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ABSTRACT 
 

Long short-term memory (LSTM) recurrent neural networks 

(RNNs) have recently shown significant performance 

improvements over deep feed-forward neural networks 

(DNNs). A key aspect of these models is the use of time 

recurrence, combined with a gating architecture that 

ameliorates the vanishing gradient problem. Inspired by 

human spectrogram reading, in this paper we propose an 

extension to LSTMs that performs the recurrence in 

frequency as well as in time. This model first scans the 

frequency bands to generate a summary of the spectral 

information, and then uses the output layer activations as the 

input to a traditional time LSTM (T-LSTM). Evaluated on a 

Microsoft short message dictation task, the proposed model 

obtained a 3.6% relative word error rate reduction over the T-

LSTM. 
 

Index Terms— LSTM, RNN, time and frequency 

1. INTRODUCTION 

Recently, significant progress has been made in automatic 

speech recognition (ASR) thanks to the application of deep 

neural networks (DNNs) [1][2][3][4][5][6]. Unlike in the 

1990s, today’s DNN systems often contain tens of millions of 

parameters and are more powerful than their counterparts two 

decades ago [7][8] in modeling speech signals. DNNs, 

however, only consider information in a fixed-length sliding 

window of frames and thus cannot exploit long-range 

correlations in the signal. Recurrent neural networks (RNNs), 

on the other hand, can encode sequence history in their 

internal state, and thus have the potential to predict phonemes 

based on all the speech features observed up to the current 

frame. Unfortunately, simple RNNs, depending on the largest 

eigenvalue of the state-update matrix, may have gradients 

which either increase or decrease exponentially over time. 

Thus, the basic RNN is difficult to train, and in practice can 

only model short-range effects. Long short-term memory 

(LSTM) RNNs [9][10] were developed to overcome these 

problems. LSTM-RNNs use input, output and forget gates to 

achieve a network that can maintain state and propagate 

gradients in a stable fashion over long spans of time. These 

networks have been shown to outperform DNNs on a variety 

of ASR tasks [11][12][13] [14][15][16]. All previously 

proposed LSTMs use a recurrence along the time axis to 

model the temporal patterns of speech signals, and we call 

them T-LSTMs in this paper. The main contribution of this 

paper is the proposal of a two-level network where the first 

level performs recurrence along the frequency axis, and the 

second performs time recurrence. We term this the 

frequency-time LSTM or F-T-LSTM. 

Our model is inspired by the way people read 

spectrograms. Note that in common practice, log-filter-bank 

features are often used as the input to the neural-network-

based acoustic model [19][20]. In standard systems, the log-

filter-bank features are independent of one-another, i.e. 

switching the positions of two filter-banks won’t affect the 

performance of the DNN or LSTM. However, this is not the 

case when a human reads a spectrogram: a human relies on 

both patterns that evolve on time, and frequency, to predict 

phonemes. Switching the positions of two filter-banks will 

destroy the frequency-wise patterns. Our model addresses 

this phenomenon by explicitly modeling the frequency-wise 

evolution of spectral patterns. Evaluated on a Microsoft 

internal short message dictation task, the proposed F-T-

LSTM obtained 3.6% relative word error rate (WER) 

reduction from the T-LSTM.  

 

The rest of the paper is organized as follows. In Section 

2, we briefly introduce LSTMs and then we present the 

proposed model which combines frequency LSTM and time 

LSTM in Section 3. We differentiate the proposed method 

from the convolutional LSTM DNN (CLDNN) [16] and 

multi-dimensional RNN [17][18] in Section 4. Experimental 

evaluation of the algorithm is provided in Section 5. We 

summarize our study and draw conclusions in Section 6. 

2. THE LSTM-RNN  

An RNN is fundamentally different from the feed-forward 

DNN in that the RNN does not operate on a fixed window of 

frames; instead, it maintains a hidden state vector, which is 

recursively updated after seeing each time frame. The internal 

state encodes the history all the way from the beginning of an 

utterance up to the last input, and can thus potentially model 

much longer span effects than a fixed-window DNN. In other 

words, an RNN is a dynamic system and is more general than 

the DNN which performs a static input-output 

transformation. The inclusion of internal states enables RNNs 

to represent and learn long-range sequential dependencies.  



