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Abstract

Smarter phones have made handheld computer vision a reality, but limited band-
width, storage space and processing power prevent mobile phones from leveraging the
full body of existing research. In particular, common techniques which use feature detec-
tors and descriptors to solve problems in image matching and augmented reality cannot
be used due to their space and processing requirements. We propose a general descriptor
compression method which reduces descriptor size and provides fast descriptor match-
ing without requiring decompression. By demonstrating how to apply our method to the
commonly used SIFT, SURF and GLOH descriptors, we show its effectiveness in reduc-
ing size and increasing accuracy. In all cases, we reduce the size of the descriptor by an
order of magnitude and achieve higher accuracy at a detection rate of 95%.

1 Introduction

With the advent of smart phones that incorporate high quality cameras, mobile computer
vision has become an area of increased research. While many efforts have focused on thin
phone clients which interact with a remote server that uses conventional computer vision
techniques to solve image matching and recognition problems [5, 9, 18], the current gener-
ation of phones are sufficiently powerful that they can execute computer vision algorithms
locally. In particular, ubiquitous augmented reality on the mobile phone becomes a feasible
undertaking, as the complementary sensors (e.g. GPS, accelerometer) work along with the
camera to provide a rich user experience. Such applications heavily utilize interest point
and descriptor based algorithms for matching, registration and tracking. However, these
algorithms present unique challenges in a mobile computer vision scenario:

Storage Space Memory is in short supply on mobile handsets, and thus the large memory
footprints of descriptors like SIFT [12], SURF [2] and GLOH [13] make the storing of
databases in memory unfeasible, and writing to and from the disk on a mobile phone
is too slow for the realtime recognition required for an augmented reality application.

Bandwidth The local image descriptors computed for a reference image or object number
in the thousands and each require a large number of bits to represent. Given the band-
width available in a mobile scenario, providing a localized database from a remote
server as a user moves from one geographical area to another becomes untenable.
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Computation The most computationally intensive component of any image matching or
registration system is descriptor database retrieval. With thousands of descriptors in
the image and thousands more in the database, millions of distance computations can
potentially take place.

In order to allow mobile computer vision to exploit the substantial body of computer
vision research depending upon existing local image descriptor algorithms despite the chal-
lenges listed above, we propose a general and efficient method of compression for descrip-
tors, and a technique by which those descriptors can be compared without requiring decom-
pression. An overview of our method can be seen in Figure 1.

1.1 Prior Work

There has been a significant effort in recent years to produce robust local descriptors for a
variety of imaging tasks including image matching, pose retrieval, and object recognition.
The most widely used are Lowe’s SIFT descriptor [12], the SURF descriptor of Bay et al.
[2], and the GLOH descriptor proposed by Mikolajczyk and Schmid in [13]. That paper also
provides an excellent review of various descriptors types and methods for their evaluation.
Another more current review of descriptors was performed by Winder and Brown in [17],
in which they also explore methods for optimizing the different parameters involved in the
design of descriptors using machine learning techniques.

Accompanying this research into robust local descriptors has been complementary work
on descriptor compression. Ke and Sukthankar reduce the dimensionality of a 39x39 patch
of x and y gradients using principle components analysis to obtain their 36-dimensional
PCA-SIFT descriptor[10], one of several examples where PCA is used to reduce the dimen-
sionality of a larger descriptor to ease storage requirements (another is the GLOH descriptor
of Mikolajczyk and Schmid [13]). Hua et al. [7] propose a learned linear discriminant sys-
tem which accomplishes the same goal on standard descriptors. Takacs et al. [16] quantize
and entropy code SURF descriptors to reduce the bitrate, and Chandrasekhar et al. propose a
general framework in [3] for the transform coding of feature descriptors, though this scheme
requires decompression during the matching phase. Yeo et al. in [19] use random projections
on SIFT descriptors to create compact binary hashes. Another interesting approach is taken
by Shaknarovich in his thesis [15], where he develops a machine learning technique called
Similarity Sensitive Coding to learns efficient binary codes directly from image patches.

