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Abstract
Developers who set a breakpoint a few statements too late or
who are trying to diagnose a subtle bug from a single core
dump often wish for a time-traveling debugger. The ability
to rewind time to see the exact sequence of statements and
program values leading to an error has great intuitive appeal
but, due to large time and space overheads, time-traveling
debuggers have seen limited adoption.

A managed runtime, such as the Java JVM or a JavaScript
engine, has already paid much of the cost of providing core
features — type safety, memory management, and virtual
IO — that can be reused to implement a low overhead time-
traveling debugger. We leverage this insight to design and
build affordable time-traveling debuggers for managed lan-
guages. TARDIS realizes our design: it provides affordable
time-travel with an average overhead of only 7% during nor-
mal execution, a rate of 0.6MB/s of history logging, and
a worst-case 0.68s time-travel latency on our benchmark
applications. TARDIS can also debug optimized code using
time-travel to reconstruct state. This capability, coupled with
its low overhead, makes TARDIS suitable for use as the de-
fault debugger for managed languages, promising to bring
time-traveling debugging into the mainstream and transform
the practice of debugging.

Categories and Subject Descriptors D.2.5 [Testing and
Debugging]: Debugging aids

Keywords Time-Traveling Debugger, Managed Runtimes

“Debugging involves backwards reasoning”
Brian Kernighan and Rob Pike

The Practice of Programming, 1999
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1. Introduction
Developers spend a great deal of time debugging. Skilled de-
velopers apply the scientific method: they observe a buggy
program’s behavior on different inputs, first to reproduce the
bug, then to localize the bug in the program’s source. Re-
producing, localizing, then fixing a bug involves forming
and validating hypotheses about the bug’s root cause, the
first point at which the program’s state diverges from the in-
tended state. To validate a hypothesis, a developer must halt
program execution and examine its state. Especially early in
debugging, when the developer’s quarry is still elusive, she
will often halt execution too soon or too late to validate her
current hypothesis. Overshooting is expensive because re-
turning to a earlier point in a program’s execution requires
re-running the program.

Although modern integrated development environments
(IDEs) provide a GUI for halting program execution and ex-
amining program state, tool support for debugging has not
changed in decades; in particular, the cost of program restart
when placing a breakpoint too late in a program’s execu-
tion remains. A “time-traveling” debugger (TTD) that sup-
ports reverse execution can speed the hypothesis formation
and validation loop by allowing developers to navigate back-
wards, as well as forwards, in a program’s execution history.
Additionally, the ability to perform efficient forward and re-
verse execution serves as an enabling technology for other
debugging tools, like interrogative debugging [31, 36] or au-
tomatic root cause analysis [12, 22, 27, 29].

Despite the intuitive appeal of a time-traveling debugger1,
and many research [4, 20, 30, 36, 54] and industrial [15, 21,
26, 47, 51] efforts to build TTD systems, they have not seen
widespread adoption for one of two reasons. The first issue
is that TTD systems can impose prohibitive runtime over-
heads on a debugger during forward execution: 10–100×
execution slowdown and the cost of writing multi-GB log
files. The second issue is long pause times when initiating
reverse execution, the additional functionality TTD offers,
which can take 10s of seconds. Usability research shows that
wait times of more than 10 seconds cause rapid system aban-

1 Time-traveling debuggers have been variously called omniscient, trace-
based, bi-directional, or reversible.



donment and that wait times of more than a few seconds
frustrate users and trigger feature avoidance [40]. Grounded
on these results, we define an affordable time-traveling de-
bugger as one whose execution overhead is under 25% and
whose time-travel latency is under 1 second.

We present TARDIS, the first TTD solution to achieve
both of these goals. On our benchmarks, forward debugging
overhead averages 7% and time-travel latency is sub-second,
at 0.68s, as detailed2 in Section 5. In short, TARDIS works
to realize Hegel’s adage that a sufficient quantitative change,
in TTD performance, becomes qualitative change, in prac-
tical utility. TARDIS rests on the insight that managed run-
times, such as the .Net CLR VM or a JavaScript engine, have
paid the cost of providing core features — type safety, mem-
ory management, and virtual IO — that can be reused to
build an affordable TTD system. Thus, constructing TTD
within a managed runtime imposes 1) minimal additional
cost bounded by a small constant factor and 2) more fully
realizes the return on the investment managed runtimes have
made in supporting these features.