However, the simple RNN suffers from the 

vanishing/exploding gradient problem [21] when the error 

signal is back-propagated through time. This problem is well 

handled in the LSTM-RNNs through the use of  the following 

four components: 

 Memory units: these store the temporal state of the 

network; 

 Input gates: these modulate the input activations into 

the cells; 

 Output gates: these modulate the output activations 

of the cells ; 

 Forget gates: these adaptively reset the cell’s 

memory. 

Taken together as in Figure 1 below, these four components 

are termed a LSTM cell. 

     
Figure 1. Architecture of LSTM-RNNs with one recurrent 

layer.  𝑍−1 is a time-delay node.  

 

Figure 1 depicts the architecture of an LSTM-RNN with 

one recurrent layer. In LSTM-RNNs, in addition to the past 

hidden-layer output 𝒉𝑡−1, the past memory activation 𝒄𝑡−1 is 

also an input to the LSTM cell.  

This model can be described as:  
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𝒉𝑗
𝑙 = 𝒐𝑗

𝑙 .∗ tanh(𝒄𝑗
𝑙),    (5) 

where 𝒊𝑗
𝑙, 𝒐𝑗

𝑙, 𝒇𝑗
𝑙 , and 𝒄𝑗

𝑙 denote the activation vectors of input 

gate, output gate, forget gate, and memory cell at the l-th layer 

and time j, respectively. 𝒉𝑗
𝑙  is the output of the LSTM cells at 

layer l and time j. 𝑾 terms denote different weight matrices. 

For example, 𝑾𝑥𝑖
𝑙  is the weight matrix from the cell input to 

the input gate at the l-th layer. b terms are the bias terms (e.g., 

𝒃𝑖
𝑙  is the bias of input gate at layer l). “.∗” denotes element 

wise multiplication. 

In [13], a LSTM with an additional projection layer prior 

to the output (termed LSTMP) was proposed to reduce the 

computational complexity of LSTM. A projection layer is 

applied to 𝒉𝑗
𝑙  as  

𝒓𝑗
𝑙 = 𝑾ℎ𝑟

𝑙 𝒉𝑗
𝑙  

And then 𝒉𝑗−1
𝑙  in Eqs (1)--(4) is replaced by 𝒓𝑗−1

𝑙 . 

3. FREQUENCY-TIME LSTM-RNN  

In this section, we propose a frequency-time LSTM (F-T-

LSTM) which combines frequency LSTM with time LSTM 

as shown in Figure 2.  We first use a frequency LSTM (F-

LSTM) to scan the frequency bands so that frequency-

evolving information is summarized by the output of the F-

LSTM. The formulation of the F-LSTM is the same as that of 

the T-LSTM except that the index j now stands for frequency 

steps instead of time steps. Then we can take the outputs from 

all F-LSTM steps and use them as the input to T-LSTM to do 

time analysis in the traditional way.  
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Figure 2: A frequency- time LSTM-RNN which scans the 

frequency axis first for frequency analysis and then scans 

the time axis for time analysis. 

 

 

The detailed F-LSTM processing for each time step is 

described as follows.  

 Divide total N log-filter-banks at current time into M 

overlapped chunks and each chunk contains B log-

filter-banks. There are C log-filter-banks overlapped 

between adjacent chunks. Here we have the 

relationship 𝑀 =
𝑁−𝐶

𝐵−𝐶
. An extreme case is  C=0 

where there is no overlapped log-filter-bank. In such 

a case, 𝑀 =
𝑁

𝐵
. 

 Use the M overlapped chunks as the frequency steps 

of F-LSTM and generate the output of  𝒉𝑚 , 𝑚 =
0…𝑀 − 1. 



 Merge  𝒉𝑚 , 𝑚 = 0…𝑀 − 1. into a super-vector 𝒉 

which can be considered as a trajectory of frequency 

patterns at current time. Then use 𝒉 as the input to a 

T-LSTM with multiple layers. 

