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ABSTRACT

We present a Bayesian tensor factorization model for infer-
ring latent group structures from dynamic pairwise interac-
tion patterns. For decades, political scientists have collected
and analyzed records of the form “country i took action a
toward country j at time t"—known as dyadic events—in
order to form and test theories of international relations.
We represent these event data as a tensor of counts and
develop Bayesian Poisson tensor factorization to infer a low-
dimensional, interpretable representation of their salient pat-
terns. We demonstrate that our model’s predictive perfor-
mance is better than that of standard non-negative tensor
factorization methods. We also provide a comparison of our
variational updates to their maximum likelihood counter-
parts. In doing so, we identify a better way to form point
estimates of the latent factors than that typically used in
Bayesian Poisson matrix factorization. Finally, we showcase
our model as an exploratory analysis tool for political sci-
entists. We show that the inferred latent factor matrices
capture interpretable multilateral relations that both con-
form to and inform our knowledge of international affairs.
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1. INTRODUCTION

Social processes are characterized by pairwise connections
between actors, such as people, organizations, corporations,
and countries. In some social processes, actors declare their
connections and researchers can directly study them—e.g.,
friendships on Facebook or co-authorships in academia. In
other processes, however, these connections are not explic-
itly declared. Rather, they are evidenced over time via dy-
namic interaction patterns. Inferring social processes from
such implicit data is a challenging and important task.

This task is especially motivated in international relations.
For decades, scholars have collected and analyzed records of
pairwise interactions between countries of the form “country
i took action a toward country j at time ¢,” known as dyadic
events. These data sets, e.g., [28], which are traditionally
small and well-curated, help them form and test theories of
international relations, which often concern the multilateral
behavior of groups of countries. Recently, there has been
new interest in studying less structured, larger scale sources
of pairwise interaction data. Researchers have created sev-
eral large data sets, e.g., [20], by automatically extracting
and encoding dyadic events from Internet news archives.

These modern data sets differ substantially from their
smaller counterparts, which previously dominated the field.
Rather than documenting high-level, aggregate behaviors,
such as formal wars and military alliances, they document
micro-level behaviors at a day-to-day granularity. Although
this new view of the world potentially paints a more accurate
and nuanced picture of international relations, these data are
too noisy and disaggregated to analyze effectively using tra-
ditional techniques. We need new methods to uncover the
latent multilateral relations that underlie these events.

In this paper, we introduce Bayesian Poisson tensor fac-
torization (BPTF) for inferring latent multilateral relations
from observed dyadic events. We present a scalable varia-
tional inference algorithm and demonstrate our method, via
both predictive and exploratory analyses, on large-scale in-
ternational relations data. Figure 1 illustrates our approach;
our model infers both ongoing multilateral relations, such as
the Six-Party Talks from 2003 through 2009 (left), as well
as relations precipitated by temporally localized anomalous
activity, such as the September 11, 2001 attacks (right).
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Figure 1: Our model infers latent components that correspond to multilateral relations. Each component consists of four
factor vectors summarizing sender, receiver, action-type, and time-step activity, respectively. Here, we visualize two inferred
components. For each component, we plotted the top ten sender, receiver, and action-type factors sorted in decreasing order.
‘We also plotted the entire vector of time-step factors in chronological order. We found that the interpretation of each component
was either immediately clear from our existing knowledge or easy to discover via a web search. Left: A component inferred
from GDELT data spanning 1990 through 2007 (with monthly time steps) that corresponds to events surrounding the Six
Party Talks—a series of diplomatic talks that took place from 2003 through 2009 between South Korea, North Korea, the US,
China, Japan, and Russia, aimed at resolving international concerns over North Korea’s nuclear weapons program [37]. The top
senders and receivers are the six parties, while the top action types are Consult and Intend to Cooperate. The time-step factors
show increased activity beginning in 2003. Right: A component inferred from ICEWS data spanning 1995 through 2012 (with
monthly time steps) that corresponds to events surrounding the US-led War on Terror following the September 11, 2001 attacks.
The largest time-step factor is that of October 2001—the month during which the invasion of Afghanistan occurred. There is
also a blip in August 1998, when the Clinton administration ordered missile attacks on terrorist bases in Afghanistan [33].

Technical summary: A data set of dyadic events can be its use in any subsequent work involving variational infer-

represented as a four-way tensor by aggregating (i.e., count-
ing) events within discrete time steps. Each element of the
tensor is a count of the number of actions of type a taken by
country i toward country j at time ¢. Our model decomposes
such a tensor into a set of latent factor matrices that provide
a low-dimensional representation of the salient patterns in
the counts—in this case, latent multilateral relations.

Tensors derived from dyadic event data are often very
sparse since most countries rarely interact with one another.
Additionally, the non-zero counts, for countries that do in-
teract, are highly dispersed—i.e., their mean is greatly ex-
ceeded by their variance. Traditional tensor factorization
methods, involving maximum likelihood estimation, are un-
stable when fit to sparse count tensors [2]. Bayesian Pois-
son tensor factorization (section 3) builds on previous work
on Bayesian Poisson matrix factorization with Gamma pri-
ors [1, 21, 11, 38, 25, 10] to avoid these instabilities. We val-
idate our model by comparing its out-of-sample predictive
performance to non-Bayesian tensor factorization methods
(section 5); BPTF significantly outperforms other models
when decomposing sparse, highly dispersed count data.

