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ABSTRACT. The paper examines the stability of a model divertor tokamak equilibrium to MHD ballooning
and interchange modes. The combined effects of the magnetic separatrix and a finite edge current density can
result in coalescence of the first and second stable regions. This leads to a picture of the H-mode in which the
observed steep edge pressure gradients result from the modified ballooning stability properties.

1. INTRODUCTION

Application of neutral injection heating to tokamak
plasmas generally results in a degradation of energy
confinement. However, tokamaks with poloidal
divertors may exhibit an improved confinement
regime, the H-mode, in which the confinement time is
comparable to that observed with Ohmic heating [1—-3].
In such experiments the boundary of the plasma is
defined by a magnetic separatrix. An outstanding
feature of the H-mode is the occurrence just inside the
separatrix of very steep gradients of density and
temperature, and therefore of pressure. Since pressure
gradients can be limited by the onset of ballooning and
interchange modes, it is of interest to examine how the
stability properties of such modes are modified by the
presence of the separatrix.

Recently the experimental pressure profiles have
been examined (on ASDEX) for their stability to ideal
ballooning modes [4]. The theoretical criterion used,
however, was the s—a model [5] which describes circular
flux surfaces with constant poloidal field and which
therefore neglects the presence of the separatrix and
its effects on MHD stability. In a previous paper on
ballooning stability in the vicinity of a separatrix [6]

a model equilibrium was introduced to describe the
plasma in a divertor tokamak. (This equilibrium
represents a generalization of the s-a model.) The
present work extends the work presented in Ref. [6]
to allow for finite current density. We use a slightly
modified equilibrium model and ballooning equation,
and for completeness we give a brief résumé of the
equilibrium in Section 2. We then examine the
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modified ballooning stability properties at zero current
density. The stability of ballooning modes on the
separatrix itself has been considered by Qu and

Callan [7]. The effects of flux surface shaping on the
first stability boundary have been discussed by

Pogutse et al. [8].

In Section 3 we consider the stability of localized
ideal interchange modes and comment on the close
connection between these and the ballooning modes.
The Appendix deals with the stability of resistive
interchange modes.

The effects on stability of a non-zero current density
are investigated in Section 4. A non-zero current
density can result in the coalescence of the first and
second stable regions for flux surfaces sufficiently close
to the separatrix. The plasma in this region is then
stable for any value of the pressure gradient. A possible
explanation for this effect is given in Section 5.

These results lead in Section 6 to an interpretation
of the H-mode in terms of ideal MHD stability
properties. Quantitative predictions of the model are
found to be in broad agreement with experimental
results. Conclusions are drawn in Section 7.

2. MODEL EQUILIBRIUM
AND BALLOONING STABILITY

We begin with a brief review of the model divertor
tokamak equilibrium and the corresponding ballooning
mode equation introduced in Ref. [6]. The detailed
construction of the equilibrium and the derivation of
the ballooning equation are given in Ref. [9].
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Using a technique devised by Mercier and Luc [10]
the Grad-Shafranov equation is solved locally by
expansion in the neighbourhood of a single flux
surface. The equilibrium is determined once the shape
of the surface and the poloidal magnetic field on the
surface have been specified. This information is taken
from the magnetic field structure surrounding a pair of

long and thin parallel wires carrying equal currents [11].

This linear vacuum system is used only to generate a
single magnetic surface; the equilibrium itself is
calculated in toroidal geometry at finite beta. The
shape of the magnetic surface is specified in polar
co-ordinates (r,0) by the implicit relation

2 2
k=5 JIFO - 1P |4+ 5 [T+ - 1P
To Io
_4ri cos(0 —y) WA FK) — 1]] (1)
0

1(0) = 102(0)

where k is a parameter controlling the shape of the
surface such that as k = 0 the surface becomes a circle
and as k —~ 1 the shape of the surface approaches that
of a separatrix. Equation (1) is normalized so that the
value of r opposite the X-point is held fixed (r = rp),
independent of k. Examples of surfaces with different
values of k are shown in Fig. 1. This diagram also
defines the angle v which controls the poloidal location
of the X-point.