Most similar to our work, Chandrasekhar et al. propose a new descriptor in [4] called
the Compressed Histogram of Gradients, which is compressed using a method which can
be seen as a special instance of our generalized method. Their version of a histogram of
gradients is a descriptor (they refer to it as a UHoG) which takes our canonical form without
modification. The histogram is small enough that a generalized encoding scheme is not used,
but rather each particular coding tree is assigned a unique identifier. In this paper, we show
how the advantages of their CHoG descriptor can be gained by any descriptor, thus enabling
a large body of existing research to be leveraged in mobile computer vision scenarios.

1.2 Contributions

We first propose a canonical descriptor form, and then demonstrate a technique by which
a descriptor in this form can be significantly reduced in size using tree coding. We then
describe the manner in which the distances between these compressed descriptors can be
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Figure 1: Method Overview In this figure, we can see an overview of the entire compression
and matching method. A descriptor algorithm (in this case, a GLOH-like scheme) is used
to compute a matrix F for two image patches, in which each row is a normalized histogram
which corresponds to a cell in a mask over the patch. F is then compressed to form the
vector ¢, where each index represents a row from F. Each element in this vector is then used
to compute per-histogram distances by way of a distance matrix D. The dot product of this
vector and a weight vector w produce the final distance. F', D and w constitute our proposed
canonical form of a descriptor algorithm.

computed without requiring decompression, as is the case in other universal techniques.
Finally, to demonstrate the efficacy of the technique, we examine three case studies for SIFT,
SURF, and GLOH descriptors. In each study, we describe how to convert the descriptor
algorithm into the canonical form and demonstrate how descriptors compressed from this
form using our method perform better than their uncompressed versions while requiring far
fewer bits to encode.

2 Descriptor Compression

We propose a canonical descriptor form uniquely suited for compression which captures the
structure shared by most local image descriptors. This form consists of three parts, as seen
in Figure 1:

1. An M x N matrix, F, in which each row is normalized such that Z]Jy |F[i,jll=1 Vie
M. In a grid-based orientation histogram method such as SIFT, this would be a matrix
with 16 rows and 8 columns, where each row is the normalized orientation histogram
computed for a grid cell.

2. DisaN x N distance lookup matrix in which D[i, j] = f(27/,27/), where f is a decom-
posed portion of a distance metric (see Section 2.2 for examples). As our compression
method will use negative powers of two to approximate values in a normalized distri-
bution, D need only contain distance computations for an appropriate range of those



4 JOHNSON: GENERALIZED DESCRIPTOR COMPRESSION

0421| 3 2 1 1 0.500

0.157 3 0.125

0.234 (|0 157 2 | [o2s0

0.188 3 0.125
0.188

(a) (b) () (d)

Figure 2: Tree Coding This figure displays the method by which a four-dimensional nor-
malized histogram is compressed by way of tree coding. The original histogram, (a), is used
to build a Huffman tree [8] (b). Each value in the original histogram is replaced by the depth
of the Huffman tree at which it was placed, as seen in (c). These depths represent negative
powers of 2, which are used to approximate the original histogram as seen in (d).

values.

3. A weight vector, w, of length M determining how much a particular row should con-
tribute to the overall distance. For example, in the case of a center-weighted grid-based
method, each index would correspond to the value of a central bi-variate Gaussian in
grid coordinates computed for the corresponding grid cell.

First, the F' matrix is computed for an image patch. Each row of this matrix is compressed
using tree coding, as described in Section 2.1, resulting in a vector ¢. Each index of ¢
encodes an entire row from F using O(NlogN) bits, where N is the length of the original
histogram. ¢ vectors are used to index the distance matrix D to compute a distance between
descriptors without requiring decompression, as described in Section 2.2. In Section 3 we
will demonstrate how to convert the SIFT, SURF and GLOH descriptors into this canonical
form.

