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Dual-energy gamma densitometry offers a powerful technique for the non-intrusive analysis of multiphase flows. By employing
multiple beam lines, information on the phase configuration can be obtained. Once the configuration is known, it then becomes
possible in principle to determine the phase fractions. In practice, however, the extraction of the phase fractions from the
densitometer data is complicated by the wide variety of phase configurations which can arise, and by the considerable difficulties of
modelling multiphase flows. In this paper we show that neural network techniques provide a powerful approach to the analysis of
data from dual-energy gamma densitometers, allowing both the phase configuration and the phase fractions to be determined with
high accuracy, whilst avoiding the uncertainties associated with modelling. The technique is well suited to the determination of oil,
water and gas fractions in multiphase oil pipelines. Results from linear and non-linear network models are compared, and a new

technique for validating the network output is described.

1. Introduction

The accurate mass-flow metering of oil well prod-
ucts is of great importance to the oil industry. The high
cost of sub-sea production has led to the use of multi-
phase pipelines to transfer mixtures of oil, water and
gas, sometimes derived from more than one field. This
provides a requirement for multiphase metering in
which the flow rates of oil, water and gas can be
determined with sufficient accuracy for reservoir man-
agement, for monitoring the withdrawal of fluids from
a reservoir, and for custody transfer purposes. Ideally
the measurements should be carried out non-intru-
sively. To this end, nuclear techniques, notably neutron
interrogation and activation, and gamma densitometry
and cross correlation, have an important part to play.
It is unlikely, however, that any one technique will
provide all the information required for the mass-flow
metering of all three components. Restricting our at-
tention to nuclear based techniques, we note that neu-
tron interrogation can provide phase fraction measure-
ments, and oxygen activation by pulsed fast neutrons
can provide separate phase velocities for phases which
contain oxygen [1]. Dual-energy gamma densitometry
(the subject of this paper) gives the oil, water and gas
fractions along the gamma beam path, and this infor-
mation can be translated into phase fractions for known
three phase configurations [2,3]. The cross correlation
of single energy densitometry data has been applied to
provide velocity measurements for two phase liquid-gas
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systems [4]. Computer modelling studies of the cross
correlation of two dual energy densitometry measure-
ments indicated that the velocity of the liquids in a
three phase system can be obtained independently of
the gas phase velocity [5].

In this paper we present the results of an investiga-
tion in which neural network analysis is used to derive
the phase configuration, and thus oil, water and gas
phase volume fractions, from simulated data for a six
beam dual energy densitometer. It is shown that neural
network techniques provide a powerful and practical
solution to the problem of interpreting gamma densito-
meter data which can readily be applied in the opera-
tional environment. The network can learn the re-
quired non-linear transformations needed to extract
phase fractions from the densitometer data by using a
set of examples, thereby avoiding the need for complex
and uncertain modelling of the 3-phase flow. In fact, as
we shall show, there is no need to determine the phase
configuration at all.

In section 2 we give an overview of the dual-energy
gamma densitometry system and its application to oil
pipeline monitoring. An introductory overview of neu-
ral networks is given in section 3, followed in section 4
by a discussion of the dataset used to train and test the
networks. A detailed account of the mathematical
derivations used to define the data set are given in the
appendix.

The first problem addressed is that of using the
gamma densitometry information to determine the ge-
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ometrical configuration of the multiphase flow, and
this is discussed in section 5. We show that the neural
network is able to distinguish several different configu-
rations with high reliability. In section 6 we then ex-
ploit neural networks to determine the oil fraction
directly from the gamma densitometry measurements.
Note that this technique does not itself require the
phase configurations to have been determined.

An important practical consideration is the length
of time for which the gamma signals have to be inte-
grated, since this determines the overall accuracy of
the system as well as the length of time needed to
make a measurement. The effects of integration time
on network performance are investigated in section 7.
It is shown that good performance can be obtained
with integration times of a few tens of seconds.

Another important issue concerns the robustness of
the neural network solution. Since the neural network
learns by example its performance may deteriorate if it
is presented with input data which differs significantly
from that used during training. While this problem can
largely be avoided by careful selection of the training
data set, it is important to have a means for verifying
the phase fractions predicted by the network. In sec-
tion 8 we demonstrate that a verification system can be
designed which is able to detect novel input data with
high reliability.

Finally, the significance of the results is discussed in
section 9.

2. Dual-energy gamma densitometry

Here we give a brief overview of the technique of
dual-energy gamma densitometry. We do not aim to
give a complete treatment, but sufficient detail is given
to make the paper self contained.

Gamma densitometry [2] makes use of the attenua-
tion of a beam of gamma rays passing through matter.
The degree of attenuation is dependent on the path
length within the material, the nature of the material
and the wavelength of the gamma rays. Since, for a
given substance, the fraction of the beam attenuated
per unit length is constant, over a finite distance the
beam intensity will fall exponentially. We therefore
write the intensity of a gamma beam (of given wave-
length) after passing through a length x of material in
the form
I=1,e #P*, )
where p is the mass density of the material, u is the
mass absorption coefficient of the material at the given
wavelength, and I is the intensity of the gamma beam
in the absence of material. Since, for a given material,
w© and p can be measured separately, determination of
I allows the length x of material between the gamma
source and the detector to be determined.

water

beam

Fig. 1. Schematic cross section of a pipe containing oil, water

and gas in a stratified configuration, showing the path of a

gamma beam together with the definitions of the path lengths
Xoy Xy, Xg and d.

A gamma beam passing through a multiphase
pipeline will be attenuated by water, oil and gas each
of which will have its own density and absorption
coefficient. Fig. 1 shows a schematic illustration of a
collimated gamma beam passing through a circular
cross section pipe containing oil, water and gas in a
stratified configuration. The intensity of the beam after
passing through the pipe will be given by

I =1, e HoPo¥o g™ HuPuXy o~ HePyXy ()

where I, is now the beam intensity if there were no
material in the pipe (i.e. a vacuum), and x,, x,, and Xy
are defined in fig. 1. Here we have introduced separate
densities and mass absorption coefficients for each of
the three phases. Note that even if the three phases
are in a different geometrical configuration, for in-
stance if they are homogeneously mixed, we can still
apply eq. (2) provided we interpret the x’s as the total
effective path length through each phase.

