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Abstract

Many approaches to object recognition are founded on
probability theory, and can be broadly characterized as
either generative or discriminative according to whether
or not the distribution of the image features is modelled.
Generative and discriminative methods have very differ-
ent characteristics, as well as complementary strengths and
weaknesses. In this paper we introduce new generative and
discriminative models for object detection and classifica-
tion based on weakly labelled training data. We use these
models to illustrate the relative merits of the two approaches
in the context of a data set of widely varying images of non-
rigid objects (animals). Our results support the assertion
that neither approach alone will be sufficient for large scale
object recognition, and we discuss techniques for combin-
ing them.

1. Introduction

Object recognition is currently one of the most actively
researched areas of computer vision. Increasingly, it is be-
ing approached using machine learning techniques based
on probability theory. While many models have been pro-
posed, there has been little attempt at a systematic char-
acterization of the different approaches. In this paper we
show that it is useful to categorize them as either genera-
tive or discriminative. To understand the distinction con-
sider a scenario in which an image described by a vector
X (which might be raw pixel intensities, or some set of fea-
tures extracted from the image) is to be assigned to one ofK
classes k = 1, . . . ,K . From basic decision theory [2] we
know that the most complete characterization of the solu-
tion is expressed in terms of the set of posterior probabilities
p(k|X). Once we know these probabilities it is straightfor-
ward to assign the image X to a particular class to minimize

the expected loss (for instance, if we wish to minimize the
number of misclassifications we assign X to the class hav-
ing the largest posterior probability).

In a discriminative approach we introduce a parametric
model for the posterior probabilities, and infer the values
of the parameters from a set of labelled training data. This
may be done by making point estimates of the parameters
using maximum likelihood, or by computing distributions
over the parameters in a Bayesian setting (for instance by
using variational inference).

By contrast, in a generative approach we model the joint
distribution p(k,X) of images and labels. This can be
done, for instance, by learning the class prior probabilities
p(k) and the class-conditional densities p(X|k) separately.
The required posterior probabilities are then obtained using
Bayes’ theorem

p(k|X) =
p(X|k)p(k)∑
j p(X|j)p(j) (1)

where the sum in the denominator is taken over all classes.
Compared with discriminative approaches, generative

models typically have the following advantages:

1. They can handle missing data or partially labelled data,
and can augment small quantities of expensive labelled
data with large quantities of cheap unlabelled data.

2. A new class K + 1 can be added incrementally by
learning its class-conditional density p(X|K + 1) in-
dependently of all the previous classes.

3. Generative models can readily handle compositional-
ity (e.g. faces with glasses and/or hats, and/or mous-
taches) whereas standard discriminative models need
to see all combinations of possibilities during training.

By contrast, discriminative models generally offer the fol-
lowing advantages:
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1. The flexibility of the model is used in regions of in-
put space where the posterior probabilities differ sig-
nificantly from 0 or 1, whereas generative approaches
model details of the distribution of X which may be
irrelevant for determining the posterior probabilities.

2. Discriminative models are typically very fast at mak-
ing predictions for new (test) data points, while gener-
ative models often require iterative solution.

3. Other things being equal it would be expected that dis-
criminative methods would have better predictive per-
formance since they are trained to predict the class la-
bel rather than the joint distribution of input vectors
and targets.

A key issue in object recognition is the need for predic-
tions to be invariant to a wide variety of transformations of
the input image due to translations and rotations of the ob-
ject in 3D space, changes in viewing direction and distance,
variations in the intensity and nature of the illumination, and
non-rigid transformations of the object itself. Another key
issue is to recognize the object even if it is occluded. In most
of the cases, features obtained from image patches are used
as a solution to these problems. Informative features se-
lected using some information criterion versus generic fea-
tures were compared in [11] and although the informative
features used were shown to be superior to generic features
when used with a simple classification method, they are not
invariant to scale and orientation. By contrast, generic inter-
est point operators such as saliency [6], DoG [7] and Harris-
Laplace [9] detectors are repeatable in the sense that they
are invariant to location, scale and orientation, and some are
also affine invariant [7, 9] to some extent. For the purposes
of this paper we shall consider the use of invariant features
obtained from local regions of the image. However, in Sec-
tion 6 we shall consider the relative merits of generative and
discriminative approaches in the context of learning invari-
ant features from data.