2.1 Tree Coding

The normalized rows of F' can be compressed using methods developed for the lossy com-
pression of probability distributions. Gagie proposes two algorithms in [6] which can be used
for this purpose with a bound on the Kullback-Leibler divergence [11] between the original
and compressed distributions. Both of these algorithms use binary trees to assign a depth
code to each element of the distribution which corresponds to a negative power of 2. The al-
gorithm we use is based on Huffman trees [8], and as proven in [6] this encoding guarantees
that D(P||Q) < 1, where P is the original distribution, Q is the compressed distribution, and
D(P||Q) = ¥ pilog 2.

An example of the encoding process from [6] can be seen in Figure 2 for a four-dimensional
vector. As the maximum depth of a tree is N, where N is the dimensionality of the original
vector (i.e. the number of columns in F'), log, (N — 1) bits are required to encode each index
of the distribution.
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Figure 3: Distance Computation Given two four-dimensional normalized histograms x
and y, tree coding is used to create compressed forms ¢x and ¢y. Each value of the com-
pressed form indexes into the distance matrix D, computing the histogram distance as
Y Dlex[i, jl,¢yli, j]]. In this case, D encodes the squared distance as part of a L, norm
calculation (scaled by 64 to obtain integer values).

2.2 Distance Computation

One thing shared by most descriptor algorithms is some method of weighting the contribu-
tions of the sample points, usually by way of a bivariate normal distribution. The purpose of
this weighting is to increase robustness to detector error by concentrating the distinctiveness
of the descriptor at the center. Since it is common practice to treat the concatenated grid cell
n-tuples as a vector and normalize it to have a length of one (to increase robustness to contrast
and other imaging conditions), this weighting is maintained in the final descriptor. However,
in our canonical form, each row in F is normalized separately to allow for compression. As
a result the center weighting is lost and must be recaptured by way of the weighting vector
w.

Let x be a descriptor computed by a method in which M grid squares have individual
normalized orientation histograms of length N whose contributions to the final descriptor
are center-weighted, similar to that shown in Figure 1. Thus, x is a 32-dimensional vector in
which each histogram is weighted by a specific weight depending on the location of its source
cell in the grid, x = {w[1]hx 1,1, W[1]hx 12... W[ilhx j ... W[M]|hy p n}, where w[i] is the cell-
specific weight and h; ; is the histogram value for bin j of histogram i. When comparing x
with another vector y using the L; Minkowski distance, we get the following result:

i

M N
Li(x,y) =} Y [Wlilhxij — Wlihy.i;| 1)
J

M N
=Y Wi} |hxij— byl 2
B 7

As can be seen, the weight factor w can be separated from the distance computation. In this
way, the distance lookup matrix D and the weighting vector w are linked, as the choice of
metric encoded in D will determine the values in w. Examples of this can be seen in Section
3.

Once each row of F has been compressed using tree coding, the result is the vector ¢ in
which each value encodes an entire row using Nlog, (N — 1) bits. Each value in ¢ can be
expanded and used to index into the distance matrix D. D is constructed in such a way that
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it can replace the interior element of the distance computation:

cxacy ZW Z ‘Z_CXU] — —Cy[j] (3)
i J

M N
1(ex,¢y) = Y wli] ) Dlex “)
i J

Thus, D[i, j] = f(27/,27/), where f is a decomposed element of a distance metric. In the
case of Minkowski distances, f(x,y) = (x —y)™. For the Jeffreys distance [14], f(x,y) =
xlog, % +ylog, %, where z = % The advantage of this method is that these values can be
computed ahead of time, reducing the number of operations required for distance computa-
tions at runtime. Additionally, computing the distance between grid cell n-tuples separately
before weighting results in an improvement in performance for all descriptor algorithms, as
can be seen in Figure 7. An example of the method can be seen in Figure 3.