FIG. 1. Plot of magnetic surfaces for various values of k.
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The corresponding poloidal magnetic field on the
flux surface is given by
Bp(60) | _
Bp()

1+§:[\/(1+k)-—1]2

2 —_—
—r—r V(T +K) — 1] cos(@ =)} /(1 +k)
0

= [b()]? 2)

in which the value of the poloidal field opposite the
X-point is held fixed at By = Bpo independent of k.

Throughout this paper we consider a large aspect
ratio tokamak. We therefore write the major radius
X(6) at a point on the flux surface in the form

X(0) = Xy + 86X(0)

for which X, is defined in Fig. 1. We then take the
high-beta tokamak ordering

85X
X o P By
Xo Xo B B

(where p is the plasma pressure and B is the total
magnetic field) and keep only the leading order
contributions in a small-e expansion.

The ballooning equation in large aspect ratio
corresponding to this equilibrium can be written

b ar)

bdhl 0
h “ +P(e)]h df

do || b?
— afsinu + cosu P(A)}F =0 (3)

Here we have written the poloidal arc length as
dl = roh(6)do, with

h(6) = [g* + (g')*]"?

The function P(0) is defined by

[’}
_ [ nde
POY=b | —5
o

q$t+t——a—
f To

2b BXI

and u is the angle between the local tangent to the flux
surface and the X-direction. Also, f(6) = R(6)/ro,
where R(0) is the Gaussian radius of curvature of the
flux surface given by
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[1'2 + (r')2]3/2
[r? +2(1")? —r1"]

R(0) =

Finally we have introduced the parameters

II'>X1‘

I 010

o=(p'+5 )2 4

( X2) Byo @
2p' 12

a=—PT0 )

vﬂlere I(y) is the toroidal field function

(B= (I/X)E:p + Vy X V¢), ¢ is the toroidal angle, and
primes denote derivatives with respect to the poloidal
flux . Note that the pressure gradient parameter «
defined here reduces to the s-« definition [5] when
k= 0. As a consequence of the ballooning trans-
formation [12] the poloidal angle 6 in Eq. (3) lies on
[oo,00]. Equation (3) is solved with the boundary
conditions F(+e0) = 0 and can be regarded as an
eigenvalue equation for a.

In Section 4 we shall be interested in studying the
dependence of the stability properties on the toroidal
current density. Although o is closely related with the
current density, its value depends on the (arbitrary)
definition of X,; that is if we transform
Xo > Xo + C, 6X—>6X-C (6)
where C/X, = 0(¢), then o is not invariant at leading
order in €. This follows from the partial cancellation
ofp'and IT'/X3:

(0" +1T'/X3)/p" = 0(e)

Thus, using Eq. (6), we have

’+I_I,_> ’+I_I,_2£E
Prxe 7P e Tk %2

and the extra term must be retained at leading order.
Instead of using o, we proceed as follows. From Ohm’s
law we can write

nJ-B=-B-ve+B-EA

where EA is the inductive contribution to the electric
field, n is the resistivity and @ is the electrostatic
potential. We can annihilate B- V® by integration
round the flux surface (since ® must be single-valued):
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4 g ve=0
J By

Writing EA = EAZ,, where EA = V/27X and V s the
loop voltage, and using J-B = J |B =-T'B?—Ip’, we have

dl dl BpV
~n§5—(I’B2+Ipﬁ=j§——"’— 7
Bp Bp 27X

It is convenient at this point to introduce a number of

surface-averaged quantities which are defined as follows:

_ 1 fheo 5x
2w b To
__L fhas
2 b3
1 fnao
27 b
_ 1 fhao 5X
27 sz Io
1 [hdo 86X

o) B3 g

1 [ hd6
F=—Q-—
) fb
1 [hdo
Ton) p2 U )

We now expand Eq. (7) in large aspect ratio, taking
account of the partial cancellation in p’ + I T'/X3
and keeping the leading order contribution. This gives

w
A=a—=g¢g 9
b 9
where A is defined by
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A.__(—TOV > (10)
277XOBp0n

Note that Eq. (9) is invariant under Eq. (6).

