Degenerate toroidal magnetohydrodynamic equilibria and minimum 8
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It is shown that there is a unique configuration of toroidal magnetic surfaces which has the
property that it corresponds to more than one plasma equilibrium and that this is the
configuration of isodynamic equilibria. These equilibria include toroidal minimum-B equilibria
and the distinction between these unstable systems and the stable minimum-B mirror systems is

discussed.

I. INTRODUCTION

Axisymmetric toroidal magnetohydrodynamic
(MHD) equilibria are usually specified in terms of two func-
tions such as the pressure profile p(¢) and poloidal current

S(¥) [or something equivalent, such as the safety factor
q(1)] together with appropriate boundary conditions. An
interesting, and potentially important, question is whether

" an equilibrium is uniquely determined by other data. Re-

cently, Christiansen and Taylor' showed that the shape of
the magnetic surfaces alone can uniquely determine an axi-
symmetric equilibrium and described a method for con-
structing the current profile from the shape of the surfaces in
both toroidal and linear systems. In the linear case, the con-

struction obviously fails when the magnetic surfaces in ques- -

tion are concentric circular cylinders, since an infinity of
different pressure and current profiles leads to equilibria
with circular magnetic surfaces. In this sense circular sur-
faces are degenerate. This raises the question of whether
there are configurations of foroidal magnetic surfaces that
are similarly degenerate and correspond to more than one

" pressure or current profile. The magnetic surfaces of the iso-

dynamic equilibria® (in which magnetic surfaces coincide
with constant-|B | contours) have this property, and we will
show that they are the only such surfaces.

In Sec. II the concept of degenerate surfaces is intro-
duced and in Sec. III we contruct these surfaces using a novel
method of solution of the Grad-Shafranov equation in

which each surface is calculated individually. Some proper- -

ties of the corresponding equilibria are reviewed in Sec. IV,
We note that they include examples of toroidal minimum-B
systems which, like all isodynamic equilibria, are unstable.2
The connection between these unstable minimum-B systems
and the unconditionally stable minimum-B mirror systems
is explored in'Sec. V.

Il. DEGENERATE EQUILIBRIA

In a cylindrical coordinate system R,$,Z, the magnetic
field can be written

=XV [, ()

and in equilibrium ¥(R,Z) satisfies the equation
AY()=R?V-[(1/R?)Vy]
= —uR %p'(¥) — ' (9), (2)

where p(3) is the plasma pressure. If a different plasma
equilibrium, with pressure p*(F) and current S[*(F), has
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identical flux surfaces there must be a functional relation
F = F() between ¥ and F so that
dF d*F
ATF="";A+ — |Vyj2 3
7 v+ a7 [VY] _ (3)

But if Fis indeed an equilibrium, the right-_hand side of this "
expression must have the same form as the rhs of Eq. (2).

This is the case if, and only if, | V4|2 can be expressed in the
form

VY| =a(¥) + BW)R 2 (4)
Hence, if any solution of Eq. (2) can be found that also
satisfies (4), then there will be a whole family of equilibria,
with different pressure and current profiles, which have ex-
actly the same flux surfaces. Note that the total magnetic
field for these degenerate equilibria is

. ) 5 2
B2____(|V¢%l=ﬁ(¢)+-a(¢)+zfm. (5

Il. CONSTRUCTION OF DEGENERATE EQUILIBRIA

In this section we seek solutions of Eq. (2) that have the
“degeneracy” property (4). This is an unusual problem. As
we have already indicated one usually solves Eq. (2) ina
given boundary for known functions p( ¥) and f(¢). In the
present problem the boundary and the functions 2(¥) and
S(¥), as well as a(¢) and B(¥), all have to be.determined.

We write ‘

VYy=R%(¢,R)e, (6)

where e is a unit vector (eg;0,e;) and g2 = [a(y¥)
+B(¥IR?]/R *. Then using the relation

1 4 : '
Vee=—— (Reg)| , : 7
e R IR (Reg) . (7N
the Grad-Shafranov equation (2) can be reduced to
a 1 '
— (R =RL —M(y),
or (Reew) . (¢)+R @), | (8)
where ,
L(¥)=— (uop' +B'72),
M=~ (F' +a'/2). 9
Therefore
R log R 1
=—L M — , 10
ger == ¥ + R (¢)+R c¥) (10)

which defines a single surface in terms of the three param-
eters L,M,C. If we introduce R, as the radius at which e
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= 0 (i.e., where the surface is tangential to the R axis), Eq.
(10) becomes

eR =h(¢9R)/g(¢’R)) ez = (1 _h2/g2)1/2, (11)
with
L(y) R*—R3) M), R
h(¢,R) = log — 12
(#.R) 5 =z + R og . (12)
and , .
g(R) = [a(¥) + B(¥)R*1'*/R2 (13)