3 Case Studies

In order to demonstrate the strong performance and general applicability of our technique,
we have performed case studies examining the conversion of three major local descriptor
algorithms to the canonical form detailed in Section 2. Each of these algorithms consists of
a collection of n-tuples each associated with a cell within a grid that is superimposed upon
an image patch. As most successful descriptor algorithms follow this general pattern, the
techniques we use to convert these algorithms to our canonical form should be of use for
those who wish to apply our method to others.

3.1 SIFT

Perhaps the most widely-used local image descriptor is the descriptor portion of David
Lowe’s SIFT system [12], an acronym of Scale-Invariant Feature Transform. The SIFT
descriptor consists of 16 orientation histograms, each with 8 bins, computed on a 4x4 grid.
Each grid square contains 16 regularly space sample points, which are weighted by a centered
Gaussian. The final descriptor is normalized to unit length, and descriptors are compared us-
ing L, norm. Our canonical form of SIFT, named NSIFT, is constructed as follows:

1. F is a 16x8 matrix where the orientation histograms are constructed in the same way
as in Lowe’s method, but each individually normalized to one after the incorporation
of a Dirichlet prior.

2. D is a 8x8 matrix where D[l jl= xlog, 2 + ylogz ' (the decomposed Jeffreys Diver-
gence [14]) where x =27,y =27/ and z = *}*.

3. wis a 16-dimensional vector where w[i] = .#'(i mod 4, {|u,X) where .4 is a bivari-
ate normal distribution, u = (1.5,1.5) and X is a diagonal covariance with o = 1.5.

The compressed version based upon this canonical form is named CSIFT, and the compari-
son in performance can be seen in Figure 4. It requires 48 bytes to encode (16 histograms,
each requiring 24 bits) versus 512 bytes for the floating point representation we use in our
experiments. In the pre-compressed NSIFT experiment, histograms are compared separately
using the Jeffreys divergence as opposed to the L, norm.
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3.2 SURF

The descriptor portion of the SURF algorithm of Bay et al. [2] (an acronym of Speeded-Up
Robust Features) shares the 4x4 grid with SIFT, but eschews interpolation and orientation
histograms, opting instead to use integral images to compute }.dy, Y.dy, }.|ds|, and Y. |dy|
for each cell, where d, and d, are Haar wavelet approximations. Each grid cell contains 25
regularly spaced sample points which are weighted using a centered Gaussian, resulting in
a final 64 dimensional descriptor that is normalized to unit length. The resulting descriptors
are compared using the L, norm.

We decided to work with the MU-SURF algorithm proposed by Agarwal et al. [1], due
to its similar performance to USURF while being better suited for conversion. Our canonical
form of SURF, named NSUREF, consists of the following:

1. Fisa 16x4 matrix, constructed in the manner of the MU-SURF descriptor, but without
the second Gaussian weighting, with each row normalized to one.

2. D is an 8x8 matrix, where
Dli, j] = (g(i) — g(j))
27 x<4
g(x) = _24—x x> 4

This is to accommodate the fact that the first two indices of the cell vector can be
negative.

3. w is the same as the NSIFT w, reflecting the second Gaussian weighting from the
MU-SUREF descriptor, except each element is squared due to the use of the L, norm in
D.

Since the first two indices of the cell vector can be negative, they require an additional bit to
encode in the compression step. This leads to 10 bits per histogram, for a total footprint of
20 bytes, versus 256 for the floating point representation used in our experiments. We name
this form CSUREF, and the comparison in performance can be seen in Figure 5.