A standard approach for implementing a TTD system is
to take snapshots of a program’s state at regular intervals
and record all non-deterministic environmental interactions,
such as console I/O or timer events, that occur between snap-
shots. Under this scheme, reverse execution first restores the
nearest snapshot that precedes a reverse execution target,
then re-executes forward from that snapshot, replaying en-
vironmental interactions with environmental writes rendered
idempotent, to reach the target.

Memory management facilities allow a system to traverse
and manipulate its heap at runtime; type information allows
a system to do this introspection precisely. Without these
features, a TDD system must snapshot a process’s entire ad-
dress space (or its dirty pages), copying a variety of use-
less data such as dead-memory, buffered data from disk, JIT
state, code, etc. [20, 30]. Managed runtimes provide both
features. Section 3 shows how TARDIS exploits them to effi-
ciently identify and snapshot only live objects and program
state, thereby improving on the basic snapshot and record/re-
play TDD design. Section 3.2 leverages insights from work
on garbage-collection to further reduce the cost of produc-
ing state snapshots. TARDIS is the first system, two decades
after it was initially suggested [54], to implement piggyback-
ing of snapshots on the garbage collector. Beyond this work
sharing optimization, TARDIS also utilizes remembered-sets
from a generational collector to reduce the cost of walking
the live heap and a write-barrier to trap writes so it can snap-
shot only modified memory locations.

In addition to enabling affordable snapshots, managed
runtimes also ease the capture of environmental interactions
between snapshots. Managed runtimes virtualize resources
by restricting how calls to native methods, including calls to

2 All programs in our benchmark suite have live heaps under 20MB. When
load testing the runtime overhead reaches 25% at a live heap size of 50MB.

the underlying OS APIs, can be made. Thus, by construction,
managed runtimes provide a small instrumentation surface
for adding functionality to record/replay non-deterministic
environmental interactions, including file system, console,
and network I/O. Section 3.4 describes how TARDIS cap-
tures these interactions using specialized library implemen-
tations. These implementations examine program state as
well as memory layout to make decisions such as storing
only a file offset to obviate seeking over a large immutable
file, or converting environmental writes or operations that
overwrite data on which nothing depends into NOOPs dur-
ing replay. To ensure deterministic replay of multi-threaded
programs, TARDIS, like other systems [30, 48, 51], multi-
plexes all threads onto a single logical CPU and logs the
context switches and timer events. Section 3.3 explains how
TARDIS uses efficient persistent [19] implementations of
specialized data structures to virtualize its file system. This
section also shows how to leverage standard library file se-
mantics in novel ways to optimize many common file I/O
scenarios, such as avoiding the versioning of duplicate writes
and writes that are free of data dependencies.

This paper makes the following contributions:

• We present TARDIS, the first affordable time-traveling
debugger for managed languages, built on the insight that
a managed runtime has already paid the cost of providing
core features — type safety, memory management, and
process virtualization — that can be reused to implement
a TTD system, improving the return on the investment
made in supporting these features.
• We describe a baseline, nonintrusive TTD design that

can retrofit existing systems (Section 3.1); on our bench-
marks, this design’s performance results — an average
slowdown of 14% (max of 22%) and 2.2MB/s (max of
5.6MB/s) of logging — apply to any managed runtime
and demonstrate the generality of our approach.
• We present an optimized design of TARDIS in Section 3.2

that we tightly integrated into a .Net CLR runtime to
leverage its features and (optionally) additional hardware
resources to reduce TARDIS’s average runtime overhead
to only 7% (max of 11%), record an average of 0.6MB/s
(max of 1.3MB/s) of data, and achieve time-travel latency
of less than 0.68s seconds on our benchmarks.
• We show how TARDIS can run heavily optimized code,

so long as 4 lightweight conditions are met, by time-
traveling to reconstruct source-level debugging informa-
tion (Section 4) and how, thanks to its low overhead,
TARDIS can make time-travel debugging an “always on”,
standard feature of debuggers (Section 5).

2. Time-Traveling Debuggers
This section demonstrates the generality of our design and
approach. We first present the generic top-level algorithms



Figure 1. TARDIS running the BH n-body simulation
benchmark. TARDIS provides support for the standard set of
forward step/step into/run commands and data value inspec-
tion. The developer has set the breakpoint at line 10924, then
used the reverse step to step backwards in “execution time”,
reversing the program’s execution to line 10922.

for a record-replay time-traveling debugger, which we then
instantiate in Section 3 to produce the TARDIS debugger.
During forward execution, a record-replay TTD takes snap-
shots of the program state at regular intervals and logs ex-
ternal interactions, such as file or console I/O, that occur be-
tween these snapshots. To time-travel, we restore the nearest
snapshot that precedes the time-travel target, then re-execute
forward from that snapshot, replaying external interactions
from the log, until reaching the target point in the program.