The basic problem is to determine the values of the
three unknowns x, x,, and X,. In dual-energy gamma
densitometry this is achieved by sending a second
gamma beam through the pipe along the same chord as
the first beam. This second beam has a different wave-
length, and so the absorption coefficients will have
different values. For the second beam we have

I'=1I; € “HoPo¥o @ ~HwPwXw o~ HgPgXy (3)
It is convenient at this point to define the quantities
L=-In(I/l)), L'=-In(1'/I}). 4)
We can then write egs. (2) and (3) in the form
L=popoXot hwPyXy+ HhePyXy, (%)
L' = popoXo+ WyPwXy + HopgXy. (6)
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Since L and L’ are measured from the gamma beam
attenuation, and since the p’s and u’s are known, egs.
(5) and (6) represent two equations in three unknowns.
The third equation needed to determine the x’s comes
from the geometrical constraint that the sum of the x’s
must equal the total path length

X, tx,tx,=d, 7
as shown in fig. 1. We can therefore solve the three

simultaneous algebraic egs. (5), (6) and (7) to give the
path length in oil in the form ‘

L —pgpgd L' —pyped
BwPw = BgPg  MwPw — KgPg
Xo = ’ . . (8)
{ FoPo ~ KePg  MoPo~ KgPy }
HwPw = HgPy  MwPw — KgPy

A similar expression is obtained for x,. The value
of x, can then be found from eq. (7). Thus, dual-en-
ergy gamma densitometry allows us to determine the
path length through each phase along the line of sight
of the gamma beam. This, however, does not allow us
to determine the oil fraction directly since the path
lengths depend both on the oil fraction and on the
geometrical configuration of the phases. Since many
different phase configurations are possible with multi-
phase flows, we need further information.

One approach is to introduce a baffle system into
the pipe which is designed to induce turbulence into
the flow and thereby homogenise the three phases. If
the gamma measurements are made -a short distance
downstream of the baffle, then we can assume that the
three phases are well mixed, and the phase fractions
can be determined from the path lengths using

fo=xo/d’ fw=xw/d’ fg=1_fo_fw7 (9)

where f,, f,, and f, represent the volume fractions of
oil, water and gas respectively. One significant draw-
back with this approach is that there must be a suitable
baffle plate already installed in the pipeline. This tech-
nique cannot therefore be used with a portable moni-
tor system intended to be used on a new section of
pipe at short notice. A second disadvantage with the
baffle system is that the baffle itself can introduce
significant drag into the flows and so reduce pumping
efficiency.

We describe here an alternative technique which
does not require any modification to the pipeline and
which can therefore be used as a truly portable flow
monitor. It is based on the use of multiple beam lines,
each comprising a dual-energy gamma densitometer, to
give additional information concerning the phase con-
figuration. Throughout this paper we shall consider a
particular system, employing six beam lines arranged as
shown in fig. 2, which together provide 12 independent
measurements giving information on the phase config-
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Fig. 2. Cross section of the pipe showing the arrangement of

the six beam lines. Each beam line comprises a single dual-
energy gamma densitometer.

uration. The principles are quite general, however, and
can be applied equally well to any similar system.
Details of the geometry are given in the appendix. If
the phase configuration is known then the phase frac-
tions can usually be obtained by straightforward calcu-
lation, as was done for the case of homogeneous flows
in eq. (9). The task, therefore, is to use the 12 measure-
ments to determine the phase configuration. Note that
the phase configuration may not be static, but may
have significant time variations. Since the dual-energy
gamma densitometry technique must take a measure-
ment over a period of several seconds it will average
over any time variation on a shorter time scale. The
system therefore sees a time averaged phase configura-
tion.

A key difficulty in determining the phase configura-
tion is that the various possible configurations are not
usually known in advance. In principle, one approach
to the determination of the phase configuration from
the dual-energy measurements is to use tomographic
reconstruction techniques to obtain an image of the
phase configuration directly. In practice such an ap-
proach cannot be adopted due to the very limited
number of beam lines available. (Practical tomography
systems generally make use of hundreds or thousands
of independent lines of sight.) In this paper we shall
show how neural network techniques provide an effec-
tive and practical solution to the problem of determin-
ing the configuration.

Furthermore, we shall show that a neural network
can be used to map the 12 measurements directly onto
the phase fractions themselves, without the need to
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determine the phase configuration as an intermediate
step.

3. The neural network algorithm

Before describing the neural network approach to
the determination of phase configurations and frac-
tions, we give here a brief overview of the neural
network algorithm which we shall use. More general
accounts of neural networks can be found in refs. [6,7].
For a recent review of neural networks and their
applications see ref. [8].

Neural network techniques have their origins in
ideas of brain function dating back to the 1940s. One
of the key aims of researchers in this field is to provide
new algorithms and techniques for solving pattern
recognition and data analysis problems. After a period
of considerable activity in the 1960s, research in this
area diminished during the 1970s as alternative ap-
proaches were pursued. The tremendous resurgence of
activity in this area in the late 1980s can be attributed
in part to the availability of high speed computer
hardware and in part to the development of powerful
new algorithms such as the technique of “error back-
propagation” which will be reviewed shortly. Neural
network techniques have now been proven to be of
considerable practical benefit in a wide range of appli-
cation areas.

The biological inspiration of neural networks has
led to much misplaced optimism and exaggeration of
their current capabilities. This is unfortunate, since
they represent a genuinely new set of data processing
tools with many useful attributes. Here we shall view
neural networks as an extension of the family of statis-
tical pattern recognition techniques. As such, many
aspects of their performance can be understood with-
out appealing to loose biological analogies.