We present an efficient variational inference algorithm to
fit BPTF to data (section 4) and outline the relationship
between our algorithm and the traditional maximum likeli-
hood approach (section 7). This relationship explains why
BPTF outperforms other methods without any sacrifice to
efficiency. It also suggests that when constructing point esti-
mates of the latent factors from the variational distribution,
researchers should use the geometric expectation instead of
the arithmetic expectation commonly used in Bayesian Pois-
son matrix factorization. We show that using the geometric
expectation increases the sparsity of the inferred factors and
improves predictive performance. We therefore recommend

ence for Bayesian Poisson matrix or tensor factorization.
Finally, we showcase Bayesian Poisson tensor factoriza-
tion as an exploratory analysis tool for political scientists
(section 6). We demonstrate that the inferred latent fac-
tor matrices capture interpretable multilateral relations that
conform to and inform our knowledge of international affairs.

2. DYADIC EVENTS

Over the past few years, researchers have created large
data sets of dyadic events by automatically extracting them
from Internet news archives. The largest of these data sets is
the Global Database of Events, Location, and Tone (GDELT),
introduced in 2013, which contains over a quarter of a bil-
lion events from 1979 to the present, and is updated with
new events daily [20]. In parallel, government agencies (e.g.,
DARPA) and their contractors have also started to collect
and analyze dyadic events, in order to forecast political in-
stability and to develop early-warning systems [24]; Lock-
heed Martin publicly released the Integrated Crisis Early
Warning System (ICEWS) database in early 2015. Ward et
al. provide a comparison of GDELT and ICEWS [31].

GDELT and ICEWS use the CAMEO coding scheme [6].
A CAMEO-coded dyadic event consists of four pieces of in-
formation: a sender, a receiver, an action type, and a times-
tamp. An example of such an event (top) and a sentence
from which it could have been extracted (bottom) is

(Turkey, Syria, Fight, 12/25/2014)
Dec. 25, 2014: “Turkish jets bombed targets in Syria.”

CAMEO assumes that senders and receivers belong to a sin-
gle set of actors, coded for their country of origin and sector
(e.g., government or civilian) as well as other information



(such as religion or ethnicity). CAMEO also assumes a hier-
archy of action types, with the top level consisting of twenty
basic action classes. These classes are loosely ranked based
on sentiment from Make Public Statement to Use Uncon-
ventional Mass Violence. Each action class is subdivided
into more specific actions; for example, Make Public State-
ment contains Make Empathetic Comment. When study-
ing international relations using CAMEO-coded data, re-
searchers commonly consider only the countries of origin as
actors and only the twenty basic action classes as action
types. In ICEWS, there are 249 unique country-of-origin
actors (which include non-universally recognized countries,
such as Taiwan and Palestine); in GDELT, there are 223.

Dyadic events as tensors: A data set of dyadic events
can be aggregated into a four-way tensor Y of size N x N x
A x T, where N is the number of country actors and A is
the number of action types, by aggregating the events into T’
time steps on the basis of their timestamps. Each element
Yijar of Y is a count of the number of actions of type a
taken by country i toward country j during time step t. As
described in section 6, we experimented with various date
ranges and time step granularities. For example, in one set of
experiments, we used the entire ICEWS data set, spanning
1995 through 2012 (i.e., 18 years) with monthly time steps—
i.e., a 249 x 249 x 20 x 216 tensor with 267,844,320 elements.
Tensors derived from ICEWS and GDELT are very sparse.
For the 249 x 249 x 20 x 216 ICEWS tensor described above,
only 0.54% of the elements (roughly 1.5 million elements)
are non-zero. Moreover, these non-zero counts are highly
dispersed with a variance-to-mean ratio (VMR) of 57. Any
realistic model of such data must therefore be robust to spar-
sity and capable of representing high levels of dispersion.

3. BAYESIAN POISSON TENSOR

FACTORIZATION
Tensor factorization methods decompose an observed M-
way tensor Y into M latent factor matrices ©% ... @)

that provide a low-dimensional representation of the salient
patterns in Y. There are many different tensor factorization
methods; the two most common methods are the Tucker de-
composition [30] and the Canonical Polyadic (CP) decom-
position [13]. These methods can both be viewed as tensor
generalizations of singular value decomposition. Here, we fo-
cus on the CP decomposition, as it performs better than the
Tucker decomposition when modeling sparse count data [18].