Several conditions have yet to be imposed if the single
surface defined by (10) or (11) is to be part of a global
equilibrium. One of these is that the surface should be a
smooth closed curve—but it is convenient to defer consider-
ation of this until other conditions have been dealt with.
These arise from the requirement that

VX (R %ge) =0, (14)

which relates adjacent surfaces. Using (11) for e, and e,
introducing (R,¥) as independent variables and carrying
out some manipulation, (14) leads to the condition

3
RO _ s 0k RO

2 & db 2 IR
R 0oh? 2
———+2(&" —-h") =0 (15)
2 JR g
At this point it is convenient to introduce new quantities
P=a/L? Q=B/L? andX=R2:Z. (16)

Then, when g and 4 are introduced into Eq. (15), it is re-
duced to a polynomial in R and log R with coefficients that
are functions of ¥. To satisfy this for all values of yand R the
coefficients must vanish so that Eq. (15) can be satisfied if|
and only if, four conditions are met. The first of these is that
M =0. This means that a(y) (a property of the solution to
the Grad-Shafranov equation) is related to f(¢) (part of the
specification of the equation) by a 4 f* = const. Hence in
degenerate equilibria the total magnetic field must be of the
form
B*=pB(y) +k/R>

Such equilibria have been investigated by Palumbo.? If
k = 0, they are “isodynamic,” that is, the flux surfaces are
also surfaces of constant B 2. The remaining three conditions
implied by (15) are in the form of ordinary differential equa-
tions that must be satisfied by P,Q,X. They can be written

G 9B__40° _
i P+x0

Gy 92—3 (17)
dA

(i) ax _ -2 ,
i P+XQ

where dA = dy/L(¥).

We must now consider the surface closure condition
mentioned earlier. When M = 0, the equation for a magnetic
surface obtained from (11)—(13) becomes

a’Z= — (x—-X)

84 , 18)
dx 4[P+ QOx —x(x —X)*/4]'? (
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where x = R 2. Then the closure of the surfaces provides a
further relation between P, Q, and X,

FP/X*Q/Xx?)

Ef (s— 1)ds
[P/X>+5Q/X? —5(s— 1)2/4]12

- Y

(19)
where the integration is between the two largest roots of the
denominator. The integral can be expressed in terms of com-
plete elliptic integrals.

Note that L(¢) no longer appears explicitly in the prob-
lem and can be chosen arbitrarily. This reflects the degener-
acy of the plasma equilibria we are seeking. Also all the equa-
tions are invariant under a scale transformation X—u.X,
PP, Q—p*Q, A—p?A, which merely magnifies and rela-
bels the surfaces.

The magnetic surfaces of the degenerate equilibria can
now be constructed. We use the scale invariance to set X = 1
at the magnetic axis. Then from the closure condition Eq.
(19) we find (see the Appendix) that near the magnetic axis
P—0, 0—0, with P /Q = — 1/3. Using these as starting val-
ues, P(1), Q(4), and X (1) are computed from the differen-
tial equations (17). We choose the origin of 4 so that A =0
on axis. Then @(4) = 34 and the computed values for P(1)
and X (4) are shown in Figs. 1 and 2. [A very good approxi-
mation is P(1) =A(104 —1) and X(4)=~1 — 34.] Once
P(A), Q(A), and X(A) are found the individual magnetic
surfaces are computed from (18). In this way the complete
configuration is built up surface by surface. The result is
shown in Fig. 3, which agrees with Palumbo’s calculation.?
It is an important feature of this construction (see the Ap-
pendix) that if the initial surface is closed, so are all others. It
is also clear that the surfaces constructed in this way are
unique apart from the scale factor already noted.

At this point it is useful to summarize the construction
of the degenerate magnetic configuration. We first obtain an
equation satisfied by a single magnetic surface; this contains
three unknown parameters. The condition that this single
surface be part of an equilibrium imposes constraints on
these three parameters in the form of differential equations
and the condition that the surfaces be closed provides the
initial values for these differential equations. Their solution
then provides the value of the three parameters on each mag-
netic surface. Note that the equilibria are obtained without
at any time needing to solve a partial differential equation.
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FIG. 1. The function P(1).
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FIG. 2. The function X(A1).