In the hierarchy of object recognition problems, one up-
per level is the localization of the object in the views. Fergus
et al. [5] learn jointly the appearances and relative locations
of a small set of parts whose potential locations are deter-
mined by a saliency detector [6]. Since their algorithm is
very complex, the number of parts has to be kept small.
Based on [3], which performs multiclass object recognition
but cannot detect object in the view, [4] tried to find out in-
formative features, which are expected to be the object fea-
tures, based on information criteria such as likelihood ratio
and mutual information. However, in this supervised ap-
proach, hundreds of images were hand segmented in order
to train support vector machine and Gaussian mixture mod-
els (GMMs) for foreground (i.e. object) background clas-
sification. Finally, Xie and Perez [12] extended the GMM
based approach of [4] to a semi-supervised case inspired

from [5]. A multi-modal GMM was trained to model fore-
ground and background features where some uncluttered
images of foreground were used for the purpose of ini-
tialization. In both our discriminative and generative ap-
proaches, we explore not only the labelling of images ac-
cording to the object categories present, but also the la-
belling of each feature (interest point) as a form of object
localization.

2. Object Recognition

Much of our discussion of generative and discriminative
models has wide applicability. In this paper, however, we
focus on object recognition which has emerged as a ‘grand
challenge’ for computer vision, with the longer term aim of
being able to achieve near human levels of recognition for
tens of thousands of object categories under a wide variety
of conditions.

Our goal in this paper is not to find optimal features
and representations for solving a specific object recognition
task, but rather to fix on a particular, widely used, feature
set and use this as the basis to compare alternative learning
methodologies. We shall also fix on a specific data set, cho-
sen for the wide variability of the objects in order to present
a non-trivial classification problem. In particular, we con-
sider the problem of detecting and distinguishing cows and
sheep in natural images.

We therefore follow several recent approaches [7, 9] and
use an interest point detector to focus attention on a small
number of local patches in each image. This is followed by
invariant feature extraction from a neighbourhood around
each interest point. Specifically we use DoG interest point
detectors, and at each interest point we extract a 128 di-
mensional SIFT feature vector [7]. Following [1] we con-
catenate the SIFT features with additional colour features
comprising average and standard deviation of (R,G,B),
(L, a, b) and (r = R/(R+G+B), g = G/(R+G+B)),
which gives an overall 144 dimensional feature vector. The
result of applying the DoG operator to a cow image is shown
in Figure 1 where squares are centered at the interest points
and width of the square show the scale of the interest point.
The SIFT descriptors and colour features are obtained from
these square patches.

In this paper we use tn to denote the image label vec-
tor for image n with independent components tnk ∈ {0, 1}
in which k = 1, . . .K labels the class. Each class can be
present or absent independently in an image, and we make
no distinction between foreground and background classes
within the model itself. Xn denotes the observation for im-
age n and this comprises as set of Jn patch vectors {xnj}
where j = 1, . . . , Jn. Note that the number Jn of detected
interest points will in general vary from image to image.

On a small-scale problem it is reasonable to segment



and label the objects present in the training images. How-
ever, for large-scale object recognition involving thousands
of categories this will not be feasible, and so instead it is
necessary to employ training data which is at best ‘weakly
labelled’. Here we consider a training set in which each im-
age is labelled only according to the presence or absence of
each category of object (cows and sheep in our example).

Next we associate with each patch j in each image n a
binary label τnjk ∈ {0, 1} denoting the class k of the patch.
For the models developed in this paper we shall consider
these labels to be mutually exclusive, so that

∑K
k=1 τnjk =

1, in other words each patch is assumed to be either cow,
sheep or background. These components can be grouped
together into vectors τnj . Note that this assumption is not
essential, and other formulations could also be considered.
If the values of these labels were available during training
(corresponding to strongly labelled images) then the devel-
opment of recognition models would be greatly simplified.
For weakly labelled data, however, the {τnj} labels are hid-
den (latent) variables, which of course makes the training
problem much harder.

Figure 1. Difference of Gaussian interest points with their local
regions. Note that interest points fall both on the objects of interest
(the cows) and also on the background.