We are interested in solving the ballooning equation
on flux surfaces near the edge of the plasma. Since
these will be relatively cool and therefore resistive, we
begin by setting the toroidal current density parameter
A to zero and using Eq. (9) to eliminate ¢ in Eq. (3).
This treatment of the edge region avoids the dependence
on the arbitrary quantity X, which occurs if o is set to
zero as was done in Ref. [6]. As a result, the solutions
of the ballooning equation as compared with those of
Ref. [6] are somewhat modified.

Figure 2 shows a plot of « against k for v = n/2,
corresponding to the (single null) divertor configura-
tions in ASDEX and DOUBLET III. These show two
stable regions separated by a region unstable to
ballooning modes. Figures 3 and 4 show the corre-
sponding plots for v = 37/4, corresponding to the PDX
configuration, and vy = m, in which the X-point is on
the inside of the torus. Note that the first stability
boundary is essentially independent of vy while the
second boundary shows a strong dependence on 7,
with the unstable region shrinking as the X-point is
moved further round to the inside of the torus. We can
define the global shear parameter s by [6]

S=M‘Logg. (11)

q dy

Y=m/2
40
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k

FIG. 2. Marginally stable a as a function of k for y = /2,
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FIG. 3. Marginally stable o as a function of k for y = 3n/4.
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FIG. 4. Marginally stable « as a function of k for y = 7.

which reduces to the s-a definition when k = 0. An
expression for s is derived in Ref. [9] and can be
written

oA +2F —aG
§=——

b (12)

Figure 5 is a plot of s against k for values of « corre-
sponding to the first stability boundary of Fig. 3.
(Again we eliminate o in favour of A, and set A = 0.)
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FIG. 5. Global shear s as a function of k,
along the first stability boundary of Fig. 3.

We see that s > 0 as k = 1, even though « remains
finite. Thisis in marked contrast to the s—a model, in
which large shear implies a large value of the marginally
stable a.

Consideration of cases with 0 <y < 7/2 must be
postponed until we have studied the effects of inter-
change modes in the next section.

3. STABILITY OF
IDEAL INTERCHANGE MODES

The criterion derived by Mercier [13] states that

ideal interchange modes will be unstable if Dy <0,
with Dy defined as follows:

5 Pt P
B, ©JB3))XB}
dl dl
+(I2p’ —(2mq")I
(7§ g -0 ) Fing

Here, q(y) is the safety factor and q' is evaluated in
Ref. [9]. Expanding in large aspect ratio and keeping
the leading order contribution, we obtain

> =_+_LK_3_
M™ 47 @2rg)? \ay

(13)

1 «(2AH-2FG — AT)
4 (0A+2F-oG)?

Dy = (149)
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where the various flux surface integrals are as defined
in Eq. (8).

The limit k = O represents the large aspect ratio
tokamak with Bp(6) = constant. This is the s—-a model
introduced in Ref. [5]. To see its connection with
the present study, we eliminate ¢ in favour of the
global shear s given by Eq. (12). Note that s is invariant
under Eq. (6). Using Eq. (12) to eliminate ¢ in Eq. (14),
the marginal stability condition Dy; = 0 becomes

, _ 42AH- AT - 2FG)
s° = o
D?

(15)

In the limit k = 0 we obtain s = 0, showing that
interchange modes are irrelevant for the s—o model.