IV. PROPERTIES OF THE EQUILIBRIA

In this section we review some of the properties of the
degenerate equilibria associated with the surfaces of Fig. 3.
The unknown functions a, 3, p, and £, which describe the
equilibria, are functions of L(A). Thus

a(d) =L*(A)P(A),
B(A) =L*(A)Q(4),

3 : d (LQ
—p(A) = — LA __( ),
#o(u}?( ) A4 a \ 2
4 .,
_— =0. 20
EY) (f*+a) (20)

The equilibria therefore involve two constants of integration
and the arbitrary function L(A1). The following features de-
pend on L(A). The toroidal field

B = —L*)P(A)/R*+k/R> (21)
The poloidal field
By =L*(A)[Q(A) + P(A)/R?]. (22)
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FIG. 3. The unique magnetic surfaces of degenerate equilibria.
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FIG. 4. The function ().

The total field »
B*=L%*A)Q(A) + k/R>2 (23)
The toroidal current density
, 1 d 1 - d
= —~R(L ——(L? )___ L?p
s "w Tt P) g EP
(24)
and the plasma pressure
2 A
P =po- 2L ["120 a1 (25)
210 podo

The integration constant p, can be used to set the pressure to
zero on any chosen surface. If the other constant of integra-
tion k is set equal to zero we have the isodynamic equilibria
introduced by Palumbo,? in which constant-B surfaces and
flux surfaces coincide. Furthermore, the field strength B?
increases with distance from the magnetic axis if AL (1) is
an increasing function of A so that minimum-3 equilibria are
included. [However, (p+B?%2) is always a decreasing
function of A, and B 2 vanishes on the magnetic axis so that
minimum-B fields exist only for finite £.] Some features of
isodynamic equilibria are independent of L and of the pres-
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FIG. 5. The function w(A4).
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sure profile. They include the safety factor g, shown in Fig. 4,
and u=|j- B|/B?,

d . 5
“= —;’I|PI”2+5]P1”2, (26)

which is shown in Fig. 5. It will be noted that in the isodyna-
mic equilibria both the poloidal and toroidal magnetic fields
vanish on axis, but in such a way that ¢ is also zero on axis.
On the other hand y is singular on axis, but is nevertheless
substantially constant across a large part of the available
aperture.

V. STABILITY OF MINIMUM-5 EQUILIBRIA

Minimum-B mirror systems with a pressure tensor p,
=p, (B), py = p, (B) are almost unconditionally stable.*
However, Palumbo® has pointed out that isodynamic toroi-
dal equilibria are always unstable according to the Mercier
criterion,” at least near the magnetic axis. Hence the toroidal
minimum-B equilibria mentioned above are also unstable,
despite the fact that they have the analogous property
p =p(B). Itis a worthwhile examining how this distinction
arises.
The energy integral for anisotropic plasma can be ex-
pressed in the form®

SW=Qi[1+4 (p. —py)/B?*]1 +Qj[1 4+ (2, + C)/B*] —jin-Q, XE[1+ (p, —p,)/B?]

+q[§’an + (p. —py)s] — (29,/B +5)[§-Vp, — (2p, + C)s] + K2,

where s=(§-VB)/B, g= —&+(n-V)n, and
Q = VX (§XB). Thelast term in 6 Wis a contribution of the
trapped particles and C'is a moment of the distribution func-
tion. We also have the equilibrium relations

wy_ o =p) 38

Js B ds
9. _(C+2p.) 3B (28)
Jds B Js

Consequently, for mirror equilibria with p, =p, (B), p,
= p, (B), where the parallel current is zero, the energy inte-
gral reduces to

+ Q3 [1+ (2p, + C)/B?] + 4~ (29)

This is automatically positive for all disturbances provided
only that the weak requirements (for mirror and firchose
stability) :

dp, (B) (30)

Bz+pl>17”, +B>0

are satisfied. Therefore these mirror minimum-B equilibria
are always stable, even at finite 5.