For a four-way count tensor Y of size N x N x A x T, the
CP decomposition treats each observed count y;jq: as

K

Yigar = fijar = 3 00505305 (1)

k=1

for i,j € [N], a € [A], and t € [T], where 05,1), Oj(.i), 0((;1),
and 9§i) are known as factors, Jijat is known as the recon-
struction of count yija¢, and Y is the reconstruction of the
entire tensor Y. The set of all factors used to model Y
can be aggregated into four latent factor matrices; for ex-

ample, 6V = ((05;))5V_1):_1—an N x K matrix. Since
each factor matrix has K columns, a single index k € [K]
indexes four columns (one per matrix). These columns are
collectively known as a component; for example, component
k consists of (05;))]\7 (Gj(.i))N (Hgi))A and (9£:))T
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Figure 2: Three Gamma distributions with different val-
ues for the shape a and rate b parameters. The distribution

induces sparsity when a < 1 and b is small (shown in blue).

i.e., a length-N vector of sender factors, a length-N vector
of receiver factors, a length-A vector of action-type factors,
and a length-T" vector of time-step factors. Figure 1 visually
depicts two components inferred from ICEWS and GDELT.
When viewed from a probabilistic perspective, the recon-
struction gijar = Zszl 95?0}?9&? Ggi) can be thought of as
the mean of the distribution from which the observed count
Yijat is assumed to have been drawn. If this distribution is a
Poisson—i.e., if yijar ~ Pois(Yijat; Yijar)—then the process
of decomposing Y into its latent factor matrices is known as
Poisson tensor factorization (PTF), and can be performed
via maximum likelihood estimation (MLE) of oM e®,
©® and ©W. For sparse count data, PTF often yields
better estimates of the latent factor matrices than those ob-
tained by assuming each count to have been drawn from a
Gaussian distribution—i.e., yijar ~ N (yijat; Jijat, o) [2].
In this paper, we also assume that each observed count
Yijar is drawn from a Poisson distribution with mean ¢;ja:;
however, rather than obtaining point estimates of the factor
matrices using maximum likelihood estimation, we impose
prior distributions on the latent factors and perform full
Bayesian inference. Bayesian inference for Poisson matrix
factorization (PMF) was originally proposed by Cemgil [1]
and has been successfully used for several tasks including
image reconstruction [1], music tagging [21], topic model-
ing [25], content recommendation [11], and community de-
tection [9]; here, we generalize Bayesian PMF to tensors.
Since the Gamma distribution is the conjugate prior for a
Poisson likelihood, Bayesian PMF typically imposes Gamma
priors on the latent factors [1, 11, 39]. The Gamma distri-
bution, which has support on (0,00), is parameterized by
a shape parameter a > 0 and a rate parameter b > 0; if
0 ~ Gamma (6;a,b), then E[f] = ¢ and Var[d] = 5. Thus,
when a < 1 and b is small, the Gamma distribution concen-
trates most of its mass near zero yet maintains a heavy tail
and can therefore be used as a sparsity-inducing prior [1, 11].
We show the effects of different a and b values in figure 2.
To define Bayesian Poisson tensor factorization (BPTF)

for a four-way tensor, we impose four sparsity-inducing Gamma

priors over the latent factors. For a single factor, e.g., 05,1),

6’5,1) ~ Gamma (05,?;0{,04/8(1)), (2)

and similarly for 0;?, 0((;2, and Ot(?. Under this parame-

'Beyza and Cemgil [5] described the same model in a paper
written concurrently to a previous version [27] of this paper.



terization of the Gamma distribution, where the rate pa-
rameter is the product of the shape parameter and 81, the
mean of the prior is completely determined by ,3(1) (since
Ep%)] = 5o
data [1, 21]. The shape parameter «, which determines the
sparsity of the latent factor matrices, can be set by the user.
Throughout our experiments, we use a = 0.1 to encourage
sparsity and hence promote interpretability of the factors.

= ﬁ), which can be inferred from the

4. VARIATIONAL INFERENCE

Given an observed tensor Y, Bayesian inference of the
latent factors involves “inverting” the generative process de-
scribed in the previous section to obtain the posterior dis-
tribution of the latent factor matrices conditioned on Y and
the model hyperparameters H = {a, 3, 82, &), g@1:

P(e®,6%,6,6% Y, %).

The posterior distribution for BPTF is analytically in-
tractable and must be approximated. Variational inference
turns the process of approximating the posterior distribution
into an optimization algorithm. It involves first specifying
a parametric family of distributions @ over the latent vari-
ables of interest, indexed by the values of a set of variational
parameters S. The functional form of @ is typically chosen
so as to facilitate efficient optimization of S. Here, we use
a fully factorized mean-field approrimation and define Q to
be the product of N - N - A-T - K independent Gamma

distributions—one for each latent factor—e.g., for 92%) ,

Q055 i) = Gamma (6752, 63, (3)
where S® = ((fyi(;), 55,1))?;1)521. The full set of variational
parameters is thus S = {8(1),8(2),8(3),8(4)}. This form of
Q is similar to that used in Bayesian PMF [1, 25, 11].

The variational parameters are then fit so as to yield the
closest member of @ to the exact posterior—known as the
variational distribution. Specifically, the algorithm sets the
values of S to those that minimize the KL divergence of
the exact posterior from . It can be shown that these

values are the same as those that maximize a lower bound
on P(Y | H), known as the evidence lower bound (ELBO):

B(S) = Eq [log (P(Y,0,6,0%, 0% |%))| + H(Q),

where H(Q) is the entropy of Q. When Q is a fully factorized
approximation, finding values of S that maximize the ELBO
can be achieved by performing coordinate ascent, iteratively
updating each variational parameter, while holding the oth-
ers fixed, until convergence (defined by relative change in
the ELBO). The update equation for each parameter can
be derived easily using an auxiliary variable as shown for

Bayesian PMF [1, 25, 11]; we therefore omit derivations.

