on the leading diagonal.>®7 The fast retraining proce-
dure, however, is a one-step process and it is therefore
important to maintain accuracy by using the full
Hessian matrix. Since the inverse is evaluated only
once, the computational requirements are much less
severe. Note, however, that use of the full Hessian
requires O(N?) storage as compared with the O(N)
storage required by many network training algorithms
such as gradient descent and conjugate gradients. The
second difference is that successive application of
Eq. (19) only leads to convergence to the required
solution if the initial starting point is a good approx-
imation to the final solution. For the general problem
of network training, such an estimate is not usually
available. In the case of fast retraining, however, the
initial weight matrix is known to be close to the
desired solution. The third difference results from the
fact that, in general, iteration of Eq. (19) can lead to
convergence to a local maximum or saddle point as
well as to a local minimum. Again, the problem does
not arise in the case of fast retraining because the
original error function was already at a (local) mini-
mum. Thus, since

PE,  OE,
N aw,-jawkl

+ 6@, 21

aw,-jawk,

[




234 C. Bishop

it follows that, for Ax and At sufficiently small, the
new solution will also correspond to a (local) mini-
mum. Finally, in a standard training algorithm, the
first derivatives of the error function are evaluated
using an expression of the form

oE dE
=3 =ry,, @2)
Wij P aa,»p

which follows from Eq. (1). Here ~ denotes quantities
evaluated using {%,,7,}, and the derivatives
BEP/ dd;, are evaluated using the standard error
backpropagation algorithm. Each term in this sum,
however, is O(1), while the total sum is O(A).
Numerical errors can therefore be expected to be better
handled by using Eq. (20), in which all terms are
O(A), rather than Eq. (22).

5. Summary

We have described a fast procedure for training a
feedforward neural network on a new dataset, given
the corresponding weights and thresholds for a net-
work of the same topology obtained for a dataset
which is close to the new one. This procedure corres-
ponds to the solution of a set of linear equations and is
therefore fast. Most of the computation involves the
calculation of the Hessian matrix A and the evaluation
of its inverse. Since A depends only on the original
network parameters, this matrix and its inverse need
be computed only once.

We have also derived an extended backpropagation
algorithm which allows all elements of the Hessian
matrix, for a network of arbitrary feedforward topolo-
gy, to be evaluated exactly.

Results from a software simulation applied to a
simple problem show that the retraining procedure can
generate the required network weights many orders of
magnitude faster than conventional training algorithms,
and this improvement in speed is likely to be even
more substantial for large-scale applications.

Appendix. Calculation of Derivatives

In this appendix we discuss the calculation of the
derivative terms required in Egs. (14) and (15). We
shall show that they can be evaluated using forward
propagation through the network, followed by back-
ward propagation. The resulting algorithm is related to
a technique for training networks whose error func-
tions contain derivative terms.?> A procedure for eva-

luating the diagonal terms of the Hessian matrix has
been given by Ricotta e al.”> The algorithm presented
here follows a slightly different approach, and allows
all of the terms of the Hessian matrix to be evaluated
without making approximations.®

We shall take the nonlinear activation function f(x)
of Eq. (1) to be the standard sigmoid:

1
f) = T+ exp(—n)’ (23)

which has the useful property
f'x) = f®I - f™1, (24)

where the prime denotes a derivative with respect to x.
From Eq. (1) we have

D 0’E, ;
m Bw,-jf)t,,,p P
B JE,
= ;—atmp Aty | = 27y, (25)

where we have defined

0 JE,
Ty = 2ar ( %‘, o0, Atmp) ) (26)

Using the chain rule for partial derivatives, together
with Eqgs. (1) and (24), we obtain

Tip = Zip(1 = 2;) >, Wiy, 27
k

where the sum runs over all units k to which unit i
sends connections. For the output units we have, from

Eq. (4),
Tmp = _ymp(l - ymp)Atmp . (28)

The various terms {r;,} can now be calculated by
backpropagation from the output units using Egs. (27)
and (28).

To evaluate the elements of the Hessian matrix,2
we note that the units in a feedforward network can
always be arranged in layers, with no intralayer con-
nections and no feedback connections. Taking unit i to
be in the same layer as unit k, or in a lower layer
(i.e., one nearer the input), we can write

-
|
|
|




o’E, o (OE,
—F =z, —zp) — (). (29
aWijaWkl Ziv’ P( ZP) azip <6wk1 ( )

Note that the remaining terms, in which unit i is
above unit k, can be obtained from the symmetry of
the second derivative without further calculation. We
now write

d (OE, d ( Y= +
— I\ |=7( = Bipz ipThp >
azip W 9z, kpZlp kpZ Ip YitpOkp
(30)
where we have defined
oF
o =—1, 3D
aakp
do kp
iy = R 32
ka azip ( )
azlp
in = . 33
Yip P (33)

Using the chain rule for partial derivatives we have

9z, 0z,
Yiip = z - s (34)
P j az,-p asz

from which we obtain the forward propagation equa-
tion

Yip = le(l - le) 2 Wii%Yijp » (35)
J

where the sum runs over all units j which send
connections to unit I. The {7;,,} can be calculated by
forward propagation using Eq. (35), starting with the
condition

Yip = 0i » (36)

(where 8, is the Kronecker delta) when i and !/ refer to
the same layer, and vy;;, = 0 if I refers to a layer
below the layer containing unit i.