On the other hand, the corresponding energy principle
for scalar-pressure plasma [obtained from (27) by setting p,
=py» (2C+p,) =0, and dropping the trapped particle
contribution] is

SW=Q +Qf —j(n-Q, X&)
+&-Vplg—s—2Q,/B). (31)
This has to be minimized over the two-component vector
E = §,, butit is permissible to carry out one of the minimiza-
tions over Q). Then
SW=Qi —jj(n-Q, X§)
+2(§-Vp)[§-V(p + B?/2)], (32)
where we have introduced the explicit form for s and ex-
pressedgas —e*V(p+B?/2)B>
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(27)

It can be seen from this that even though p = p(B) po-
tential sources of instability associated with both Vp and
with j; remain. Consequently, unlike the mirror case, no
general conclusion about stability follows from the fact that
» = p(B) in toroidal, scalar pressure, systems. One reason
(in addition to the presence of| Ji.) why the stability of mirror
equilibria does not carry over to scalar pressure can be seen
from Eq. (28). With py =p) (B) this implies

dpu (B) _ P —py
dB B
and the scalar pressure limit of this is p = const!

’

VI. CONCLUSIONS -

We have shown that there is a unique configuration of
toroidal magnetic surfaces that corresponds to more than
one equilibrium. In this respect it is the analog of a set of
concentric circular surfaces for the cylindrical equilibria. It
is also the configuration of the isodynamic equilibria. We
constructed this degenerate configuration (Fig. 3) by a nov-
el approach to the Grad—Shafranov equation in which the
magnetic surfaces-are calculated individually. Each surface
is defined by an ordinary differential equation containing
three parameters. These parameters satisfy differential equa-
tions representing the fact that each surface is part of a global
equilibrium and the initial values for these equations are de-
termined by the requirement that the surfaces are closed.

We have also noted that among the isodynamic equili-
bria there are toroidal minimum-B equilibria in which B in-
creases and p decreases everywhere with the distance from
the magnetic axis. (They are possible despite the well-known
result’ that there are no similar vacuum fields because they
exist only at high-8 and have no low-3 limit.) Such equili-
bria differ from tokamaks in that B, R B, and from the toroi-
dal pinch in that ¢(¢) is increasing with minor radius rather
than decreasing, and from both in that B and q are zero on
the magnetic axis. Despite their minimum-B character, the
fact that p = p(B) and that all guiding center drifts lie in the
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magnetic surface (i.e., the equilibria are omnigeneous®?®),
they do not possess the intrinsic stability of their mirror
counterparts. Nevertheless, their freedom from neoclassical
and trapped particle effects might make them interesting if
examples with gross stability could be found. In this respect,
an instability to localized modes near the axis need not be
catastrophic—any more than it is in tokamaks with g < 1.
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APPENDIX A: THE SURFACE CLOSURE CONDITION
A magnetic surface is described by the equation
az _ — (=)

dx  4[P+ Qx —x(x — X)%/4]"/?’

which contains three parameters P(¢), C(#), and X ¥).

These parameters themselves must satisfy the differential

equations (17). However, in addition, one must ensure that

the surface generated by (A1) is smooth and closed. This

requires that the three roots sy,s,,s, of the denominator be
real and

(A1)

1 5.
f f (s — 1)ds
+ =0,
s, 1 [P/X245Q/X3 —5s(s— 1)2/4]"/2

(A2)

where s, and s, are the two largest roots. [ The curve is paral-
lel to the Z axis at s =5, and s = s, and parallel to the R axis
ats = 1.] This closure condition can be expressed in terms of
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complete elliptic integrals of the first and second kind as
E(a) + abK(b) = 0, (A3)

where a = (s, —5,)/(s, — $,) and b = (s, — 1)/(s, — s5,).

At the magnetic axis s, and s, are coincident and the
roots become 0,1,1. This occurs when P /X >—0, Q /X 2—0.
Intheneighborhood of theaxis 2 /X *and Q /X 2aresmalland
the roots are

4P 2P P 172
SO—F’ Snsz:l“},? iz(}g“i'}Q;) . (A4)
In this limit the closure condition (A2) or (A3) can readily
be evaluated to show that in the vicinity of the axis
0/X*= —3P/X3 (AS5)

It can be verified that this is compatible, in the appropri-
ate limit, with the differential equations (17). We have, in

fact, verified that the full closure condition (A3) is consis- *

tent with these differential equations. This means that if one
ensures that the initial values of P,Q,X correspond to a closed
surface then closure is ensured for all other surfaces. Clo-
sure, although crucial to the calculation, is required only to
give initial values for the differential equations (17); there-
after it follows automatically.
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