As we did for ballooning modes, we eliminate o in
Eq. (14) in favour of A as defined by Eq. (9). The
criterion for marginal stability, Dy; = 0, can then be
written

ol?
(G- WA/D)? 1'2'}
— (4AH - 2AT - 2FG — 2WAF/D — AAG + AWA?/D)
o
X —_—
B

By numerical evaluation of the various loop integrals
in Eq. (16) we can solve for the marginally stable «
in terms of the parameters v, k and A.

+(F—AA/2)2=0 (16)

2.0
Y=0

1.5}

[ UNSTABLE

1.0 |

0.5+

0. ) s ' n

0.5 0-6 07 0.8 09 1.0

FIG. 6. Marginally stable o for interchange modes
as a function of k for y=0, A=0.
First ballooning boundary shown by broken line.

1067



BISHOP

For v < /2 (and A = 0), Eq. (16) has two positive
roots which define the boundaries of the first and
second stable regions. Asy = m/2, o = %0, and for
v > w/2 the roots for o are negative. Thus for normal
tokamak pressure profiles the interchange mode will
always be stable whenever v = m/2. For this reason
it was not necessary to consider interchange modes in
plotting Figs 2, 3 and 4.

Again we begin by considering A = 0 and in Fig. 6
we plot « against k for v = 0, corresponding to the
divertor configuration in JT-60. This figure also shows
the corresponding first ballooning stability boundary
obtained by solving Eq. (3) with A = 0.

In Fig. 6 the ballooning boundary has only been
plotted as far as the interchange mode threshold.
Beyond this, the numerical solution of the ballooning
equation is no longer meaningful and the stability
boundary is determined by the interchange mode.
This follows from the relation between ballooning and
interchange modes discussed in Ref. [12]. Asymp-
totically the solution to the ballooning equation,

Eq. (3), behaves like

F(6) ~F,0M +F,0M
where the two values of A are

M=o3-VDw M=o+ y/Dy

2 2
For Dy; > 0, only the small solution is acceptable
since the large solution (even though it tends to zero
if Dy <%) leads to a divergent energy functional 6W.
Numerically we distinguish these two solutions by
solving the ballooning equation on a finite interval
(—0ax < 0 <0p,,5) and imposing the boundary
condition F(£0,,,,,) = 0. This has the effect of setting

Fal pu=n)

ax
F, m

Then, provided 6, is sufficiently large, we have
F,/F; = 0 and we pick out only the small solution.
(In practice we ensure that 6,,,, is large enough by
checking that the eigenvalue is insensitive to the value
of 0,,,.) However, as we approach the Mercier
stability boundary Dy = 0, we have (A\; —A;) = 0 and
we need to use ever larger values of 6,,,, to pick out
the small solution until we exceed some numerical
limitation. In the interchange unstable region, both
solutions are oscillatory and the numerical method
breaks down completely. Although eigenvalues can
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still be found, they can be distinguished from genuine
solutions by their sensitivity to the value of 0,,,.

4. EFFECTS OF
FINITE CURRENT DENSITY

In this section we investigate the effects of non-zero
values of the current density parameter A. We begin by
considering y = 37/4, with k = 0.95. From the previous
section it follows that we do not need to consider
interchange modes since the X-point is on the inside
of the torus. Therefore, in Fig. 7 we plot « against A
for the first and second marginally stable ballooning
boundaries. We see that for A > 0.7 the first and
second regions have coalesced and there is no longer
an instability to ballooning modes. In Fig. 8 we plot
o against k for v = 37/4 and A = 0.8. We see that for
surfaces sufficiently close to the separatrix (k = 0.9)
there is no ballooning unstable region and hence no
ballooning limit to the pressure gradient.

