Ballooning A’ in the second stable region
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The stability of resistive ballooning modes in the second ideal stability region is an important
issue that has recently received much attention. In this paper it is shown that the ballooning A’
is negative, and therefore that the A’-driven modes are stable, throughout most of the second
region. These results are compared with those of Kim and Choi [Phys. Fluids B 1, 1444

(1989)1.

I. INTRODUCTION

When the radial pressure gradient in a tokamak exceeds
a critical value the equilibrium becomes unstable to the ideal
ballooning mode. At still higher values of the pressure gradi-
ent, however, the plasma is once again stable. This phenome-
non is known as the second stability regime, and it offers the
possibility of plasmas with very high B (where 3 is the ratio
of plasma pressure to magnetic pressure). An important is-
sue is whether plasmas in the second regime are stable or
unstable to resistive ballooning modes.

Sykes, Bishop, and Hastie' studied the resistive balloon-
ing stability of the well-known s-a equilibrium by evaluating
the quantity A’, the ratio of coefficients of the small and large
solutions of the ballooning equation in the asymptotic re-
gion. The resistive ballooning mode is unstable when A’ ex-
ceeds a critical value A;. In the incompressible limit A, = 0,
while the inclusion of compressibility leads to A’ >0.>?
From now on we shall, for simplicity, consider A’ = 0 to be
the condition for marginal stability. Sykes, Bishop, and Has-
tie! showed that although the first stable region is unstable to
resistive ballooning modes, throughout most of the second
region we have A’ <0, and so the plasma is then stable. A
recent paper by Kim and Choi,* however, claims that A’ is
only negative over a small part of the second region. One
purpose of the present paper is to point out an important
error in Ref. 5 and to show that the results presented in Ref. 1
are indeed correct. The behavior of A’ in the second region is
discussed in some detail in Sec. IL

In addition to the A’-driven modes there exist modes
driven from within the resonant layer,> and these may be
unstable even when A’ <0, as discussed in Ref. 4. Such
modes are considered in Sec. III, and conclusions are pre-
sented in Sec. IV.

Il. BEHAVIOR OF A’ IN THE SECOND REGION

It was claimed by Kim and Choi* that A’ for the s-a
model is negative only over a small part of the second region.
We shall show that this is not the case, and that A’ is negative
almost everywhere in the second region except very close to
the ideal stability boundary. The error in Ref. 5 was in set-
ting the ballooning mode parameter §, equal to zero. As was
shown by Sykes, Bishop, and Hastie' the value of 8, must be
chosen so as to maximize the unstable zone, and in the sec-
ond region this leads to values of 8,7#0. By choosing the
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correct value for 6, we obtain results in agreement with those
of Ref. 1 as we now show.

Figure 1 shows a plot of A’ vs & for s = 0.5 and with
6, = 0. The asymptotes where A’ o correspond to the
ideal stability boundaries. This diagram agrees with Fig. 1 of
Kim and Choi,* although the latter was only plotted as far as
a = 2.5, and therefore did not show the final change of sign
of A’ to negative values at large . The corresponding s-a
plotis shown in Fig. 2, again with 6, = 0. The dashed curves
show the ideal stability boundaries, while the solid curves
correspond to A’ = 0. A resistively unstable band with A’ > 0
is clearly seen in the second region.

We now replot these diagrams using the correct values
of 6,, i.e., those that maximize the extent of the unstable
regions. As was shown in Ref. 1 the optimum value of 6, for
resistive modes is §,~0, and thus the A’ = 0 curve in Fig. 2
(which was plotted for 8, = 0) is essentially unchanged in
the optimization over 6,. For ideal modes in the second re-
gion, however, we have 6, ~ 7 and this produces a significant
shift in the second ideal stability boundary to larger values of
a so as to engulf most of the resistively unstable region of
Fig. 2. Figure 3 shows A’ vs a, again for s = 0.5. The ideal
second stability boundary has moved to a larger value of a,
and A’ is only positive very close to the ideal boundary. This
can also be seen in Fig. 4, which shows the corresponding s-a
plot, and it is clear that A’ is negative throughout most of the
second region, as is claimed in Ref. 1.
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FIG. 1. Plot of A’ vs a for s = 0.5 and 6, = 0.
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FIG. 2. A s-a diagram with 6, = 0. Dashed curves show the ideal stal :lity
boundaries, and solid curves correspond to A’ = 0.

Ili. ADDITIONAL CONSIDERATIONS

Kim and Choi* have stated that the results of Sykes,
Bishop, and Hastie! were limited to low values of the toroi-
dal mode number # as a result of the use of the two length-
scale assumption, and the consequent introduction of A’ as
the quantity determining stability. From Drake and Anton-
sen? it follows that the two length-scale assumption is valid
provided

n<A'SV/s, (1)

where S is the magnetic Reynolds number. Strictly, this is
violated at marginal stability (A’ = 0), but if we take a small
value, say A’ = L, as representative of marginality, and in-
sert typical values for a tokamak such as JET: S~108 s~1,
we have n«<10°. This is a very large number and poses no
serious limitation to the theory. Indeed, the use of resistive
magnetohydrodynamic (MHD) to describe ballooning sta-
bility will itself break down at lower values of # than this. For
instance, ion Kkinetic effects will be important when
k,p;,~O(1), where k, ~m/r~nq/r is the perpendicular
wave vector, p; is the ion Lamor radius, ¢ is the safety factor,
and r is the minor radius. Again, typical values for JET
would be p,~2x107* m, r~0.8 m, and g~2, giving
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FIG. 3. Plot of A’ vs a for s = 0.5, using the optimum value of §, for each
value of a.
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FIG. 4. A s-a diagram using the optimum value of , at each point. Dashed
curves show the ideal stability boundaries, and solid curves correspond to
A'=0.

n <200. Again, this is not a serious limitation on the theory,
although it does indicate that little is to be gained from
avoiding the two length-scale assumption.

As discussed by Kadomtsev et al.> and Carreras et al.®
there also exists a different class of resistive ballooning mode
driven by the resistive layer, whose stability properties are
independent of A’. Such modes may be unstable in the sec-
ond region even when A’ <0, as was found by Kim and
Choi.* These results are in agreement with those found by
Hender et al.,” who considered not only the s-a model but
who also investigated the effects of a separatrix geometry.
Drake and Antonsen® have shown that compressibility ef-
fects, which were absent in Ref. 4, have a significant stabiliz-
ing effect.

IV. CONCLUSIONS

We have shown that in the ideal second stability region,
A’ <0 almost everywhere, and so equilibria in the second
region will be stable to A’-driven resistive ballooning modes.
These results differ from those of Kim and Choi,* and we
have discussed the source of their error. The second region,
may, however, be unstable to a layer-driven ballooning
mode, although finite compressibility has a significant stabi-
lizing effect.
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