Our approach to the interpretation of data from the
dual-energy gamma densitometer is based on a particu-
lar class of neural network known as the multilayer
perceptron (MLP). We therefore begin with a general
description of MLP and highlight its key features. The
MLP can be regarded as a class of nonlinear functions
which map a number of input variables onto a number
of output variables. The particular transformation is
governed by a set of parameters (known weights and
biases) whose values can be chosen with the aid of a
set of examples of the desired mapping. The procedure
of determining the weights and biases is called network
training, and the set of examples is called a training
set. First, we shall describe the MLP in terms of a class
of parameterised functions. Then we will show how it
can be represented as a network diagram. Finally, we
shall discuss the algorithms which we use to train the
network.

Consider a set of N input (independent) variables
Xy,'**, Xy, which can be grouped together to form an
N-dimensional vector x. The MLP is a functional map-
ping which transforms these input variables into a set
of M output (dependent) variables y,, - -, y,,, which
can similarly be grouped together to form an M-di-
mensional vector y. The MLP transformation is speci-
fied by the following three steps.

1) Multiply x by a matrix of weight parameters W®
of size NXL and add an L-dimensional bias vector
bD to give an L-dimensional intermediate vector a

a=W®.x4+p®, (10)

2) Transform each of the components of the vector
a using a nonlinear function g(a) to create a new
vector z.

z;=g(a;) i=1,---,L. (11)

3) Finally, multiply the vector z by a second matrix
of weight parameters W® of size L X M and add an
M-dimensional bias vector @ to give the output vec-
tor y

y=W®.z4p® (12)

Thus the whole transformation generated by the MLP
can be written in the form

y=W® .g(w(l) x4+ b(l)) + 5P, (13)

where it is understood that the function g( ) acts on
each component of its vector argument separately.
There are several possible choices for g( ), although it
must be differentiable. We shall use the sigmoid

1
O ey

(14)

which is plotted in fig. 3.
The form of MLP represented by eq. (13) will be
used for the determination of phase fractions in sec-

o)
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Fig. 3. Plot of the sigmoid function defined in eq. (14).

—
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outputs

other multidimensional space with arbitrary accuracy.
This universality property is discussed in ref. [9]. Sec-
ond, there exist computationally efficient procedures
which allow the weight matrices and bias vectors to be
chosen on the basis of a set of examples of the desired
mapping. These are referred to as training algorithms
and the set of examples is usually called a training set.

A useful analogy to help understand the MLP is
that of curve fitting. In a standard curve fitting prob-
lem we are given a set of values of the independent

variable x together with the corresponding values of
the dePndPnt variable y The prr\hlem is_to_find_a

Xo X X, X3

inputs
Fig. 4. An example of a multilayer perceptron having three
input units, three units in the hidden layer and two output

units. The black circles correspond to bias units whose activa-
tion is fixed at +1.

tion 6. For problems in which we wish to classify the
input vectors into a number of discrete categories it is
convenient to transform the output variables also using
the sigmoid function, so that

y=8g(W®-z+p®) (15)

which, for the sigmoidal function in eq. (14), ensures
that the outputs of the network remain in the interval
(0, 1). This form of the MLP will be used in the
determination of phase configurations in section 5.

Before we discuss the properties of the MLP in
detail, we first show how it can be represented in terms
of a network diagram. This will also serve to introduce
some of the terminology. In fig. 4 we show an example
of an MLP, for the particular case of N=3, L =3 and
M =2. The three inputs x; —x; are represented by
circles at the bottom of the diagram, the three interme-
diate variables z; —z; correspond to the three circles
labelled hidden units, and the two outputs y; and y,
are represented by the two circles at the top of the
diagram. The elements of the two matrices W and
W are represented by lines connecting the corre-
sponding units. The biases can be regarded as special
weights from an extra input or hidden unit whose
activation is fixed at + 1. These extra units are shown
by the black circles. The term neural network arises
because there is a superficial analogy between the
mathematical operations performed by the hidden and
output units in the artificial network, and the neurons
in the human brain.

The functional form in eq. (13) has two important
properties. First, it can be shown that, for a sufficiently
large number L of hidden units, the MLP can repre-
sent any functional mapping (subject to some mild
restrictions) from one multidimensional space to an-

smooth curve which provides a representation of the
underlying trend of the data points. For example we
might wish to represent the trends in the data using a
quadratic polynomial of the form

h(x) =wyx?+wx +w,. (16)

The curve is parameterised by the values of w,, w; and
w,. Their values can be chosen by minimising an error
function which is often taken to be a sum of squares of
the form

E?=Y (h(x?)—y")? (17)

where p is an index which labels the individual data
points (x?, y?).

The MLP neural network generalises the technique
of curve fitting to allow for arbitrary numbers of input
(independent) and output (dependent) variables, and
to allow for essentially arbitrary functional forms (from
the universality theorem mentioned above). The weight
and bias parameters in the neural network are analo-
gous to the coefficients of the polynomial in eq. (16).
The determination of the weight and bias values can be
done in a similar way to that used for polynomial curve
fitting. We shall therefore consider the minimisation of
a sum-of-squares error of the form

E=Yly(x")~y"|? (18)

where | - -+ | denotes the length of a vector, and again
p labels an individual point (x?, y”) in the training
data set. There is an important difference between the
error functions in the two cases, however. The error
function E? for the polynomial was a quadratic func-
tion of the coefficients, and so its derivatives with
respect to the coefficients form a set of linear equa-
tions which are easily solved and which in general have
a unique solution. The error function E for the neural
network, however, is a complex nonlinear function of
the weights and biases, and the determination of its
minimum represents a complex problem, with the pos-
sibility of local as well as global minima.