We define the algorithms in the context of a core pro-
cedural language shown in Figure 2. The language has a
type system with the standard bool, int, and float types,
along with pointer-referenced heap allocated record and ar-
ray types. The stack-based execution model supports the
usual set of operators. A program is a set of record type defi-
nitions and procedures. Procedures are either user-defined or
one of the builtin operations that provide access to resources
virtualized by the managed runtime.

2.1 Forward Execution with Snapshots and Logging
Algorithm 1 shows the generic implementation of the for-
ward execution algorithm for record-replay TTD in a ba-
sic interpreter. The stack of call-frames cs maintains pro-
gram execution state. Each call-frame cf is a tuple consist-

Global Vars g, · · ·
Local Vars v, · · ·

Fields f, · · ·
Record ::= struct : {f1 : τ1, · · · , fk : τk}, · · ·
Type τ ::= bool | int | float | struct ∗ | τ []

Constant c ::= i ∈ Z | r ∈ R | true | false
Procedure Proc ::= Proc(arg1, · · · , argk) block1 · · · blockj

Block block ::= stmt1 · · · stmtk
Statement stmt ::= load | store | exp | cjmp blockt blockf |

ret v | call Proc | new struct | new τ []
Load load ::= push c | load v | load f | · · ·
Store store ::= store v | store f | · · ·

Expression exp ::= nop | add | and | pop | · · ·

Figure 2. Core imperative language.

ing of the current procedure, the current pc offset, the local
variable-to-value map vars, and the current evaluation stack
eval. The execution loop is standard: it switches on the cur-
rent statement to dispatch the code implementing the oper-
ation. The TDD implementation alters only a few cases in
a standard interpreter’s main loop; we omit the other cases.
The newly inserted TTD code is underlined and highlighted
in blue (if color is available).

First we modify the initialization of the runtime (Line 1),
which must set up the data-structures needed for the persis-
tent I/O libraries and logging. Line 5 introduces TraceTime;
we use this variable to impose a total order on the events
logged during the program execution. The next line initial-
izes and starts SnapTimer to control the snapshot interval.
DoSnapShot() snapshots program execution state for use
during time-travel and then resets the SnapTimer. Inserting
checks for the snapshots at each loop head (line 15) and pro-
cedure call (line 23) bounds the time between the expiration
of the SnapTimer and the next call to DoSnapShot(). Since
one of the optimizations in Section 3.2 is to piggyback snap-
shot work on top of the GC, we also insert snapshot checks
at each point where we may invoke the GC (line 28).

We must also ensure that (1) all logged events and snap-
shots obey a total order and that (2) every execution of a
statement has a unique TraceTime timestamp. The first con-
dition ensures that execution replay is deterministic. To en-
force this condition, we advance the TraceTime whenever a
builtin procedure, which can generate log data, may execute
(line 17) or whenever a snapshot is taken. The second condi-
tion ensures that, during time-travel, we can use TraceTime
to determine the correct visit to a target statement, of the
possibly many visits during execution, on which to break.
This condition is enforced by advancing TraceTime on every
branch to a loop header (line 14) and every procedure call
(line 17).

2.2 Capture and Replay for Time-Travel
To time-travel, we use Algorithm 2. This algorithm first finds
the snapshot (snp) that is the nearest to and precedes the
target trace time (targettime). Then it resets the globals and



Algorithm 1: ExecuteForward
Input: Program p

1 Initialize(globals, allocator, iosystem(TTD));
2 cs← new Stack();
3 vars← InitLocals(main, ∅);
4 cs.Push(main,&main.block1[0], vars, ∅);
5 TraceTime← 0;
6 SnapTimer← new Timer(SNP INTERVAL);
7 while cs 6= ∅ do
8 cf← cs.Top();
9 switch cf .StmtAtPC() do

10 case cjmp blockt blockf
11 block← cf.eval.Pop() ? blockt : blockf ;
12 cf.pc← &block[0];
13 if IsLoopHeader(block) then
14 TraceTime++;
15 if SnapTimer.Expired then DoSnapShot();