3. The Discriminative Model

We begin by introducing a discriminative model, which
corresponds to the directed graph shown in Figure 2. Con-
sider for a moment a particular image n (and omit the index
n to keep the notation uncluttered). We build a parametric
model yk(xj ,w) for the probability that patch xj belongs to
class k. For example we might use a simple linear-softmax
model with outputs

yk(xj ,w) =
exp(wT

k xj)∑
l exp(wT

l xj)
(2)
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xnjxnj
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�nj�nj

Figure 2. Graphical representation of the discriminative model for
object recognition.

which satisfy 0 � yk � 1 and
∑

k yk = 1. More generally
we can use a multi-layer neural network, relevance vector
machine, etc. The probability of a patch label τ j to be class
k is then given directly in terms of the outputs {yk}

p(τ j |xj) =
K∏

k=1

yk(xj ,w)τjk . (3)

Next we assume that if one, or more, of the patches car-
ries the label for a particular class, then the whole image
will. For instance, if there is at least one local patch in the
image which is labelled ‘cow’ then the whole image will
carry a ‘cow’ label (recall that an image can carry more than
one class label at a time). Thus the conditional distribution
of the image label, given the patch labels, is given by

p(t|τ ) =
K∏

k=1


1 −

J∏
j=1

[1 − τjk]




tk


 J∏

j=1

[1 − τjk]




1−tk

. (4)

In order to obtain the conditional distribution p(t|X) we
have to marginalize over the latent patch labels. Although
there are exponentially many terms in this sum, it can be
performed analytically for our model to give

p(t|X) =
∑
τ


p(t|τ )

J∏
j=1

p(τ j |xj)




=
K∏

k=1


1 −

J∏
j=1

[1 − yk(xj ,w)]




tk


 J∏

j=1

[1 − yk(xj ,w)]




1−tk

. (5)



This can be viewed as a softened (probabilistic) version of
the ‘OR’ function as used in [8].

Given a training set of N images, which are assumed
to be independent, we can construct the likelihood function
from the product of such distributions, one for each data
point. Taking the negative logarithm then gives the follow-
ing error function

E (w) = −
N∑

n=1

K∑
k=1

{tnk ln [1 − Znk] + (1 − tnk) lnZnk}
(6)

where we have defined

Znk =
Jn∏
j=1

[1 − yk (xnj ,w)] . (7)

The parameter vector w can be determined by minimizing
this error (which corresponds to maximizing the likelihood
function) using a standard optimization algorithm such as
scaled conjugate gradients [2]. More generally the like-
lihood function could be used as the basis of a Bayesian
treatment, although we do not consider this here.

Once the optimal value wML is found, the corresponding
functions yk(x,wML) for k = 1, . . . ,K will give the pos-
terior class probabilities for a new patch feature vector x.
Thus the model has learned to label the patches even though
the training data contained only image labels. Note, how-
ever, that as a consequence of the noisy ‘OR’ assumption,
the model only needs to label one foreground patch cor-
rectly in order to predict the image label. It will therefore
learn to pick out a small number of highly discriminative
foreground patches, and will classify the remaining fore-
ground patches, as well as those falling on the background,
as ‘background’ meaning non-discriminative for the fore-
ground class. This will be illustrated in Section 5.

4. The Generative Model

Next we turn to a description of our generative model,
whose graphical representation is shown in Figure 3. The
structure of this model mirrors closely that of the discrimi-
native model. In particular, the same class-label variables
τnj are associated with the patches in each image, and
again these are unobserved and must be marginalized out
in order to obtain maximum likelihood solutions.

In the discriminative model we represented the condi-
tional distribution p(t|X) directly as a parametric model.
By contrast in the generative approach we model p(t,X),
which we decompose into p(t,X) = p(X|t)p(t) and
then model the two factors separately. This decomposition
would allow us, for instance, to employ large numbers of
‘background’ images (those containing no instances of the
object classes) during training without concluding that the
prior probability of objects is small.
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Figure 3. Graphical representation of the generative model for ob-
ject recognition.

Again, we begin by considering a single image n. The
prior p(t) is specified in terms of K parameters ψk where
0 � ψk � 1 and k = 1, . . . ,K , so that

p(t) =
K∏

k=1

ψtk

k (1 − ψk)1−tk . (8)

In general we do not need to learn these from the training
data since the prior occurrences of different classes is more
a property of the way the data was collected than of the real
world frequencies. (Similarly in the discriminative model
we will typically wish to correct for different priors between
the training set and test data using Bayes’ theorem.)