Fortunately the MLP exhibits an important prop-
erty which drastically reduces the computational effort
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needed to train it. Most practical optimisation algo-
rithms for minimising non-linear functions make use of
the derivatives of the error with respect to the ad-
justable parameters. If the function depends on ./
parameters (the weights and biases in the case of the
neural network error function) then the computational
effort needed to evaluate the error will scale like 7.
Furthermore, there are .#" derivatives which need to
be calculated, and so the total computational effort
which is needed to evaluate all of the derivatives will in
general scale like .#"2. For the MLP, however, there is
an efficient algorithm, known as backpropagation [10],
which allows all .#" derivatives to be obtained in #(.#")
steps. The discovery of this algorithm is one of the
reasons why neural network techniques have found
such a large number of practical applications in recent
years. It is somewhat analogous to the discovery of the
fast Fourier transform (FFT) algorithm which reduced
the computational effort needed from &(#2) to
(W In &), and led to the widespread use of the
Fourier transform. A detailed description of the back-
propagation algorithm can be found in refs. [7,8,10].

The backpropagation algorithm allows the deriva-
tives of E .with respect to the weights and biases to be
evaluated efficiently. These derivatives can then be
used in a variety of standard nonlinear optimisation
algorithms, such as conjugate gradients, to find the
minimum of FE starting from some randomly chosen
initial starting point in weight space. The original back-
propagation technique made use of gradient descent to
optimise the weights and biases. We employ a tech-
nique known as the BFGS (Broyden-Fletcher—Gold-
farb—Shanno) memoryless quasi-Newton algorithm
which we have found to be very effective for a wide
range of neural network problems. As with the method
of conjugate gradients it involves successive line min-
imisations along carefully selected search directions.
One “epoch” of training involves .# line minimisa-
tions, where .7 is the total number of weights and
biases in the network. Training of a neural network
generally involves many complete epochs. A more de-
tailed discussion of training algorithms can be found in
ref. [8].

In curve fitting problems involving noisy data, if we
want to get a good representation of the trends in the
data, and not simply fit the curve exactly through each
data point, it is important to have an overdetermined
problem in which there are more data points than
there are degrees of freedom (i.e. coefficients) in the
fitting function. A similar situation holds for the case
of neural network training. For a given data set we
must determine the appropriate number of adjustable
parameters in the network. The number of inputs and
outputs is generally fixed by the problem being solved.
We can, however, adjust the number of parameters by
varying the number of hidden units. If there are too

few parameters then the range of functions which the
network can generate will be too restricted, while if the

~ number of parameters is too great the network func-

tion will fit to the noise on the data and will not
generalise well when tested with new data. In order to
determine the optimum number of hidden units we will
use the technique of cross validation. This involves
using independent training and test sets, and training
networks with various numbers of hidden units on the
training set and testing their performance on the test
set. The optimum network is the one which gives the
smallest test set error.

As we have seen, neural networks with hidden units
can approximate a large class of nonlinear transforma-
tions. It is also of interest, however, to consider net-
works having a single layer of adaptive weights. These
are much more restricted in the class of functions
which they can represent, but this can be advantageous
in pattern recognition applications [8]. It also provides
a useful indication of the degree of non-linearity
needed for the particular problem. Thus, for the deter-
mination of phase fractions we will consider transfor-
mations of the form

y=W®O. x4 p®, (19)

which represents a linear relation between input and
output variables. For the classification of phase config-
uration it is again convenient to transform the outputs
using a sigmoid function to give

y=g(W® x4+ pD), (20)

The weights and biases in these networks will be deter-
mined using the same algorithm as for the networks
with hidden layers. It should be noted, however, that
the solution of the least squares problem for eq. (19)
can be formulated in closed form in terms of the
pseudo-inverse matrix [8].

4. Generation of datasets

For the purposes of this study we have used syn-
thetic data sets generated in such a way as to model
closely the kind of data to be expected from a hard-
ware realisation of the dual-energy gamma densitome-
ter system. In particular, we have based the generation
of data on the beam configuration shownin fig. 2. The
dominant source of noise in the system arises from
photon statistics (except at long integration times), and
this too has been accurately modelled.

Multiphase flows along pipes ican lead to many
different geometrical configurations of the phase frac-
tions. Due to the complexity of modelling multiphase
flows this is the most difficult part of the problem to
stimulate. For the purposes of this study, however, it is
sufficient to consider a small number of example con-



586 C.M. Bishop, G.D. James / Analysis of multiphase flows

stratified annular
Inverse homogeneous
annular

D water

Fig. 5. The four model phase configurations used in this study.

figurations which are representative of the kinds of
flows which might be expected in practice. We have
considered four different configurations as shown in
fig. 5. These are not intended to be accurate represen-
tations of true flows, but have been chosen to allow for
straightforward analysis. Stratified, annular and homo-
geneous configurations occur in practice, and “inverse
annular” provides a fourth configuration which can be
calculated using the same algebra as used for the
annular configuration. :

For each of these configurations we have allowed
all possible values of the oil and water fractions. Data
sets have been generated using the following proce-
dure.

1) Choose one of the four phase configurations at

random with equal probability.

2) Choose three random numbers f;, f, and f3

selected uniformly in the interval (0, 1), and set

fi f

S N L — 21
fitfatfs fitha+fs (21)

This procedure treats each of the three phases on
an equal footing and ensures that f, +f, + f, = 1.
3) For each of the six beam lines, calculate the
effective path lengths through oil and water for the
given configuration and phase fractions. The equa-
tions needed to de this are derived in the appendix.
4) Perturb the path lengths to allow for the effect
of photon statistics.

£

Each data set entry contains the following information:
12 values of path lengths (one in oil and one in water
for each of the 6 beam lines), a label describing the
phase configuration, f, and f,.