3.3 GLOH

The Gradient Location and Orientation Histogram (GLOH) descriptor of Mikolajczyk and
Schmid [13] is an improvement upon the SIFT descriptor, replacing the regular 4x4 grid with
a log-polar grid and increasing the number of dimensions in the orientation histogram to 16.
This high-dimensional vector is then compressed using PCA to 128 dimensions. We propose
that our method is a better fit in this case, as we can achieve a lower bitrate without losing
the distinctiveness of the original form of the descriptor. In this case, the canonical form,
NGLOH, is similar to NSIFT:

1. F is a 17x16 matrix where the orientation histograms are constructed in the same way
as in Lowe’s method, but each individually normalized to one after the incorporation
of a Dirichlet prior.

2. D is a 16x16 matrix where D[i, j] = xlog,  +ylog,  (the decomposed Jeffreys Di-

vergence [14]) where x =277, y =27/ and z = 2.
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3. Due to the radial nature of the grid, each ring of bins has the same weight. Thus, w is
a 3-dimensional vector where w[i] = .4 (i|u, o), where .4 is a normal distribution, i
is the ring the cell belongs to, 4 =0 and ¢ = 1.

The compressed version of the canonical form is named CGLOH, and the comparison in
performance can be seen in Figure 6. It requires 136 bytes to encode (17 histograms, each
requiring 64 bits) versus 1088 for the floating point representation we use in our experiments.
In the pre-compressed NGLOH experiment, histograms are compared separately using the
Jeffreys divergence as opposed to the L, norm.

4 Experiments

Our experiments were performed on a random sample of 10,000 correct matches and 10,000
incorrect matches drawn from the Notre Dame patch correspondence dataset of Winder and
Brown [17]. As in their experiments, we incorporated a “jitter” factor during testing. We
altered each patch in the dataset using a random affine transform generated by drawing a
scale offset, an angle offset, and x and y offsets from normal distributions with zero mean
and standard deviations of .2, % and .4 respectively (the scale offset is set to 27 where
x is the value drawn from the distribution). These distributions approximate the statistics
provided by Winder and Brown in their supplemental material, in which they measured the
natural inaccuracies of a Harris-Laplace detector.

In each experiment, a particular algorithm is used to compute descriptors for each pair of
patches. The metric score between the descriptors is computed in the manner appropriate to
the algorithm, and used to create a Receiver Operating Characteristic curve which measures
the effectiveness of that algorithm. The curve is computed using a moving threshold, as
in [17]. In addition to the reference implementations of SIFT, SURF and GLOH we also
include results from experiments using a zero-normalized 30x30 patch compared using cross
correlation (ZNCC) as a baseline. ROC curves displaying the performance of our canonical
form and compressed descriptors for SIFT, SURF and GLOH can be seen in Figures 4, 5 and
6 respectively. Figure 7 displays the error rates at 95% detection for all experiments.

5 Discussion

As can be seen in Figure 7, our compression method not only reduces the size of standard
descriptors significantly, but by normalizing each cell vector separately it can exploit metrics
such as the Jeffreys divergence to achieve a significant improvement over the original in
appropriate cases, such as for SIFT and GLOH. Due to tree coding, lookup tables with these
more computationally expensive metrics can be pre-computed for the appropriate powers of
two such that matching of compressed descriptors using these metrics is less computationally
expensive than matching the original descriptor using the L, norm. However, as the SURF
case study shows, descriptors which are not amenable to this technique see less dramatic
improvement for the canonical and compressed forms over the original. Regardless, in each
case our canonical form is an improvement over the original descriptor, and compression
from this form results in little or no loss of performance.
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Figure 4: SIFT Performance ROC curves
for SIFT (512 bytes), NSIFT (canonical
form) and CSIFT (48 bytes).
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6 Conclusion

The generalized descriptor compression method proposed in this paper not only significantly
reduces the size of feature descriptors for easier storage, but reduces the cost of matching
descriptors during database search and retrieval. We have described how to convert SIFT,
SURF and GLOH to our canonical descriptor form, and experimentally shown that their per-
formance in this canonical form is better. Additionally, we have shown that the compressed
versions of these descriptors improve on their original performance while requiring far fewer
bits to encode and fewer processor operations during the matching stage.
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