For parameters '71.(,1) and 55,1), the update equations are
s 5y S0
ik T ija
' S S Ga [0 00 el

(4)

o = ap® + 3 B [ofReR0il]. ®)
J,a,t
where Eq [-] and Gg [-] = exp (Eq [log (+)]) denote arithmetic

and geometric expectations. Since @ is fully factorized, each

expectation of a product can be factorized into a product of
individual expectations, which, e.g., for 95,? are

(1) (1)
] _ Yik w1 _ exp (¥(vi))
Eq |:07,'k } = @ and  Gq [aik } = T» (6)

where ¥(-) is the digamma function. Each expectation—
a sufficient statistic—can be cached to improve efficiency.
Note that the summand in (4) need only be computed for
those values of j, a, and ¢ for which y;;q: > 0; provided Y is
very sparse, inference is efficient even for very large tensors.
The hyperparameters 8V, 8, 83) and 8 can be op-
timized via an empirical Bayes method, in which each hyper-
parameter is iteratively updated along with the variational
parameters according to the following update equation:

—1

8= (S Eo [0] | (7)
ik

Update equations (4), (5), and (7) completely specify the
variational inference algorithm for BPTF. Our Python im-
plementation, which is intended to support arbitrary M-way
tensors in addition to the four-way tensors described in this
paper, is available for use under an open source license?.

5. PREDICTIVE ANALYSIS

We validated our model by comparing its predictive per-
formance to that of standard methods for non-negative ten-
sor factorization involving maximum likelihood estimation.

Baselines: Non-Bayesian methods for CP decomposition
find values of the latent factor matrices that minimize some
cost function of the observed tensor Y and its reconstruc-
tion Y. Researchers have proposed many cost functions,
but most often use Euclidean distance or generalized KL
divergence, preferring the latter when the observed tensor
consists of sparse counts. Generalized KL divergence is

DY [|Y) == > (ijarlog (ijar) — fijar) +C,  (8)

4,5,a,t

where constant C' =3, . | (yijat 10g (Yijat) — Yijar) depends
on the observed data only. The standard method for esti-
mating the values of the latent factors involves multiplicative
update equations, originally introduced for matrix factoriza-
tion by Lee and Seung [19] and later generalized to tensors by
Welling and Weber [32]. The multiplicative nature of these
update equations acts as a non-negativity constraint on the
factors which promotes interpretability and gives the algo-
rithm its name: non-negative tensor factorization (NTF).
Some cost functions also permit a probabilistic interpreta-
tion: finding values of the latent factors that minimize them
is equivalent to maximum likelihood estimation of a prob-
abilistic model. The log likelihood function of a Poisson
tensor factorization model—y;jqt ~ Pois(Yijat; Jijat )—is

L(Y;m:log(H (y),xp<—y>> (9)

igayt  Jiat

= Y Wijar10g (Jijar) = Gijar) +C,  (10)

©,3,a,t

’https://github.com/aschein/bptf



Table 1: Out-of-sample predictive performance for our model (BPTF) and non-negative tensor factorization with Euclidean

distance (NTF-LS) and generalized KL divergence (NTF-KL or, equivalently, PTF). Each row contains the results of a single

experiment. “I-top-25” means the experiment used data from ICEWS and we predicted the upper-left 25 x 25 portion of each test

slice (and treated its complement as observed). “G-top-100°” means the experiment used data from GDELT and we predicted

the complement of the upper-left 100 x 100 portion of each test slice. For each experiment, we state the density (percentage

of non-zero elements) and VMR (i.e., dispersion) of the unobserved portion of the test set. We report three types of error:

mean absolute error (M AE), mean absolute error on non-zero elements (MAE-NZ), and Hamming loss on the zero elements

(HAM-Z). All models achieved comparable scores when we predicted the sparser portion of each test slice (bottom four rows).

BPTF significantly outperformed the other models when we predicted the denser 25 x 25 or 100 X 100 portion (top four rows).

NTF-LS NTF-KL (PTF) BPTF
Density VMR MAE MAE-NZ HAM-Z MAE MAE-NZ HAM-Z MAE MAE-NZ HAM-Z
I-top-25 0.1217 105.8755 34.4 217 0.271 8.37 56.7 0.138 1.99 12.9 0.113
G-top-25 0.2638  180.4143 52.5 167 0.549 15.5 53.7 0.327 8.94 29.8 0.292
I-top-100 0.0264 63.1118 29.8 979 0.0792 10.5 346 0.0333 0.178 5.05 0.0142
G-top-100 0.0588 111.8676  42.6 470 0.217 4 58.6 0.0926 0.95 12.2 0.0682
I-top-25° 0.0021 8.6302 0.00657 2.27 0.00023 0.0148 2.72 0.00256 0.0104 2.31 0.00161
G-top-25°¢ 0.0060 20.4858 0.0435 4.4 0.00474 0.0606 4.9 0.00893 0.0412 4.01 0.00601
I-top-100° 0.0004 4.4570 0.000685 1.63 3.33e-07 0.0011 1.55 5.43e-05 0.00109 1.56 4.97e-05
G-top-100¢  0.0015 9.9432 0.00584 3.23 0.000112 0.0084 2.97 0.00109 0.00803 3 0.000957
Umléﬂsr‘asl;i | | -= .. .=D ! ] =. L B ] L] . .
e B C " " so that the N x N sender-receiver slices of the observed
China W ] ] j
e . - 2 tensor were denser toward the upper-left corner. Figure 3
T me m - depicts this property. We then divided the observed tensor
into a training set and a test set by randomly constructing
g o an 80%—20% split of the time steps. We defined training set
| o Y™ to be the N x N x A slices of Y indexed by the time
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Figure 3:
spanning 1990 through 2007, with monthly time steps (i.e.,
T = 216). Both slices correspond to t = 151 (July 2002).