The remainder of the model is specified in terms of the
conditional probabilities p(τ |t) and p(X|τ ). The proba-
bility of generating a patch from a particular class is gov-
erned by a set of parameters πk, one for each class, such
that πk � 0, constrained by the subset of classes actually
present in the image. Thus

p(τ j|t) =

(
K∑

l=1

tlπl

)−1 K∏
k=1

(tkπk)τjk . (9)

Note that there is an overall undetermined scale to these
parameters, which may be removed by fixing one of them,
e.g. π1 = 1.

For each class, the distribution of the patch feature vector
x is governed by a separate mixture of Gaussians which we
denote by

p(x|τ j) =
K∏

k=1

φk(xj ; θk)τjk (10)

where θk denotes the set of parameters (means, covari-
ances and mixing coefficients) associated with this mixture
model.



If we assumeN independent images, and for image nwe
have Jn patches drawn independently, then the joint distri-
bution of all random variables is

N∏
n=1

p(tn)
Jn∏
j=1

p(xnj |τnj)p(τ nj |tn). (11)

Since we wish to maximize likelihood in the presence of
latent variables, namely the {τnj}, we use the EM algo-
rithm. The expected complete-data log likelihood is given
by

N∑
n=1

Jn∑
j=1

{
K∑

k=1

〈τnjk〉 ln [tnkπkφk(xnj)] − ln

(
K∑

l=1

tnlπl

)}
.

(12)
The expected values of τnkj are computed in the E-step

using

〈τnjk〉 =
∑

{τ nj}
τnjkp(τnj |xnj , tn)

=
tnkπkφk(xnj)
K∑

l=1

tnlπlφl(xnj)

. (13)

Notice that the first factor on the right hand side of (9) has
cancelled in the evaluation of 〈τnjk〉.

For the M-step we first set the derivative with respect to
one of the parameters πk equal to zero (note there is no La-
grange multiplier since there is no summation constraint on
the {πk}) and re-arrange to give the following re-estimation
equations

πk =


 N∑

n=1

Jntnk

(
K∑

l=1

tnlπl

)−1


−1

N∑
n=1

Jn∑
j=1

〈τnjk〉.

(14)
Since these represent coupled equations we perform several
(fast) iterations of these equations before proceeding with
the next EM cycle (note that the sums over j can be pre-
computed).

Now consider the optimization with respect to the pa-
rameters θk governing the distribution φk(x; θk). The de-
pendence of the expected complete-data log likelihood on
θk takes the form

N∑
n=1

Jn∑
j=1

〈τnjk〉 lnφk(xnj ; θk) + const. (15)

This is easily maximized for each class k separately using
the EM algorithm (in an inner loop), since (15) simply rep-
resents a log likelihood function for a weighted data set in
which patch (n, j) is weighted with 〈τnjk〉.

Specifically, we use a model in which φk(x; θk) is given
by a Gaussian mixture distribution of the form

φk(x; θk) =
M∑

m=1

ρkmN (x|µkm,Σkm). (16)

The E-step is given by

γnjkm =
ρkmN (xnj |µkm,Σkm)∑

m′ ρkm′N (xnj |µkm′ ,Σkm′)
(17)

while the M-step equations are weighted by the coefficients
〈τnjk〉 to give

µnew
km =

∑
n

∑
j〈τnjk〉γnjkmxnj∑

n

∑
j〈τnjk〉γnjkm

Σnew
km =

∑
n

∑
j〈τnjk〉γnjkm(xnj − µnew

km )(xnj − µnew
km )T∑

n

∑
j〈τnjk〉γnjkm

ρnew
km =

∑
n

∑
j〈τnjk〉γnjkm∑

n

∑
j〈τnjk〉 .

If one EM cycle is performed for each mixture model
φk(x; θk) this is equivalent to a global EM algorithm for
the whole model. However, it is also possible to perform
several EM cycle for each mixture model φk(x; θk) within
the outer EM algorithm. All of these variants yield valid
EM algorithms in which the likelihood never decreases.