The effect of photon statistics is included as follows.
If the expected number of counts on a particular beam
during a given time interval is {n), then the actual
number n observed on any particular measurement
will be governed by a Poisson distribution £, so that

n=2({n)). (22)

For each data point we begin by calculating the ex-
pected beam intensities using egs. (2) and (3). The
intensities [, and I; are calculated by requiring that,
for each beam line, the count rate should be 60000
counts s~ when the pipe contains only gas. This sets
the maximum count rate to 60000 for each of the
detectors and thereby ensures that they are operating
in a range where the count rates are as high as possible
without saturation (since 60000 cps is a typical upper
limit for scintillation counters). Thus we have

I, e HeP? = 60000, (23)
I} e #ePd = 60000. (24)

The expected (i.e. average) number of photons is ob-
tained by integrating the intensity over a time interval
At

(n)=IAt, (n')=I'At. (25)

We then replace {n) by n using the Poisson distribu-
tion (22) to give the observed number of photons for
the particular measurement (and similarly for n'). We
then retrace our steps and calculate the path length in
oil, using egs. (4) and (8), together with the relations

I=n/At, I'=n'/At. (26)

A similar procedure is used to calculate the path
length in water.

The integration time At determines the noise level
on the measurements. If At is small the number of
photons detected will be small and will therefore be
subject to large fluctuations. Conversely for long inte-
gration times the error due to photon statistics will be
small. In practice, At would be chosen as a compre-
hensive between minimising noise levels and minimis-
ing the time needed to take a measurement.

Note that, for each configuration, all possible values
of f, and f,, have been allowed. In practice we would
anticipate significant correlations between the phase
fractions and the phase configuration, which would be
expected to simplify the pattern recognition problem.
In this sense the data set used in this study may be
more challenging than data obtained from an actual
experiment. However, this may be offset to some ex-
tent by the fact that in practice there may be more
than four possible phase configurations.
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5. Classification of phase configuration

So far we have described the generation of the data
set and we have given an overview of the multilayer
perceptron neural network architecture. We now put
these together and investigate the capabilities of the
neutral network to perform automatic analysis of the
data. In this section we consider the problem of using
the network to determine the phase configuration, and
in the next section we use the network to determine
the phase fractions. The use of neural network to
predict phase configuration in two-phase air-water
flows from air and water flow rates was discussed in
ref. [11].

A training set and test set were generated, each
containing 1000 examples, but differing in the seed
used for the random number generator (which deter-
mines the phase configuration and phase fractions). An
integration time At of ten seconds was chosen as being
typical of the value which might be used in an experi-
mental setup. The effects of varying the integration
time will be studied in section 7.

Networks were used which had 12 inputs corre-
sponding to the effective path lengths in oil and water
for each of the 6 beam lengths. The networks had 4
outputs with one output corresponding to each of the 4
possible configurations, and sigmoidal functions were
used for the network output units in accordance with
eq. (15). Target values for training the network were
chosen using the “one-of-M” coding scheme whereby
the target for the output unit corresponding to the
configuration for the particular example is set to one,
with the targets for all other output units set to zero.
Thus, if the 4 output units are assigned to (homoge-
neous, stratified, annular, inverse annular) respectively,
and we have a particular example which belongs to the
annular configuration, then the output targets for the
example would be (0, 0, 1, 0).

One important feature of the one-of-M coding
scheme is that when the error measure is a sum of
squares error (as used here) then the outputs of the
trained network, (when the network is presented with a
new input vector) approximate the Bayesian a-post-
eriori probabilities of membership of the correspond-
ing class (i.e. phase configuration in this case). The
outputs of the network should then sum to one. It is
well known that in pattern classification problems the
minimum misclassification rate is obtained when new
data vectors are assigned to the class having the largest
a-posteriori probability. In the case of the neural net-
work trained using the one-of-M coding this means
that when a new pattern is presented to the network it
should be assigned to the class for which the corre-
sponding output unit has the highest activation. For a
more detailed discussion of this result see refs. [8,12].

Networks having various numbers of hidden units

Table 1
Results for neural network prediction of phase configurations.
Values of zero indicate errors of less that 1.0x 10™*

Niidden ERMS ERMS % correct- % correct-
(train) X102 (test) X102 train test

1 26.9 27.0 98.4 98.2

2 3.86 9.51 99.7 98.1

3 3.16 5.47 99.6 99.2

4 0.0 7.98 100 99.0

5 0.0 6.16 100 99.3

6 0.0 6.33 100 99.2

Linear 13.3 14.8 98.9 98.6

were trained, each for 300 complete epochs of the
BFGS optimisation algorithm (see section 3). To assess
the results from the trained networks we evaluate a
root mean square error defined by

1/2
Thoily(x?) —yP)?
MP

where P is the total number of patterns and M is the
total number of output units. In addition, we also
calculate the predicted configuration for each example
and compare it with the known configuration from the
data set. This allows us to evaluate the fraction of the
examples in the data set which the network has classi-
fied correctly. Results are shown in table 1.

Here “linear” denotes the corresponding results
obtained from a network having a single layer of weights
and biases (i.e. no hidden units) and with sigmoid
output units. This corresponds to a form of linear
discriminant function.

It is clear from table 1 that even small networks can
give excellent discrimination of the phase configura-
tion. Once the phase configuration is known it is then,
in principle, a straightforward matter of geometry to
calculate the phase fractions given the 12 path length
measurements.

More detail on the performance of the network in
determining the phase configuration can be obtained
from “confusion matrices” which show, for each actual
configuration, how the examples were distributed ac-
cording to the predicted configurations. For perfect
classification all entries would be zero except on the
leading diagonal.: Here the configurations have been
ordered as (homogeneous, stratified, annular, inverse
annular). The confusion matrices for both training and
test sets generated by the trained network having 5
hidden units are

ERMS = { (27)

Predicted Predicted
259 0 0 0 255 0 0 0
0 239 0 0 1 247 0 1
Actual
cuall g o a2 o | Al 5 To 1 o
0 0 0 255 3 0 0 250
Training Test
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Similarly, the confusion matrices for both training and
test sets for the linear discriminant are

Predicted Predicted
259 0 0 0 255 0 0 0
4 232 3 0 4 244 1 0
Actual} o 07 g7 o | Amall 5 T o o
4 0 0 251 7 0 0 246
Training Test

The excellent discrimination performance is related
to the fact that the positioning of the beam lines is well
matched to the four configurations used in this study.
For more complex configurations, such as might occur
in practice, the discrimination problem may be more
difficult. In this case the advantages of nonlinear net-
works versus linear networks may become more pro-
nounced.