The left slice corresponds to Intend to Cooperate, while the

Sender—receiver slices from the GDELT tensor

right slice corresponds to Threaten. We sorted the country
actors by their overall activity so that the slices were gener-
ally denser toward the upper-left corner; only the upper-left
35 x 35 portion of each slice is shown here. The three darkest
elements (i.e., highest counts) in the second slice correspond

to Israel — Palestine, Palestine — Israel, and US — Iraq.

where constant C' = 3, ., —log (yijat!) depends on the
observed data only. Since equation (8) is equal to the nega-
tive of equation (10) up to a constant, maximum likelihood
estimation for Poisson tensor factorization is equivalent to
minimizing the generalized KL divergence of Y from Y.
To validate our modeling assumptions, we compared the
out-of-sample predictive performance of BPTF to that of
non-negative tensor factorization with Euclidean distance
(NTF-LS) and non-negative tensor factorization with gen-
eralized KL divergence (NTF-KL or, equivalently PTF).

Experimental design: Using both ICEWS and GDELT,
we explored how well each model generalizes to out-of-sample
data with varying degrees of sparsity and dispersion. For
each data set—ICEWS or GDELT—we sorted the country
actors by their overall activity (as both sender and receiver)

steps in the 80% split and defined test set Y'**' to be the
N x N x A slices indexed by the time steps in the 20% split.

We compared the models’ predictive performance in two
scenarios, intended to test their abilities to handle different
levels of sparsity and dispersion: one in which we treated
the denser upper-left N’ x N’ (for some N’ < N) portion
of each test slice as observed at test time and predicted its
complement, and one in which we observed the complement
at test time and predicted the denser N’ x N’ portion.

In each setting, we used an experimental strategy analo-
gous to strong generalization for collaborative filtering [23].
During training, we fit each model to the fully observed
training set. We then fixed the values of the variational
parameters for the sender, receiver, and action-type factor
matrices (or direct point estimates of the factors, for the
non-Bayesian models) to those inferred from the training
set. For each test slice, indexed by time step t, we used the
observed upper-left N’ x N’ portion (or its complement) to
infer variational parameters for (or direct point estimates of)
its time-step factors {GE:) }< .. Finally, we reconstructed the
missing portion of each test slice using equation (1). For the
reconstruction step, we can obtain point estimates of the la-
tent factors by taking their arithmetic expectations or their
geometric expectations under the variational distribution.
In this section, we report results obtained using geometric
expectations only; we explain this choice in section 7.

The time-step factors inferred from the observed portion
of a given test slice capture the extent to which the sender,
receiver, and action-type factors for each component inferred
from the training set describe (the observed portion of) that
slice. For example, if component k summarizes the Israeli—
Palestinian conflict, with Israel and Palestine as top actors
and Fight as a top action type, then if Israeli-Palestinian
hostilities were intense during test time step ¢ and if Israel
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Figure 4: Regional relations between Central Asian republics and regional superpowers, found in both GDELT (left; spanning
1990 through 2007, with monthly time steps) and ICEWS (right; spanning 1995 through 2012, with monthly time steps).

and Palestine belong to the observed portion of each test
slice, the inferred value of Qii) is very likely to be large.
We used the entire ICEWS data set from 1995 through
2012 (i.e., 18 years), with events aggregated into monthly
time steps. The resultant tensor was of size 249 x 249 x
20 x 216. Since GDELT covers a larger date range (1979
to the present) than ICEWS, we therefore selected an 18-
year subset of GDELT spanning 1990 through 2007, and
aggregated events into monthly time steps to yield a tensor
of size 223 x 223 x 20 x 216. Since we are interested in
interactions between countries, we omitted self-actions so
that the diagonal of each N x N sender-receiver slice was
zero. Ranking the country actors by their overall activity
(as both sender and receiver), the top four actors in the
ICEWS tensor are USA, Russia, China, and Israel, while
the top four actors in the GDELT tensor are USA, Russia,
Israel, and Iraq. The GDELT tensor contains many more
events than the ICEWS tensor (26 million events versus six
million events). It is also much denser (1.6% of the elements
are non-zero, as opposed to 0.54%) and exhibits a much
higher level of dispersion (VMR of 100, as opposed to 57).