16 case call Proc
17 TraceTime++;
18 if Proc is BuiltIn then
19 ExecuteBuiltin(Proc, cf , globals);
20 else
21 vars← InitLocals(Proc, cf.eval);
22 cs.Push(Proc,&Proc.block1[0], vars, ∅);
23 if SnapTimer.Expired then DoSnapShot();

24 cf.pc++;

25 case new τ
26 DoGC();
27 TraceTime++;
28 if SnapTimer.Expired then DoSnapShot();
29 if τ is struct then
30 cf .eval.Push(AllocStruct(τ ));
31 else
32 len← cf.eval.Pop();
33 cf .eval.Push(AllocArray(len));

34 cf.pc++;

35 . . .

the call stack from the snapshot (InitializeState) followed
by reinflating the heap state and resetting the the memory
allocator as needed (InflateHeap). Next it reverts the I/O
system to the snapshot time. After restoring the snapshot,
the InReplayMode flag is set so that library functions can
avoid re-executing non-idempotent operations, e.g. sending
network packets, during replay.

During replay, we collect a full trace [4] to instanta-
neously respond to additional time-travel requests to targets
after the restored snapshot. However, with overheads of 5–
20×, enabling full tracing throughout replay would cause
unpleasantly long replay times. Thus, we delay the start of
trace collection until the replay is close to the targettime

Algorithm 2: ExecuteReplay
Input: Program p, Target (targetpc, targettime)

1 snp← FindNearestPreSnapshot(targettime);
2 InitializeState(snp.globals, snp.cs);
3 InflateHeap(snp.serializedheap, snp.allocator);
4 iosystem.ReverseExecuteIOLogTo(snp.TraceTime);
5 TraceTime← snp.TraceTime;
6 InReplayMode← true;
7 while targettime 6= TraceTime ∧ targetpc 6= cs.Top().pc do
8 cf← cs.Top();
9 withtrace← (targettime− TraceTime < TRACE RNG) ;

10 ReplayStmt(cf.StmtAtPC(), cf, withtrace);

11 InReplayMode← false;

(line 9). Once at the time-travel target, i.e. the desired tar-
gettime and targetpc, the algorithm resets the replay mode
flag and returns to the debugger interface.

3. Implementation of TARDIS

Here, we describe the design and implementation of TARDIS,
which instantiates the generic record-replay TTD design
from Section 2. TARDIS resides within the .Net CLR whose
features it exploits and extends to enable low-overhead
tracking of the needed program state and history informa-
tion. We first present a nonintrusive implementation of the
DoSnapShot() method in Section 3.1 that is suitable for use
with almost any managed runtime. Section 3.2 then presents
an optimized implementation of DoSnapShot() that fully ex-
ploits features in the host managed runtime and available
hardware resources to reduce TTD overhead, at the cost of
additional implementation effort or introducing hardware
dependencies. Many programs extensively interact with the
file system and do so predictably. Section 3.3 describes how
we layer persistence onto files, track data dependency, and
log file operations all to efficiently support time-travel across
file operations. Section 3.4 presents the mechanisms TARDIS
uses to capture, via API interposition when possible, other
external state events. TARDIS, like any large engineering
effort, has limitations; Section 6 discusses them.

3.1 Baseline Nonintrusive State Snapshots
The baseline nonintrusive implementation of DoSnapShot()
minimizes changes to an existing managed runtime. In par-
ticular, it does not change (1) the allocator, (2) the mem-
ory layout of records or objects, or (3) the garbage collec-
tor. Thus, this formulation can retrofit, with minimal effort,
existing managed runtime systems via small changes to the
interpreter/compiler or via bytecode rewriting.

Given the buffer (or file) to write the snapshot into, Algo-
rithm 3, the baseline nonintrusive snapshot algorithm, serial-
izes globals and the current call-stack. Then, it serializes the
heap and allocator state which, depending on the allocator,
includes information on the max heap size, generation infor-



Algorithm 3: BaselineSnapshot
Input: Buffer snapbuff

1 SerializeEnvironment(globals, cs, snapbuff );
2 SerializeAllocatorState(allocator, snapbuff );
3 worklist← NonNullRootSet(globals, cs);
4 while worklist 6= ∅ do
5 cptr← worklist.Dequeue();
6 type← TypeResolve(cptr);
7 Mark(cptr);
8 SerializeAddr(cptr, snapbuff);
9 SerializeMemory(cptr, sizeof(type), snapbuff);

10 foreach childptr ∈ Pointers(cptr, type) do
11 if childptr 6= null ∧ !IsMarked(childptr) then
12 worklist.Enqueue(childptr);

mation, free list, etc. Line 3 initializes the worklist with the
set of non-null roots for the live heap.