For v < /2 we again have to consider interchange
modes. In Fig. 9 we plot « against A for v =0 and
k =0.95. Again we see that the first and second stable
regions coalesce. However, the first stability boundary
now extends down to « = 0. The reason for this is
easily seen by differentiating Eq. (16) with respect to
A at fixed k and . There will be a minimum in o at

2.0
Y=3n/4

k=0.95

UNSTABLE

0.5¢

0.0 L L s
0-0 0-2 0-4 0.6 0-8

A

FIG. 7. Marginally stable o as a function of A for v = 3n/4 and
k = 0.95, showing coalescence of the first and second stable
regions.
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FIG. 8. Marginally stable a as a function of k for vy = 3n/4 and
A= 0.8, showing the absence of the unstable region near the
edge of the plasma.
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FIG. 9. Marginally stable o for interchange modes
as a function of A for y=0, k= 0.95.

A = 2F/A and the minimum value will be & = 0. Since
the removal of the unstable region requires a minimum
in «, a point where « = 0 will necessarily be present.
In Fig. 10 we plot « against k for y =0 and A = 0.8.
(The first ballooning boundary is also shown.) Again
we see the coalescence of the stability boundaries and
the existence of a point where the marginal o vanishes.
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3.0
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20+
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09 10

FIG. 10. Marginally stable o for interchange modes
as a function of k for y=0, A=0.8.
First ballooning stability boundary shown by the broken line.

5. INTERPRETATION OF THE
ABSENCE OF BALLOONING INSTABILITIES

A simple explanation for the absence of ballooning
instabilities on flux surfaces sufficiently close to the
separatrix can be given on the basis of ideas introduced
in Ref. [14]. This process is very similar to the
mechanism which stabilizes the ballooning mode in a
strongly indented bean-shaped plasma [15]. We begin
by considering the local shear S defined by

=§xv¢.vxlﬁxw an

IVyl? [Vy|?

Ballooning modes tend to be localized along the field
line in regions where the local shear is small or zero.
In equilibrium an increased pressure gradient is
balanced by a strengthening of the poloidal field on
the outside of the torus and this decreases the local
shear and can reverse its sign. A further increase of the
pressure gradient causes the points of zero local shear
to move round the surface away from the region of
destabilizing curvature. The ballooning instability is
usually encountered well before these points reach the
good curvature region on the inside of the torus.
However, if the equilibrium can be modified (in this
case by the introduction of non-zero A) in such a way
that the zeros of local shear always lie in the good
curvature region then, as shown in Ref. [14], the
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ballooning mode will always be stable. This provides a
simple interpretation for the results of the previous
section and leads to a rough estimate for the boundary
of the ballooning unstable region.

Expanding Eq. (17) in large aspect ratio we obtain

N [ W 8X . 2b(60)
"o %D YT M e (18)

S

where N = I/(X3roBpg). The normalized surface
average of Eq. (18) gives the global shear, Eq. (12).
We also need to find the angle 8 at which the normal
curvature changes sign. This occurs when

1 0
o — —— +.1B2 =0
K B2 aw(P 2B%)

which in large aspect ratio reduces to 8X/0y = 0. From
Ref. [9] this is equivalent to sinu(fg) = 0. Again we
consider ¥ = 37/4 and k = 0.95. Since the flux surface
is not up-down symmetric, there will be two values

of 6 at which K vanishes, these being 0 = 0.6357 and
6x =—0.5357. InFig. 11 we show the ballooning
unstable region on an a-A diagram (this is Fig. 7
replotted on a smaller scale). Also shown are the lines
along which S = 0 at 0 = 6 obtained by evaluating

Eq. (18). In the region to the right of these lines the

Y=3m/4

25F \ ! k=095

20}

I
I
1
I
|
I
I

1.0 |
UNSTABLE

051

0.0 N ! . N " s
00 0.4 08 12 16

A

FIG. 11. Fig. 7replotted on a smaller scale together with
the lines along which S=0at 6 = 0.
(I Og=0.635mand II O =—0.535m).
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zeros of local shear always occur in the favourable
curvature region and so any ballooning instabilities
must be confined to the remainder of the a-A diagram.
This is indeed seen to be the case and supports the
interpretation given above for the coalescence of the
first and second stable regions.