Summary of results: The out-of-sample predictive per-
formance of each model is shown in table 1. We experi-
mented with several different values of K and found that all
three models were insensitive to its value; we therefore report
only those results obtained using K = 50. We computed
three types of error: mean absolute error (MAE), mean
absolute error on only non-zero elements (MAE-NZ), and
Hamming loss on only the zero elements (HAM-Z). HAM-Z
corresponds to the fraction of true zeros in the unobserved
portion of the test set (i.e., elements for which y;jar = 0)
whose reconstructions were (incorrectly) predicted as being
greater than 0.5. For each data set, we generated three
training—test splits, and averaged the error scores for each
model across them. For each experiment included in ta-
ble 1, we display the density and dispersion of the corre-
sponding test set. When we treated the dense upper-left
N’ x N’ portion as observed at test time (and predicted its
complement ), all models performed comparably. In this sce-
nario, NTF-LS consistently achieved the lowest MAE score
and the lowest HAM-Z score, but not the lowest MAE-NZ
score. This pattern suggests that NTF-LS overfits the spar-
sity of the training set: when the unobserved portion of the
test set is much sparser than the training set (as it is in

this scenario), NTF-LS achieves lower error scores by sim-
ply predicting many more zeros than NTF-KL (i.e., PTF)
or BPTF. In the opposite scenario, when we observed the
complement at test time and predicted the denser N’ x N’
portion, NTF-LS produced significantly worse predictions
than the other models, and our model (BPTF) achieved the
lowest MAE, MAE-NZ, and HAM-Z scores—in some cases
by an order of magnitude over NTF-KL. These results sug-
gest that in the presence of sparsity, BPTF is a much better
model for the “interesting” portion of the tensor—i.e., the
dense non-zero portion. This observation is consistent with
previous work by Chi and Kolda which demonstrated that
NTF can be unstable, particularly when the observed tensor
is very sparse [2]. In section 7, we provide a detailed dis-
cussion comparing NTF and BPTF, and explain why BPTF
overcomes the sparsity-related issues often suffered by NTF.

6. EXPLORATORY ANALYSIS

In this section, we focus on the interpretability of the
latent components inferred using our model. (Recall that
each latent factor matrix has K columns; a single index k €

[K] indexes a column in each matrix—(@ﬁ,?)N (Gﬁ))N

i=1’ j=1
(9((3);4:17 and (Oiz))il—collectively known as a compo-
nent.) We used our model to explore data from GDELT and
ICEWS with several date ranges and time step granularities,
including the 18-year, monthly-time-step tensors described
in the previous section (treated here as fully observed).
When inferring factor matrices from data that span a large
date range (e.g., 18 years), we expect that the inferred com-
ponents will correspond to multilateral relations that per-
sist or recur over time. Figure 1 shows two such compo-
nents, inferred from the 18-year GDELT and ICEWS ten-
sors. The first component corresponds to ongoing negotia-
tions over North Korea’s nuclear program, while the second
corresponds to a decade-long war (though precipitated by a
sudden anomalous event). We found that many the com-
ponents inferred from 18-year tensors summarize regional
relations—i.e., multilateral relations that persist due to ge-
ographic proximity—similar to those found by Hoff [15].
We found a high correspondence between the regional
components inferred from GDELT and the regional compo-
nents inferred from ICEWS, despite the five-year difference
in their date ranges. Figure 4 illustrates this correspondence.
We also found that components summarizing regional rela-
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Figure 5: Left: Three Japanese citizens were taken hostage in Iraq during April 2004 and a third was found murdered in
October 2004 [35]. This component inferred from GDELT (2004 through 2005, weekly time steps) had the sparsest time-step

factor vector. We performed a web search for japan iraq april 2004 to interpret this component. Right: Protests erupted in

Islamic countries after a Danish newspaper published cartoons depicting the Prophet Muhammad [36]. Denmark and Iran cut

diplomatic ties in February 2006 after protesters attacked the Danish embassy in Tehran. This component inferred from GDELT
(2006 through 2007, weekly time steps) had the second sparsest time-step factor vector. Web search: denmark iran january 2006.