6. Prediction of phase fractions

We have shown in the previous section that neural
network techniques can provide an effective approach
to the problem of determining which of a number of
(known) phase configurations is present, given the in-
formation from the dual-energy gamma densitometer.
For a given phase configuration it is then a straightfor-
ward geometrical calculation to determine the phase
fractions. We have therefore shown that the densito-
meter data contains enough information to determine
the phase fractions. This suggests that we try to extract
the phase fractions directly from the densitometer data,
without going through the intermediate step of deter-
mining the configuration. This is the approach which
we explore in this section.

The same data sets were used as in the previous
section, and again the networks had 12 inputs corre-
sponding to the 12 densitometer measurements. Two
outputs were used, corresponding to the oil and water
fractions, and the target values for network training
were given by f, and f,. When presented with a new
input vector, the trained network should then produce
an estimate of f, and f,, directly at the outputs. In this
case the sigmoidal activation functions were omitted
from the output units, (since they are not needed here)
so that the MLP transformation had the form given in
eq. (13).

For comparison the same data were used to train a
simple linear network of the form given in eq. (19). The
results on both training and test sets for the trained
neural networks are shown in fig. 6. Here the RMS
error defined by eq. (27) is plotted against the number
of hidden units. This graph shows a typical trend in
which the training error decreases steadily as the num-
ber of hidden units, and hence the number of parame-
ters in the network, is increased. The test error, how-
ever, decreases at first as the greater flexibility in the

0.03

0.025 |

0.02 -

0.015 |

RMS error

0.01 i

0.005 1

0 . . .
10 15 20

number of hidden units

Fig. 6. Plot of the RMS error produced by the neural network

mapping for both the training and test sets as a function of

the number of hidden units. The arrow indicates the mini-

mum in the test error which occurs for the network having

eight hidden units, which is therefore selected as the best
network.

o
wm

network allows more complex functions to be gener-
ated, and then increases again when there are too
many degrees of freedom in the network. For a discus-
sion of this effect see ref. [8]. The minimum test set
error occurs for 8 hidden units as shown by the arrow
in fig. 6. The errors both for this network and for the
linear mapping are summarised in table 2.

Since the phase fraction is a number in the range
(0, 1) we see that an error of 1.79 X 10~2 on new data
means that the network is able to determine the phase
fractions typically to a few percent.

Fig. 7 shows a scatter plot of the oil fraction pre-
dicted by the network with 8 hidden units versus the
actual oil fraction for all of the points in the test set.
The corresponding plot for the linear mapping is shown
in fig. 8.

Similar results are obtained for the water fraction

far

7. Effects of integration time

As explained in section 4, the integration time At
determines the noise level on the data arising from

Table 2

Results for neural network prediction of phase fractions for
the network with the optimal number of hidden units, and for
the linear map

Niidden ERMS (train) x 102 ERMS (test) x 102
8 1.68 1.79
Linear 2.72 2.60
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Fig. 7. Scatter plot of the predicted oil fraction from the
neural network vs the actual oil fraction, for all points in the
test set.

photon statistics. For short integration times, there-
fore, we expect the performance of the network to
deteriorate. In order to provide some indication of the
integration times which would be needed in a practical
system we have investigated the dependence of ERMS
on At.

We have generated several data sets corresponding
to various values of A¢, each with 1000 entries in both
training and test versions (differing only in the seed for
the random number generator). All training runs were
performed with networks having 8 hidden units since
this was found to be the optimum number when At
was set to ten seconds. The results are plotted in fig. 9.

As expected the error increases on both training
and test sets as the integration time is reduced below
100 s. Fig. 9 provides an indication of the integration
time which might be needed to achieve a given level of
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Fig. 8. Scatter plot of the predicted oil fraction from the

optimal linear mapping vs the actual oil fraction, for all points
in the test set.
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Fig. 9. Plot of the RMS error from both training and test sets
vs the integration time for networks having eight hidden units.

accuracy. It is interesting to note that the test RMS
error actually increases with increasing At for values
of At greater than about 100 s. This is interpreted as
follows. The network architecture was optimised for a
value of At of 10 s. For much larger values of At the
data is much smoother and the optimum number of
hidden units may be smaller than 8. In this case there
will be some tendency towards overfitting, leading to a
decrease in the training set error but an increase in the
test set error. We have not, however, investigated this
effect in detail. It is clear from fig. 9 that for integra-
tion times of a few tens of seconds the effects of
photon statistics should not give rise to significant
errors in the predicted phase fractions.

It might be supposed that an appropriate strategy
would be to train the network using data collected with
large integration times (since the network training only
needs to be performed once) and then to use shorter
integration times when the system is put to use. In fact
such a strategy is likely to yield poor results since the
new data would then have a substantially different
distribution to the training data. Training the network
with noisy data avoids the problem of the network
being excessively sensitive to noise on new data.

8. Detection of novel configurations

As we have seen, the neural network approach to
the analysis of data from dual-energy gamma densito-
meters relies on the provision of a suitable set of
training data. When the trained neural network is
applied in the field to new data it can be expected to
perform satisfactorily provided the input data is similar
to that used during training. More precisely, a correctly
trained network should have predictable performance
provided the data presented to it is drawn from the
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same statistical distribution as was used to generate the
training data. If substantially novel data is presented to
the network then it will be prone to significant errors.
In practice, the availability of a controlled test rig
should allow the collection of extensive data under a
sufficiently wide range of conditions to ensure that the
network performs satisfactorily in the field. Neverthe-
less, it is important to provide an operational system
with some means of detecting novel input data in order
that some degree of validation can be performed on
the results generated by the network. Here we describe
a relatively simple approach to the detection of novelty
in the input data and show that it is able to detect the
occurence of erroneous output signals.