 

 

Figure 3 shows an example setup of the F-LSTM used in 

our experiments. The input at each frame consists of a 40 

dimensional vector of log-filter-bank values at the current 

time t. We divide the 40 log-filter-bank channels into 33 

overlapped chunks with each chunk containing 8 log-filter-

banks. This results in 7 log-filter-banks of overlap between 

adjacent chunks (C=7). Therefore, the first F-LSTM cell 

takes eight inputs: the log-filter-banks from 0 to 7, and the 

second F-LSTM cell takes the log-filter-banks from 1 to 8, 

and so on. The m-th F-LSTM cell generates outputs 𝒉𝑚 , 

which will be passed into the m+1-th F-LSTM cell. Finally, 

𝒉𝑚 , 𝑚 = 0…𝑀 − 1  (M=33 in this example) will be 

concatenated as the input to a T-LSTM.  

 

 

 
Figure 3: An example setup of F-LSTM.  

 

 

4. RELATION TO PRIOR WORK 

In this section, we first discuss the difference between our 

proposed F-T-LSTM and the convolutional LSTM DNN 

(CLDNN) [16] which combines CNNs, LSTMs, and DNNs 

together. The CLDNN first uses a CNN [22][23] to reduce 

the spectral variation, and then the output of the CNN layer is 

fed into a multi-layer LSTM to learn the temporal patterns. 

Finally, the output of the last LSTM layer is fed into several 

fully connected DNN layers for the purpose of classification.  

The key difference between the proposed F-T-LSTM and 

the CLDNN is that the F-T-LSTM uses frequency recurrence 

with the F-LSTM, whereas the CLDNN uses a sliding 

convolutional window for pattern detection with the CNN. 

While the sliding window achieves some invariance through 

shifting, it is not the same as a fully recurrent network. The 

two approaches both aim to achieve invariance to input 

distortions, but the pattern detectors in the CNN maintain a 

constant dimensionality, while the F-LSTM can perform a 

general frequency warping. 

  The proposed F-T-LSTM performs 1-D recurrence over 

the frequency axis and then performs 1-D recurrence over the 

time axis. This is different from the concept of 

multidimensional processing which has been proved very 

successful in the handwriting recognition tasks [17][18] and 

outperformed the traditional handwriting systems that use 

CNNs [22][23] as the feature extractor.  To summarize, the 

T-F-LSTM works on multidimensional space separately with 

simplicity while the multidimensional RNN [17][18] works 

jointly on multidimensional space with more powerful 

modeling.  

 

5. EXPERIMENTS AND DISCISSIONS 

In this section, we use a Windows Phone short message 

dictation task to evaluate the proposed method. The training 

data consists of 60 hours of transcribed  US-English audio. 

The test set consists of 3 hours of data from the same 

Windows Phone task. The audio data is 16k HZ sampled, 

recorded in mobile environments using Windows phones. 

The vocabulary has around 130k words and the LM has 

around 6.6M ngrams (up to trigram). All experiments were 

conducted using the computational network toolkit (CNTK) 

[24], which allows us to build and evaluate various network 

structures efficiently without deriving and implementing 

complicated training algorithms. All the models were trained 

to minimize the frame-level cross-entropy criterion. 

 

The input to the baseline CD-DNN-HMM system 

consists of 40-dimensional log-filter-bank features. We 

augment these feature vectors with 5 frames of context on 

either side (5-1-5). The DNN has 5 hidden layers, each with 

2048 sigmoid units. Both the baseline and LSTM systems use 

1812 tied-triphone states or senones.  

The baseline T-LSTMP is modeled after that in [13]. It 

has four T-LSTMP layers: each has 1024 hidden units and the 



output size of each T-LSTM layer is reduced to 512 using a 

linear projection layer. There is no frame stacking, and the 

output HMM state label is delayed by 5 frames as in [13]. 

When training T-LSTMP, the backpropagation through time 

(BPTT) [25]  step is 20. 

We built the F-T-LSTM with a single F-LSTM that scans 

the log-filter-banks and three T-LSTMP layers. The number 

of parameters of the F-T-LSTM is between the numbers of 

parameters of the three- and four- layer LSTMPs. To generate 

the input to the F-LSTM, we use the example setup in Section 

3 by dividing the 40 log-filter-bank channels into 33 

overlapped chunks with each chunk containing 8 log-filter-

banks. The F-LSTM has 24 memory cells.  

In Table 1, we compare the WERs of a DNN, T-LSTM, 

and F-T-LSTM. The T-LSTM is clearly better than the DNN 

due to its temporal modeling power. With both the frequency 

and temporal modeling, the F-T-LSTM is better than the 4-

layer T-LSTM, with 3.6% relative WER reduction.  