tions exhibited the least sparsity in their sender, receiver,
and time-step factors. For example, the component depicted
in figure 4 has near-uniform values for the top ten sender and
receiver actors (all of whom are regional to Central Asia),
while the time-step factors possess high activity throughout.
In contrast, the time-step factors for the component shown
in the second plot of figure 1 (i.e., the War on Terror) exhibit
a major spike in October 2001. This component’s sender and
receiver factors also exhibit uneven activity over the top ten
actors, with the US, Afghanistan, and Pakistan dominating.
These “regional relations” components conform to our un-
derstanding of international affairs and foster confidence in
BPTF as an exploratory analysis tool. However, for the
same reason, they are also less interesting. To explore tem-
porally localized multilateral relations—i.e., anomalous in-
teraction patterns that do not simply reflect usual activity—
we used our model to infer components from several subsets
of GDELT and ICEWS, each spanning a two-year date range
with weekly time steps. We ranked the inferred components
by the sparsity of their time-step factors, measured using
the Gini coefficient [3]. Ranking components by their Gini
coefficients is a form of anomaly detection: components with
high Gini coefficients have unequal time-step factor values—
i.e., dramatic spikes. Figure 6 shows the highest-ranked
(i.e., most anomalous) component inferred from a subset
of GDELT spanning 2011-2012. This component features
an unusual group of top actors and a clear burst of activity
around June 2012. To interpret this component, we per-
formed a web search for ecuador UK sweden june 2012 and
found that the top hit was a Wikipedia page [34] about Ju-
lian Assange, the editor-in-chief of the website WikiLeaks—
an Australian national, wanted by the US and Sweden, who
sought political asylum at the Ecuadorian embassy in the
UK during June through August 2012. These countries are
indeed the top actors for this component, while the time-
step factors and top action types (i.e., Consult, Aid, and
Appeal) track the dates and nature of the reported events.
In general, we found that when our existing knowledge was
insufficient to interpret an inferred component, performing
a web search for the top two-to-four actors along with the
top time step resulted in either a Wikipedia page or a news
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Figure 6: Julian Assange, editor-in-chief of WikiLeaks,
sought asylum at the Ecuadorian embassy in the UK during
June through August 2012. This component inferred from
GDELT (2011 through 2012, with weekly time steps) had the
sparsest time-step factor vector. We performed a web search

for ecuador UK sweden june 2012 to interpret this component.

article that provided an explanation. We present further
examples of the most anomalous components inferred from
other two-year date ranges in figure 5, along with the web
searches that we performed in order to interpret them.

7. TECHNICAL DISCUSSION

Previous work on Bayesian Poisson matrix factorization
(e.g., [1, 25, 11]) presented update equations for the varia-
tional parameters in terms of auxiliary variables, known as
latent sources, and made no explicit reference to geometric
expectations. In contrast, we write the update equations for
Bayesian Poisson tensor factorization in the form of equa-
tions (4) and (5) in order to highlight their relationship to
Lee and Seung’s multiplicative updates for non-negative ten-
sor factorization—a parallel also drawn by Cemgil in his
paper introducing Bayesian PMF [1]—and to show that our
update equations suggest a new way of making out-of-sample
predictions when using BPTF. In this section, we provide a
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differ greatly, with G [0] much closer to zero and in an area of higher density. If these expectations were used as point estimates

to predict the presence or absence of a rare event—e.g., y =0 if < 0.5; otherwise y = 1—they would yield different predictions.

discussion of these connections and their implications.
When performing NTF by minimizing the generalized KL

divergence of reconstruction Y from observed tensor Y (which

is equivalent to MLE for PTF), the multiplicative update
equation introduced by Lee and Seung for, e.g., 95,1) is

2) (3) g(4) Vigar
Zj,a,t egk eak atk Yijat ' (11)

2) 1(3) n(4
> 0! eak)ggk)

Jra,t “jk

1) _ 1
ez(k) T eik>

These update equations sometimes converge to locally non-
optimal values when the observed tensor is very sparse [8, 22,
2]. This problem occurs when factors are set to inadmissible
zeros; the algorithm cannot recover from these values due to
the multiplicative nature of the update equations. Several
solutions have been proposed to correct this behavior when
minimizing Euclidean distance. For example, Gillis and
Glineur [7] add a small constant € to each factor to prevent
them from ever becoming exactly zero. For KL divergence,
Chi and Kolda [2] proposed an algorithm—Alternating Pois-
son Regression—that “scooches” factors away from zero more
selectively (i.e., some factors are still permitted to be zero).

In BPTF, point estimates of the latent factors are not
estimated directly. Instead, variational parameters for each
factor, e.g., 'yi(,i) and 55,? for factor 05,?, are estimated. These
parameters then define a Gamma distribution over the fac-
tor as in equation (2), thereby preserving uncertainty about
its value. In practice, this approach solves the instability
issues suffered by MLE methods, without any efficiency sac-
rifice. This assertion is supported empirically by the out-of-
sample predictive performance results reported in section 5,
but can also be verified by comparing the form of the update
in equation (11) with those of the updates in equations (4)
and (5). Specifically, if equations (4) and (5) are substituted
into the expression for the arithmetic expectation of a single

(1)
latent factor, e.g., E [01(;)] = Zf’f) , then the resultant update
ik

equation is very similar to the update in equation (11):
1) p(2) p(3) g(1) | ija
at+d ;.60 [eik 0% Oure Ot ] ﬁ
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where gijar = X210, Go (0507050 ]. Pulling G [0
outside the sum in the numerator and letting o« — 0, yields
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which is exactly the form of equation (11), except that the
point estimates of the factors are replaced with two kinds
of expectation. This equation makes it clear that the prop-
erties that differentiate variational inference for BPTF from
the Lee and Seung updates for PTF are 1) the hyperparam-
eters a and 8 and 2) the use of arithmetic and geometric
expectations of the factors instead of direct point estimates.