The main heap walk-copy loop, starting at line 4, is a
standard copying traversal of the live heap. To process each
pointer, it determines the referenced record or array type on
line 6 and marks the pointer as visited on line 7. Next, the
address (line 8) and then the contents of the record/array
itself (line 9) are serialized into the buffer. Once this finishes,
the walk-copy loop iterates over the set of all pointer fields,
extracted by the Pointers function, for a record or array of the
given type (line 10). Each non-null and unvisited childptr is
added to the worklist. When the processing loop terminates,
the entire state of the program has been suitably serialized
for re-instantiation and re-execution in Algorithm 2.

3.2 Optimized Snapshots
The basic snapshot computation presented in Algorithm 3
makes few assumptions about, and requires minimal modifi-
cations to, the data-layouts and GC algorithms in the runtime
system. This nonintrusive design simplifies the process of
extending existing managed runtimes/debuggers with TTD
functionality. However, it also means that the snapshotting
algorithm cannot fully leverage a variety of features com-
monly found in managed runtime environments to reduce
both the time to produce a snapshot and the amount of data
that is serialized.

Opportunistic GC Piggybacking The purpose of the walk/-
copy loop in Algorithm 3 is to compact the live heap mem-
ory into a contiguous range for efficient storage. However,
if the runtime’s memory allocator uses copying or compact-
ing GC [28], then, after the GC call on line 26 in Algo-
rithm 1, the live heap memory will already be compacted
into a contiguous range. In this case, the call to DoSnap-
Shot() on line 28 can skip the redundant heap walk-copy
loop and directly output the live memory range from the
GC3. Thus, the first system specific optimization we pro-

3 Any pinned objects or stationary objects, such as objects in a large space,
will still need to be copied explicitly.

pose is to co-ordinate the GC and snapshot computation. To
do so, we alter the GC collection trigger to

FreeMem = 0 ∨ (FreeMem < δ ∧ SnapTimer.Remaining < ε).

This condition triggers the GC to run slightly sooner than
it usually would, when δ bytes may remain in FreeMem;
alternatively, the original GC trigger can be preserved by
setting δ to 0. By forcing the collection early, we can, at
low cost, piggyback a snapshot, which was due to happen
within the next ε seconds anyway, on the collector run. If we
cannot opportunistically piggyback on a GC run, i.e. plenty
of FreeMem remains, we then fall back on the copy-walk
loop in Algorithm 3.

Generational Optimizations In Algorithm 3, the baseline
snapshot implementation, long-lived records or arrays may
be visited and serialized multiple times. This increases both
the cost of the heap walk-copy loop and the amount of data
written. However, if the runtime system has a generational
collector [28], we can eliminate much of the redundant vis-
it/copy work; we can

1. Perform the walk-copy loop only on the nursery during
an explicit heap walk for the snapshot; and

2. Use an object-based write-barrier [7] to track which ob-
jects in the old space were modified since the last snap-
shot and serialize only these objects.

The latter optimization has the immediate consequence
that snapshots are partial and their restoration may need to
load prior snapshots to get values for unchanged objects, in-
creasing their cost. However, the time between gen-0 collec-
tions, which forces a full heap snapshot, bounds the number
of previous snapshots needed to restore a snapshot. To avoid
the need to fully expand and inspect every snapshot since
the last full heap snapshot, we separate the old-space por-
tion of the snapshot from the nursery and use the standard
approach [20, 30, 42, 54] of keeping a (byte) map from the
old-space entries to the snapshot which holds their value.

A common alternative to software write-barriers are
write-barriers based on hardware page protection. The run-
time can use hardware page protection to lazily snapshot the
old space by (1) protecting all pages in the old space at snap-
shot time, then (2) lazily performing copy-on-write on pages
when a fault occurs. In this paper, we opt for the object-based
write-barrier leaving a comparison of these approaches for
future work.