The incomplete-data log likelihood can be evaluated af-
ter each iteration to ensure that it is correctly increasing. It
is given by

N∑
n=1

Jn∑
j=1

{
ln

(
K∑

k=1

tnkπkφk(xnj)

)
− ln

(
K∑

l=1

tnlπl

)}
.

Note that, for a data set in which all tnk = 1, the model
simply reduces to fitting a flat mixture to all observations,
and the standard EM is recovered as a special case of the
above equations.

This model can be viewed as a generalization of that pre-
sented in [12] in which a parameter is learned for each mix-
ture component representing the probability of that compo-
nent being foreground. This parameter is then used to select
the most informative N components in a similar approach
to [4] and [11] where the numberN is chosen heuristically.
In our case, however, the probability of each feature belong-
ing to one of the K classes is learned directly.

Inference in the generative model is more complicated
than in the discriminative model. Given all patches X =
{xj} from an image, the posterior probability of the label
τ j for patch j can be found by marginalizing out all other



hidden variables

p (τ j |X) =
∑
t

∑
τ /τ j

p (τ ,X, t)

=
∑
t

p (t)
1(∑K

l=1 πltl

)J

K∏
k=1

(πktkφk (xj))
τjk

∏
i�=j

[
K∑

k=1

πktkφk (xi)

]
(18)

where τ = {τ j} denotes the set of all patch labels, and
τ/τ j denotes this set with τ j omitted. Note that the sum-
mation over all possible t values, which must be done ex-
plicitly, is computationally expensive.

Inference of image label needs almost as much computa-
tion as patch label inference where the posterior probability
of image label t can be computed using

p (t|X) =
p (X|t) p (t)

p (X)
(19)

where p(t) is computed from the data set, p(X) is the nor-
malization factor and p (X|t) is calculated by integrating
out patch labels

p (X|t) =
∑
τ

J∏
j=1

p (X, τ |t)

=
Jn∏
j=1

∑K
k=1 tkπkφk (xj)∑K

l=1 tlπl

. (20)

5. Results

In this study, we have used a test bed of weakly labelled
images each containing either cows or sheep, in which the
animals vary widely in terms of number, pose, size, colour
and texture. There are 167 images in each class, and 10-fold
cross-validation is used to measure performance. For the
discriminative model we used a linear network of the form
(2) with 144 inputs and 3 outputs (cow, sheep, background),
and also two-layer non-linear networks having 50 hidden
units with ‘tanh’ activation functions, and a quadratic regu-
larizer with hyper-parameter 0.2. For the generative model
we used a separate Gaussian mixture for cow, sheep and
background, each of which has 10 components with diago-
nal covariance matrices.

Initial results with the generative model showed that with
random initialization of the mixture model parameters it is
incapable of learning a satisfactory solution. We conjec-
tured that this is due to the problem of multiple local max-
ima in the likelihood function (a similar effect was found
by [12]). To test this we used some segmented images for

initialization purposes (but not for training). 30 cow and 30
sheep images were hand-segmented, and features belonging
to each class were clustered using the K-means algorithm
and the component centers of a class mixture model were
assigned to cluster centers of the respective class. The mix-
ing coefficients were set to the number of points in the cor-
responding cluster divided by the total number of points in
that class. Also, covariance matrixes were computed using
the data points assigned to the respective center.

The overall correct rate means and variances of object
recognition, i.e. image labelling, are given in the first two
rows of Table 1 for linear (L) and nonlinear (NL) discrim-
inative (D) models and generative (G) model. When half
of the data is used in training and the other half is used in
testing, the results do not change significantly and are given
in the last two rows of Table 1.

The performance of the generative model immediately
after initialization and before running the EM algorithm
gave an overall correct classification rate of 90% compared
with 97% after training.

It is also interesting to investigate the extent to which
the two models correctly label the individual patches. In
order to make a comparison in terms of patch labelling we
used 30 hand segmented images for each class. In Table 2
patch labelling scores for foreground (FG) and background
(BG) for discriminative and generative models are given.
Various thresholds are used on patch label probabilities in
order to produce ROC curves for the generative model and
the non-linear network version of the discriminative model,
as shown in Figure 4. We also plot the ROC curve for the
generative model when random initialization is performed
to show the importance of initialization for such models.