Since the hyperparameters provide a form of implicit cor-
rection, BPTF should not suffer from inadmissible zeros,
unlike non-Bayesian PTF. It is also interesting to explore
the contribution of the geometric expectations. The fact
that each @i q: is defined in terms of a geometric expec-
tation suggests that when constructing point estimates of
the latent factors from the variational distribution (e.g., for
use in prediction), the geometric expectation is more appro-
priate than the arithmetic expectation (which is commonly
used in Bayesian Poisson matrix factorization) since the in-
ference algorithm is implicitly optimizing the reconstruction
as defined in terms of geometric expectations of the factors.

To explore the practical differences between geometric and
arithmetic expectations of the latent factors under the vari-
ational distribution, it is illustrative to consider the form of
Gamma (0; a, b). Most relevantly, the Gamma distribution is
asymmetric, and its mean (i.e., its arithmetic expectation)
is greater than its mode. When shape parameter a > 1,
Mode (6) = %; when a < 1, the mode is undefined, but
most of the distribution’s probability mass is concentrated
near zero—i.e., the pdf increases monotonically as § — 0.
This property is depicted in figure 2. In this scenario, the
Gamma distribution’s heavy tail pulls the arithmetic mean
away from zero and into a region of lower probability.

The geometric expectation is upper-bounded by the arith-
metic expectation—i.e., G [0] = %‘5(“» < ¢ =E[f]. Un-
like the mode, it is well-defined for a € (0,1) and grows
quadratically over this interval, since exp (¥(a)) ~ a—; for

B 1] = Go 1]



Table 2: Predictive performance obtained using geometric
and arithmetic expectations. (The experimental design was
identical to that used to obtain the results in table 1.) Using
geometric expectations resulted in the same or better perfor-

mance than that obtained using arithmetic expectations.

BPTF-ARI BPTF-GEO
Density MAE HAM-Z MAE HAM-Z
I-top-25 0.1217 2.03 0.121 1.99 0.113
G-top-25 0.2638 8.96 0.3 8.94 0.292
I-top-100 0.0264 0.197 0.0236 0.178 0.0142
G-top-100  0.0588 1 0.0857 0.95 0.0682
I-top-25° 0.0021 0.0104 0.00163 0.0104 0.00161
G-top-25°¢ 0.0060 0.0414 0.00606 0.0412 0.00601
I-top100° 0.0004 0.0011 5.03e-05 0.00109  4.97e-05
G-top100¢  0.0015 0.00804  0.000959 0.00803  0.000957

a € (0,1); in contrast, the arithmetic expectation grows lin-
early over this interval. As a result, when a < 1, the geomet-
ric expectation yields point estimates that are much closer to
zero than those obtained using the arithmetic expectation.
When a > 1, exp (¥(a)) =~ a — 0.5 and the geometric expec-
tation is approximately equidistant between the arithmetic
expectation and the mode—i.e., § > a‘—bo'f’ > %:1. These
properties are depicted in figure 7; the key point to take away
from this figure is that when a < 1, the geometric expecta-
tion has a much more probable value than the arithmetic
expectation, while when a > 1, the geometric and arith-
metic expectations are very close. This observation suggests
that the geometric expectation should yield similar or bet-
ter point estimates of the latent factors than those obtained
using the arithmetic expectation. In table 2, we provide a
comparison of the out-of-sample predictive performance for
BPTF using arithmetic and geometric expectations. Indeed,
these results show that the performance obtained using geo-
metric expectations is either the same as or better than the
performance obtained instead using arithmetic expectations.

8. SUMMARY

Over the past fifteen years, political scientists have en-
gaged in an ongoing debate about using dyadic events to
study inherently multilateral phenomena. This debate, as
summarized by Stewart [29], began with Green et al.’s demon-
stration that many regression analyses based on dyadic events

were biased due to implausible independence assumptions [12].

Researchers continue to expose such biases, e.g., [4], and
some have even advocated eschewing dyadic data on princi-
ple, calling instead for the development of multilateral event
data sets [26]. Taking the opposite viewpoint—i.e., that
dyadic events can be used conduct meaningful analyses of
multilateral phenomena—other researchers, beginning with
Hoff [16], have developed Bayesian latent factor regression
models that explicitly model unobserved dependencies as
occurring in some latent space, thereby controlling for their
effects in analyses. This line of research has seen an increase
in interest and activity over the past few years [14, 29, 15].

In this paper, we too take this latter viewpoint, but in-
stead of focusing on latent factor models for regression, we
present a Bayesian latent factor model for predictive and
exploratory data analysis—specifically, for identifying and
characterizing the “complex dependence structures in inter-

national relations” [17] implicit in dyadic event data. Our ex-
ploratory analysis revealed interpretable multilateral struc-
tures that capture both persistent regional relations and
temporally localized anomalies. As evidenced empirically
by our predictive experiments and analytically by a com-
parison of our variational inference algorithm with tradi-
tional algorithms for performing non-negative tensor factor-
ization, Bayesian Poisson tensor factorization overcomes the
instability issues exhibited by standard non-negative tensor
factorization methods when decomposing sparse, dispersed
count data. We provided additional analysis and empiri-
cal results demonstrating that when constructing point esti-
mates of the latent factors from the variational distribution,
the geometric expectation is a more appropriate choice than
the arithmetic expectation. We therefore recommend its
use in any subsequent work involving variational inference
for Bayesian Poisson matrix or tensor factorization.
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