When new data is presented to the network, the
novelty detector classifies it according to whether or
not it is similar to the data used to train the network.
The technique involves evaluating a likelihood function
(obtained from the training data) and determining
whether its value exceeds a given threshold. While this
criterion is intuitively plausible, it can also be derived
from the optimal Bayesian formalism for classification.
This allows us to clarify the assumptions which are
being made in this approach.

We shall suppose that the data which is provided to
the network is drawn from one of two classes each
described by a fixed probability density function. The
class &, corresponds to the data used to train (and
test) the network and is governed by the class condi-
tional density function p(x|%,) where x denotes the
vector of 12 inputs to the network. This should be read
as the probability density of x given that the class is &.
The second class %, represents the novel data corre-
sponding to new configurations of multiphase flow
which were absent from the training set (or to similar
configurations to those in the training set but with
novel values of the phase fractions). Again, we shall
suppose that this data is drawn from a fixed class
conditional density function p(x|%,). We shall sup-
pose that, once the network is installed in the field, the
data vectors are drawn from %, with a-priori probabil-
ity P(%,), and from &, with a-priori probability P(%,),
where P(%,) + P(%,) = 1.

Given a particular input vector x we wish to assign
it to one of the two classes &, or %,. The probability
of misclassification is minimised if we assign it to the
class for which the a-posteriori probability is largest
[13]. From Bayes theorem the a-posteriori probability
of the vector belonging to class &, can be written as

p(x1%,) P(%,)

P(%, |x)= 28
( k ) p(x) ( )

where the unconditional density p(x) is given by

p(x) =p(x|%,))P(%,) +p(x1%,) P(%,). (29)

This acts as a normalisation factor to ensure that the
a-posteriori probabilities sum to 1

P(%,1x) +P(%,|x) =1. (30)

Since the denominator in eq. (28) is the same for both
classes it can be omitted from the comparison of prob-
abilities needed to assign x to a particular class. We
therefore assign x to class &, if

P("I%z)P(gz)
P(%))

and to class &, otherwise.

We can obtain an expression for p(x|#;) using
standard techniques of non-parametric density estima-
tion [13]. We have chosen a kernel based approach
with Gaussian kernel functions in which the kernel
function centres are given by the data points in the
training set. We therefore have

p(x|&y) > (31)

L lx—x,|?
p(x|%,) =const. ) exp{ — ——— 1}, (32)
R 2h

where x, represents the pth data point from the
training set. The parameter # controls the degree of
smoothness of the estimated density function and its
value must be neither too large nor too small. We have
adopted the simple heuristic of setting 4 to the average
distance of the ten nearest neighbours, averaged over
all points in the training data set. This gave a value of
h=0.252.

The determination of the density function for the
novel data is more problematic since by definition we
do not know what sort of configurations to expect. We
do know that the measured path lengths are subject to
some simple constraints, so that if d is the total path
length in the pipe for a given beam we must have

0<x,<d, 0<x,<d-x,. (33)
These constraints are illustrated in fig. 10. In prac-
tice these constraints are ‘“‘softened” somewhat by the

effects of photon noise and other sources of error.
Beyond this we have little idea of what to expect and

0 >
0 c,l\x"

Fig. 10. Accessible values of x, and x,, for a single beam line,
before allowing for the effects of photon statistics.
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Fig. 11. Schematic illustration of the Bayesian formulation of
novelty detection. Points which fall in the region %, are
classified as novel.

so we shall take the density function for class %, to be
uniform within the boundaries of the regions defined
by the constraints. Since the a-priori probabilities are
also constants the decision criterion (31) amounts to
setting a constant threshold for p(x|#)). Any given
value for the threshold defines a decision surface in
the 12-dimensional input space which divides it into
two regions %; and %, according to whether the
criterion classifies an input vector x as belonging to
class &, or &,. This is illustrated schematically for a
one-dimensional space in fig. 11. As we shall see, one
way to choose the threshold is to set it to the largest
value that still allows the bulk of the test set examples
to be classified as class ). Such a procedure avoids
having to choose values for the a-priori probabilities.
In order to test the performance of this novelty detec-
tor we have generated a further data set, consisting of
1000 examples with randomly chosen oil and water
fractions, corresponding to a 5th configuration referred
to as “inverted-stratified” which is obtained by invert-
ing the stratified configuration of fig. 5. Again, this is
not intended to be a realistic configuration but is
chosen for computational simplicity. It suffices, how-
ever, to illustrate the detection of novel configurations.
As before, photon statistics were included, with an
integration time of 10 s.

When viewed as a function of x, the density func-
tion p(x|#,) is generally called a likelihood. In order
to represent the results graphically, it is convenient to
consider the logarithm of this quantity. Since “log” is a
monotonic function it does not affect the location of
the decision boundaries, provided the threshold is ad-
justed accordingly. Fig. 12 shows a plot of the log
likelihood versus the magnitude of the error between
the oil fraction predicted by the neural network and
the true value obtained from the data set. Here the
network with 8 hidden units described in section 6 was
used. The crosses show the 1000 points from the test
set (with an integration time of 10 s) as used in section
6. It is clear that for these data the network gives a
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Fig. 12. Plot of log-likelihood from the novelty detector vs

absolute oil fraction error from the neural network. Crosses

show data from the original test set, while circles correspond
to data from a new Sth phase configuration.

small error (as we have already seen) and that the log
likelihood is always larger than (say) —5. The circles
show the 1000 samples corresponding to the inverted-
stratified configuration. The majority of these points
have log likelihood values which are substantially
smaller than those of the test set points, and a corre-
spondingly larger range of oil fraction errors. We see
that the network can indeed generate poor results
when presented with data from this new configuration.
Such data points can, however, easily be rejected on
the basis of their log likelihood values. Setting a
threshold anywhere between —5 and — 10 would reject
all data points having significant phase fraction errors.