Again using the chain rule, we can write

day, OE,
Oip = —_—

, (37
1 aakp Balp

which gives the backpropagation equation

O = Zip(l — z1p) > waoyp (38)
7

Fast Retraining 235

where the sum runs over all units / to which unit k
sends connections. The {oy,} can be calculated by
backpropagation using Eq. (38), starting from the out-
put units for which, using Eqgs. (4), (24) and (31), we
have

Omp = (ymp - tmp)ymp(l - Ymp) . (39)

Similarly, using Eqgs. (32), (33) and (38) we obtain
a backpropagation equation for the {B,} in the form

Bikp =1 - 2ka)7ikp 2 WOy
7
+ zip(1 = zi) 213 wiBup ,  (40)

where again the sum runs over all units / to which unit
k sends connections. Note that the first summation in
Eq. (40) need not be performed explicitly when eva-
luating the {B;x,} as it has already been computed in
evaluating the {oy,} in Eq. (38). From Egs. (32),
(33) and (39), we have, for the output units,

Bimp = Yimp{(Ymp - tmp)(l - 2ymp) +ymp(1 —ymp)} .

(41)
Finally, derivatives of the form
o’E
P (42)
ax,,pawk,

are a special case of Eq. (30) and so are contained in
the above formalism.

The calculation of the various derivatives therefore
consists of three steps. First, inputs for pattern p are
presented to the network and forward. propagated using
Egs. (1), (35) and (36) to obtain the z°‘s and y’s. Next,
the #’s, o’s and B’s are found by backpropagation
using Egs. (27), (28) and (38)-(41). Finally, the
required derivatives are evaluated using Eqgs. (25), (29)
and (30). The total number of distinct forward and
backward propagations required (per training pattern)
is roughly proportional to the number of units in the
network. This algorithm can be extended to other error
functions (provided they are functions of the output
unit activations) by modifying Eqgs. (28), (39) and (41)
as appropriate.

In this appendix, we have derived a general algor-
ithm for evaluation of the derivative terms required by
fast retraining, for a network of arbitrary feedforward
topology. Many of the expressions simplify in an
obvious way if there is a single layer of hidden units,

I




236 C. Bishop

or if the output units are taken to be linear. Note that,
unlike the standard backpropagation algorithm, several
of the quantities involved are nonlocal. Although
locality may be an important consideration for hard-
ware implementations of neural networks, it is not
directly relevant if the network is to be simulated in
software.

References

1. N. H. Funahashi, ‘“On the approximate realisation of
continuous mappings by neural networks,”” Neural Net-
works 2, 183 (1989).

2. K. Hormnik, M. Stinchcombe, and H. White, ‘‘Multilayer
feedforward networks are universal approximators,”” Neu-
ral Networks 2, 359 (1989).

3. C. M. Bishop, ‘“‘Curvature-driven smoothing in feedfor-
ward networks,”’ Proc. Int. Neural Network Conf., Paris,
Vol. 2, p. 749 (1990), submitted to Neural Networks.

4. A. R. Webb, D. Lowe, and M. D. Bedworth, “A

comparison of nonlinear optimisation strategies for feed-
forward adaptive layered networks,”” RSRE Memorandum
4157 (1988), R.S.R.E., St Andrews Road, Malvern,
Worcs., WR14 3PS, U.K.

. L. P. Ricotta, S. Ragazzini, and G. Martinelli, ‘‘Learn-

ing of word stress in a sub-optimal second order backpro-
pagation neural network,”’ Proc. IEEE Int. Conf. Neural
Networks, Vol. 1, p. 355 (1988).

. S. Becker and Y.le Cun, ‘‘Improving the convergence of

back-propagation learning with second order methods,”’
Proc. Connectionist Models Summer School, ed. Touretz-
ky, Hinton and Sejnowski, Morgan Kaufmann, (1988)
p.- 29.

. D. B. Parker, “‘Optimal algorithms for adaptive net-

works: Second order backpropagation, second order
direct propagation, and second order Hebbian learning,”’
Proc. IEEE First Int. Conf. Neural Networks, San Diego,
CA (1987) Vol. II, p. 593.

. C. M. Bishop, ‘“‘Exact calculation of the Hessian matrix

for the multilayer perceptron,”” submitted to Neural Com-
putation (1991).

—