 

Table 1: WER comparison of DNN, T-LSTM, and F-T-

LSTM 

Model WER (%) 

DNN 21.84 

3-layer T-LSTMP  20.79 

4-layer T-LSTMP  20.38 

F-LSTM (24 cells)+3-layer T-

LSTMP 

19.64 

 

We investigate the impact of different cell numbers in 

the F-LSTM in Table 2. When the number of cells is very 

small, e.g., 8, the power of F-LSTM is very limited with only 

a slight improvement over the T-LSTM. However, when the 

number of cells becomes 24, the F-LSTM shows its 

advantage because the memory cells are powerful enough to 

store the frequency patterns. When we increase the number 

of cells to 48, there is no further improvement. 

 

Table 2: Impact of cell numbers in F-LSTM 

Model WER (%) 

F-LSTM (8 cells)+3-layer T-

LSTMP 

20.19 

F-LSTM (24 cells)+3-layer T-

LSTMP 

19.64 

F-LSTM (48 cells)+3-layer T-

LSTMP 

19.81 

 

 

In all the aforementioned experiments, we have not stacked 

multiple frames of log-filter-banks as the input to F-T-LSTM. 

This decision is made based on our previous experience with 

T-LSTMs, where we found that stacking multiple frame 

inputs doesn’t have any benefit, and [13] also doesn’t have 

the frame stacking. In Table 3, we compare the setup with and 

without multiple-frame stacking. Stacking N frames means 

that every chunk now has 8*N log-filter-banks. When 

stacking 11 frames, we predict the center frame’s label. As 

shown in Table 3, it doesn’t provide any benefit to WER by 

stacking 11 frames as the input to F-LSTM.  

 

Table 3: Comparison of F-T-LSTM with and without 

stacking frame inputs 

Model Number of 

Input Frames 

WER 

(%) 

F-LSTM (24 cells)+3-

layer T-LSTMP 

1 19.64 

F-LSTM (24 cells)+3-

layer T-LSTMP 

11 20.08 

F-LSTM (48 cells)+3-

layer T-LSTMP 

1 19.81 

F-LSTM (48 cells)+3-

layer T-LSTMP 

11 20.01 

6. CONCLUSIONS AND FUTURE WORK 

In this paper, we have presented a FT--LSTM architecture 

that scans both the time and frequency axis to model the 

evolving patterns of the spectrogram. The F-T-LSTM first 

uses an F-LSTM to performs a frequency recurrence that 

summarizes frequency-wise patterns. This is then fed into a 

T-LSTM. The proposed F-T-LSTM obtained a 3.6% relative 

WER reduction from the traditional T-LSTM on a short 

message dictation task. We have shown that as long as the 

number of memory cells in the F-LSTM is reasonable, the F-

T-LSTM can achieve good performance. We also evaluated 

the impact of stacking multiple frames as the input to F-

LSTM, and found that it is best to simply present the frames 

one at a time 

Several research issues will be addressed in the future to 

further increase the effectiveness of the algorithm presented 

in this paper. First, we will compare the performance of F-T-

LSTMs with CLDNNs to better understand their relative 

advantages. Second, we want to explore architectural variants 

of the F-T-LSTM. For example, we will examine whether 

frequency overlapping of the input to F-LSTM is necessary. 

Third, we will move the input of F-LSTM from log-filter-

banks directly to log-spectrum. There are studies showing 

that directly working of log-spectrum can be beneficial to 

DNN [26]. By applying the F-LSTM directly on log-

spectrum, we can naturally remove the hand-crafted filter-

banks, and automatically learn the frequency patterns that 

benefit the recognizer. Fourth, in [27] it is shown that CNNs 

can consistently provide advantages over DNNs in 

mismatched training-test conditions. It is interesting to see 

whether the frequency recurrence brought by the F-LSTM 

can be more helpful in the mismatched conditions. Last and 

most importantly, we will advance our study by proposing a 

multidimensional LSTM with a simplified structure which 

performs recurrence over the time and frequency axes jointly 

[28]. We term it the time-frequency LSTM (TF-LSTM). We 

will compare TF-LSTM and F-T-LSTM in [28] by using a 

much larger ASR task. It will be shown that F-T-LSTM is 

still effective on that larger ASR task. 
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