It can also be seen from fig. 12 that there are some
inverted-stratified points lying within the cluster of
crosses. Examination of the phase fractions for these
points shows that they represent configurations which

NS

Fig. 13. Definition of the variables to find the height of an
interface between two phases, given the phase fractions and
the pipe radius.
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could also be classified as stratified configurations. For
instance, if the oil phase fraction is sufficiently large
then the three horizontal beam lines pass through oil
only and there exist stratified and inverted-stratified
configurations having the same phase fractions which
give rise to the same 12 path length measurements.
The novelty detector “correctly” interprets these as
being similar to the training data, and indeed the
network predicts the phase fraction to high accuracy.

In practice, we would expect the neural network to
generate accurate phase fraction predictions under
most circumstances. The role of the novelty detector is
to prevent occasional novel configurations from gener-
ating spurious outputs. This ensures that the neural
network can form the basis for a robust system which
can be deployed in the field.

A more severe problem would arise if there existed
two distinct configurations for which different values of
the phase fractions gave rise to similar measurement
values from the densitometer beam lines. In such cases
any data analysis method which worked solely with the
densitometer data would necessarily be prone to seri-
ous error. This problem can be avoided by careful
selection of the number and placement of the beam
lines so as to ensure that the densitometer always
provides sufficient information to allow the different
configurations to be discriminated. This in turn re-
quires some prior understanding of the qualitative na-
ture of possible configurations.

9. Discussion

In this paper we have shown that neural network
techniques, combined with dual-energy gamma densit-
ometry, provide a powerful and accurate approach to
the non-invasive analysis of multiphase flows. Although
there is insufficient information to perform a tomo-
graphic reconstruction of the phase configuration, a
neural network can learn to distinguish between a
finite number of previously characterised configura-
tions with a high degree of discrimination. In most
situations the quantity of primary interest is the phase
fraction, and we have shown that this can be obtained
directly by a nonlinear mapping from the path length
information generated by the densitometer.

The neural network approach described here relies
on a set of characterised data for training the network.
In a practical realisation this would be obtained using a
calibration ring in which the phase fractions and fluid
velocity could be controlled and measured. The need
for any modelling of the multiphase flow, which would
probably be complex and of limited accuracy, is thereby
avoided.

One difficulty which can potentially arise in practice
is the occurrence of phase configurations which were

not present in the training set. Under such conditions
the network could not be expected to generate reliable
results. This problem can largely be circumvented by
the provision of a suitably general training set spanning
the full range of conditions likely to be encountered in
practice. However, in order to ensure the robustness of
a practical system, we have developed a technique for
the detection of novelty in the input data and we have
shown that it is able to signal the presence of new
phase configurations which are not present in the
training set. Such a novelty detector can be used to
validate the phase fractions generated by the neural
network.

Although we have worked with the path length
information in this study, the network could equally
well take the photon count information directly as
input data, thereby avoiding the need to perform the
calculations normally required to extract the path
lengths.

Appendix A

Calculation of path lengths

In this appendix we derive the expression needed to
evaluate the path lengths in oil and water (as illus-
trated for stratified flow in fig. 1) for each of the four
configurations shown in fig. 5. The beam positions are
specified in terms of the radii of the circles (concentric
with the pipe) to which the beam lines are tangent. For
a pipe of radius R, these radii were 0, R/6, R/2 and
5R /6, as indicated in fig. 2. All calculations were for
R =75 cm. We treat each of the configurations in
turn.

A.1. Homogeneous

Here the path lengths x, and x,, are related to the
phase fractions f, and f,, by

xo=fod; %y=fyd, (34)
where as before d is the total path length of the beam
within the pipe.

A.2. Stratified

It is first necessary to determine the heights of the
oil /water and water / gas interfaces. The basic calcula-
tions which has to be performed is indicated in fig. 13.
Let f be the fraction of material below the interface,
and R be the radius of the pipe, with the other
variables as shown in the figure. Then we have the
following three equations

22+ r?2=R?, (35)
z=R cos a, (36)
2a zr
— 1TR2=f1TR2+2(“‘)‘ (37)
2 2



C.M. Bishop, G.D. James / Analysis of multiphase flows 593

We can now eliminate both « and r from these
equations to give an equation which determines z for a
given pipe radius R and phase fraction f. This can be
expressed in terms of the root of a transcendental
function G(z) given by

2 1/2
G(z)=f'rr+i(l—z—) —cos 1= (38)
PRI RTOR? R’

A Brent algorithm routine [14] was used to find the
root of Gy(z). Care is needed to ensure that the
correct branch of cos ™! is taken.

Having found the heights of the two interfaces it is
then necessary to determine which of the three phases
each beam passes through. This will depend on the
location of the beam line and on the heights of the
interfaces, and six possibilities have to be considered
according to whether the beam passes through one,
two or all three phases. The path lengths are then
obtained by straightforward algebra, with one further
application of Pythagoras’ theorem.

A.3. Annular

First the phase fractions are used to evaluate the
radii of the interfaces. Then for each beam line it is
necessary to determine which of the phases the beam
passes through, given the position of the beam line and
the phase fractions. There are three possibilities here
since the beam may pass through water only, water
plus oil, or water plus oil plus gas. Finally the various
path lengths are evaluated using Pythagoras’ theorem.

A.4. Inverse annular

The procedure is the same as for the annular con-
figuration but with the réles of oil and gas reversed.

Table 3
Values of the coefficients used in generating the data set.
Here the u’s are in units of cm? /g and the p’s are in units of

g/cm?

p(@0.06MeV) p(@133MeV)
0Oil 0.197 0.062 0.9
Water  0.220 0.058 1.05

Gas 0.213 0.068 0.2

In generating the data set we have assumed gamma
wavelengths of 0.06 MeV and 1.33 MeV, and the
values used for the densities and mass absorption coef-
ficients are shown in table 3. Here the water has been
taken to be “formation water” of a composition associ-
ated with oil production.
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