6. A PICTURE OF THE H-MODE

The results of Section 4 lead us to suggest the
following simple picture of L- and H-mode regimes
in divertor tokamaks. In the L-mode the edge tempera-
ture and hence the current density are relatively low
and the stability diagram has the form shown in Fig. 3.
The edge pressure gradient is then ballooning limited.
If the edge temperature can be raised (for instance by
the passage of a heat pulse from a sawtooth instability)
then the corresponding increased current density can
lead to a stability diagram like Fig. 7. The edge
pressure gradient can now become very steep. This
corresponds to an increased temperature just inside the
separatrix. The resulting increased current density
maintains the form of the stability diagram and leads
to the bistable nature of the L-H transition. Further
into the plasma the pressure gradient is again
ballooning limited.

Using the value A = 0.7 from Fig. 6, together with
the definition of A (Eq. (10)) and the Spitzer resistivity
formula, we obtain Tegg, = 350 eV, in broad agreement
with the observed values. Also, using data from PDX
published in Ref. [3], we can compare the calculated
stability diagrams with experimental values of « (see
Fig. 6 of Ref. [3]). For the L-mode we obtain « = 0.36
which fits well with the first stability boundary of Fig. 3.
Similarly for the H-mode we obtain a = 3.6 for the
very steep profiles close to the separatrix. Comparison
with Fig. 7 shows that this value lies well into the
second region of stability which is accessible because
of the absence of the ballooning unstable region near
the plasma edge. Further in from the separatrix the
experimental H-mode profiles are less steep and give
o == 0.52, which can again be compared with Fig. 7
and which is consistent with the end of the ballooning
unstable zone at k = 0.9.

With the X-point on the outside of the torus we see
that whenever the first and second stable regions
coalesce there is a flux surface on which @ = 0. This
may have a bearing on the prospects for achieving
H-mode operation in JT-60 and could adversely affect
the pressure profiles which might be obtained.
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7. CONCLUSIONS

We have investigated the stability of a model
divertor tokamak equilibrium to ideal ballooning
modes and to ideal and resistive interchange modes.
This work may also be of interest in connection with
conventional tokamaks when a magnetic separatrix is
introduced into the vacuum vessel, as has been
proposed for JET [16]. Comparison of the stability
diagrams for various values of y (the poloidal location
of the X-point) supports the conclusion, reached in
Ref. [6], that the stability properties become pro-
gressively better as the X-point is moved round to the
inside of the torus. Inclusion of finite current density
shows the possibility of achieving complete stability to
ballooning and interchange modes for surfaces
sufficiently close to the separatrix. This lead to a
picture of the H-mode in which the absence of
ballooning instability permits the very large edge
pressure gradient.

Appendix
RESISTIVE INTERCHANGE MODES
The effect on interchange modes of allowing finite
resistivity and consequent field line reconnection is to
modify the Mercier criterion (13) to read [17]
Dr <0 (A1)

where

Dgr =Dy —[—HP?

a1 a1

__Ip' [B%dl By X* J By
(2mq")J X?B3 B2dl B2dl
X?B3 B,

Again we expand in powers of the inverse aspect ratio
and keep the leading order contribution. This yields

___a(G—WA/D)
H= (0A +2F — aG) (A2)

for which the various loop integrals are defined by
Eq. (8). (At this order there are no cancellations
between H and Dy to consider.) Using Eq. (14) for
Dy we have
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_ «A{T —2H+2WF/D + AG —~ AWA/D}
R (aWA/D - AA +2F - oG)?

(A3)

where again we have eliminated o in favour of A using
Eq. (9). Note that (for a > 0) the sign of Dy is
independent of the value of o and depends only on

v, k and A. By inspection of Eq. (A3) we see that for
A =0 we have Dg <0 if ¥y </2 and we have Dg>0
if ¥ > m/2, so that the resistive interchange mode will
be unstable if the X-point is located on the outside of
the torus. For non-zero A the sign of Dg can be
changed and the mode stabilized.
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