As already noted, the discriminative model finds a small
number of highly discriminative foreground patches, and la-
bels all other patches as background, whereas the genera-
tive model must balance both foreground and background
patches. Some examples of patch labelling for test images
are given in Figure 5 for cow images and in Figure 6 for
sheep images.

The hand segmented images were not used in training.
But if they are intended to be used during training also, then
it is very easy to insert these strongly labelled data in the
generative model training. In the outer E step of the EM
training of the generative model, expected patch labels are
computed (13). When strongly labelled data are used then
the known patch labels for the strongly labelled data are
used instead of the expected values while expected patch
labels for weakly labelled data are used as they are. When
we used both weakly labelled and strongly labelled data in
the generative model, the overall correct rate and patch la-
belling success increased slightly compared with the case
when we used strongly labelled data only for initialization
of the generative model.



There is a huge difference between discriminative and
generative models in terms of speed. The generative model
is more than 20 times slower than the discriminative model
in training and more than 2 × 102 times slower in testing.
Typical values for the duration of a single cycle and the to-
tal duration of training and testing are given, for a Matlab
implementation, in Table 3.

Table 1. Overall correct rates (%).
D-L D-NL G

mean 82.5 87.2 97
var 8.17 6.75 2.9
mean 83 84.5 93
var 6.9 3.7 0.52

Table 2. Patch labelling scores.
Class D-BG D-FG G-BG G-FG
Cow 99% 17% 82% 68%
Sheep 99% 5% 52% 82%
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Figure 4. Roc curves of patch labelling.

Table 3. Typical values for speed (sec).
Model Single

train cycle
Total
training

Testing

D-L 3 510 0.0015
D-NL 5 625 0.0033
G 386 15440 0.31

,

,

,

Figure 5. Cow patch labelling examples for discriminative model
(left column) and generative model (right column). Red, green and
white dots denote cow, background and sheep patches respectively
(and are obtained by assigning each patch to the most probable
class).

6 Discussion

In this paper we have introduced and compared a genera-
tive and a discriminative model for object recognition based
on local invariant features. We have shown that the discrim-
inative model is capable of very fast inference, and is able to
focus on highly informative features. By contrast the gener-
ative model gives high classification accuracy, and also has
some ability to localize the objects within the image. How-
ever, the generative model is over twenty thousand times
slower in classifying new images, and also requires some
strongly labelled data for initialization.

One major potential benefit of the generative model is
the ability to augment the labelled data with unlabelled
data. Indeed, a combination of images which are unlabelled,
weakly labelled (having image labels only) and strongly la-
belled (in which patch labels are also provided as well as
the image labels) could be used, provided that all missing
variables are ‘missing at random’.
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Figure 6. Sheep patch labelling examples for discriminative model
(left column) and generative model (right column). Red, green and
white dots denote cow, background and sheep patches respectively.

Another significant potential advantage of generative
models is the relative ease with which the required invari-
ances can be specified, particularly those arising from ge-
ometrical transformations. For instance, the effect of a
translation is simply to shift the pixels. By contrast, in a
discriminative model ensuring invariance to the resulting
highly non-linear transformations of the input variables is
non-trivial. However, inference in such a generative model
can be very complex due to the need to determine values
for the transformation parameters which have high posterior
probability, and this generally involves iteration. A discrim-
inative model, on the other hand, is typically extremely fast
once trained.

Our investigations suggest that the most fruitful ap-
proaches will involve some combination of generative and
discriminative models. Indeed, this is already found to
be the case in speech recognition where generative hidden
Markov models are used to express invariance to non-linear
time warping, and are then trained discriminatively by max-
imizing mutual information in order to achieve high predic-
tive performance.

One promising avenue for investigation is to use a fast
discriminative model to locate regions of high probability in
the parameter space of a generative model, which can sub-
sequently refine the inferences. Indeed, such coupled gen-
erative and discriminative models can mutually train each
other, as has already been demonstrated in a simple context
in [10].

Finally, for the purposes of this study we have ignored
spatial information regarding the relative locations of fea-
ture patches in the image. However, most of our conclusions
remain valid if a spatial model (such as a Markov random
field in the case of a generative model or a conditional ran-
dom field in the case of a discriminative model) is overlaid
on the local classifier.
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