Snapshot Compression Producing snapshots at small time
intervals, even with the previous optimizations, can easily
produce 100s of MB of snapshot data for longer running
programs. To reduce the cost of writing this data to disk,
and the storage overheads on disk, we compress the heap
snapshots before saving them. Previous work [49] has shown
that it is possible to obtain large reductions in the amount
of data written by running a standard lossless compression



algorithm, such as GZip, on the live memory buffer. The
cost of running the compression algorithm is minimized
by offloading the compression and write operations to a
helper thread when there are spare computational resources
available, e.g., an idle CPU core.

Dynamic Interval Adjustment Even with the optimiza-
tions above, the overhead of extracting snapshots at a fixed
rate, SNP INTERVAL on line 5 in Algorithm 1, may impose
an unacceptable overhead. To control the cost of the TTD
system and ensure its overhead remains near a targeted frac-
tion of execution time costtrgt, we can construct a basic pro-
portional controller for the snapshot interval. Initially, we
set the dynamic snapshot interval as tsnp = SNP INTERVAL

and, to avoid pathologically low or high intervals, we en-
force tsnp ∈ [l, u] where l, u are lower and upper limits on the
sample rate. At each snapshot, we use a timer, costest, to esti-
mate the recent snapshot overhead and, approximately every
second of wall clock time, we update the dynamic snapshot
interval in the standard way as tsnp = K∗(costtrgt−costest)+
SNP INTERVAL. Based on our experience with the system,
we select costtrgt = 0.1 for an approximate target overhead
rate of 10% and K = −2.5 for the gain value to balance
stability and response as program behavior changes.

3.3 File System History
In a record-replay TTD system, the standard approach for
handling external events is to log every value received from
the external environment during forward execution and then,
during replay, to read the needed values from this log. This
approach is general and, for most event sources, has a low
overhead. It does not scale, however, to high bandwidth ex-
ternal event sources, like the filesystem, where logging ev-
ery byte read/written can quickly generate huge log files and
unacceptable overhead. To account for this, we constructed a
novel mechanism, based on the additional semantic informa-
tion present in the runtime and standard library semantics, to
efficiently handle filesystem operations.

Fundamentally, a program may interact with a file in
one of three modes: read-only, write-only, or both read and
write. We observe that (1) any data that a program reads
from a file must already exist on the filesystem and (2)
any values written are, by construction, deterministic during
replay. These observations imply that reads and writes to
a file, so long as they are not intermixed, do not need to
be logged. When a file is exclusively read or written, then
closed, and later reopened for writing, we simply copy the
original file, before allowing writes to the file. During a
single open, programs read from then overwrite locations in
some files. Restricting full capture to these files allows us to
eliminate file write logging for many common file access
idioms, including processing data read from one file and
writing the results to a second file or overwriting an existing
file without reading its contents.

Algorithm 4: PersistentFileWriteBase
Input: PFile pf // the persistent file to update
Input: long pos // the file offset
Input: char c // the byte to write

1 bpos← pos / 512;
2 cpos← pos % 512;
3 pb← pf.map[bpos];
4 if pb = null ∨ pb.buff[cpos].Item1 6= 0 then
5 buff← new Tuple〈long,byte〉[512];
6 pb← new PBlock(buff, pf.map[bpos]);
7 pf.map[bpos]← pb;

8 origc← pf.f.ReadFromPos(pos);
9 pf.f.WriteAtPos(c, pos);

10 pb.buff[cpos]← (TraceTime, origc);

Persistent File Content Implementation For the inter-
mixed read-write case, we construct a persistent implemen-
tation [19] of the file that provides fine-grained access to
any version of the file during a program’s execution4 and
can track those parts of the file that represent program de-
pendencies. In our construction, the primary on-disk copy
contains the current file contents; the persistent structures
contain the history of previous versions for each byte writ-
ten. The following structures efficiently encode file contents,
and read/write dependencies, as they appear at every step in
the execution of the program.

P F i l e := { D i c t i o n a r y<long , PBlock> map ; F i l e f ; }
PBlock := { Tuple<long , byte >[512] b u f f ; PBlock n e x t ; }

When a file is opened for reading and writing, i.e. the
FileAccess flag is ReadWrite, we create a PFile entry for it
with a map of all null entries; the map is a Dictionary be-
cause file writes are generally sparse. When TARDIS closes
the file, it saves the PFile data into a temp directory. Writes
to the file position pos may need to create a new PBlock entry
to represent the old version of the file. Algorithm 4 depicts
the basic algorithm for writing the persistent file structure.
Algorithm 4 creates a new PBlock, writes TraceTime and the
about-to-overwritten character from the file on disk into it,
sets it to the head of the list at cpos, then overwrites charac-
ter in the file.

A read converts a file offset, or position, into a block
index as in the write algorithm. If the resulting PBlock list
is null, we directly read from the underlying file. Otherwise
we walk the list of PBlock entries. We return the value of
the first Pblock whose the time is non-zero and larger than
the current TraceTime. If we reach the needed block is not
found, we read the desired data directly from the file.

By construction, the primary on-disk copy contains the
current file contents. Thus, it is possible to perform time-

4 An alternative implementation could use snapshots in a copy-on-write
filesystem such as Btrfs, ReFS, or ZFS. However, these systems are block
granular, not byte, which single-step TTD needs, and are unaware of
application-level read/write dependencies, resulting in redundant copying.



travel debugging when multiple processes (even processes
that are not TTD-aware) are accessing the same set of files
simultaneously. Implementing this functionality to work
with both TTD-aware and unaware processes requires sup-
port from the OS to notify each TTD application that a file
modification is about to occur. This enables the TTD system
to update (or create) the needed PFile structures and, when
two processes are simultaneously reading/writing the same
file, to make a copy of the original file.

As the file system we are using (NTFS) does not support
such notifications, our implementation instead uses a simple
file system broker which allows us to debug multiple TTD
processes and non-TTD processes — that only read from
shared files — simultaneously. Whenever a TTD process is
about to modify a file, it notifies the broker, which gener-
ates a global modification time and sends a message, 〈char,
pos, time〉, indicating that each TTD process should up-
date its PFile information as needed. Extending the broker
to push debugger step/reverse step commands to other TTD
processes in file timestamp order enables the various TTD
processes to remain synchronized during debugging, up to
the reorderings of local process events that respect the order
of file system events.

Dependency Optimization The conversion of the default
implementation of the filesystem API into the persistent ver-
sion enables the reconstruction of the state of the filesystem
at any point in the execution of the program. The implemen-
tation described above may log many data-dependence-free
writes in a file. We utilize the fact that we need to preserve
the old contents of a file only if they were read. Thus, we up-
date the PFile structure to track the upper and lower bounds
of the file positions that program actually reads.

P F i l e := { long minpos , maxpos ; . . . }

Initially both values are set to -1. On read operations, we
adjust the upper and lower bounds to include the pos that is
read from. We update the write algorithm to first check if
the target write pos is outside the range of used file positions
pos 6∈ [ minpos, maxpos ]. If pos is outside the range, then it
has never been read and the old value is simply overwritten.

We also change the conditional guarding the creation of a
new FBlock to to check whether the new and old values are
identical, pb.buff[cpos].Item2 = c. If the values are the same,
then there is no need to update the persistent structure. This
ensures that writes that store mostly unmodified data back
to the file from which that data was read do not generate
extensive updates to the PFile structure. This feature allows
us to eliminate large amounts of logging for file access
idioms such as exclusively appending new content to an
existing file or reading data into a cache (perhaps modifying
the data), then writing it out to disk as the cache fills.

Filesystem Operation Logging Guided by the high-level
library semantics of the operation, a combination of logging
and the creation of a set of temporary files can manage the

majority of filesystem operations. For example, consider the
standard directory operations and their extensions with log-
ging for TTD:

Delete(string fn) ⇒ Move fn to a fresh name.
CreateNew(string fn) ⇒ Log creation of fn.
Copy(string src, string dst) ⇒ Move dst to a fresh name.
Seek(File f, long pos) ⇒ Log previous position.
Length(File f) ⇒ Log returned size.
Open(string fn, Mode m) ⇒ Log size and, as needed,

copy fn, create PFile.
Close(File f) ⇒ Save PFile as needed.
· · ·

The logged information makes it easy to reverse each of
these filesystem operations. For example, to reverse Delete,
TARDIS simply copies the file back into place from the tem-
porary file created to preserve its contents, while reversing
writes to a file opened in Append mode simply requires re-
setting its file size. Thus, for each API call that may modify
the file system, we add code to revert the effect of the oper-
ation using the data in the log.

3.4 Other External Interactions
TARDIS handles all other external events, such as interrupts,
console interaction, network I/O, thread switches, etc., via
standard logging [30, 38, 55]. For each of these external
events, we modify the standard library code to timestamp
and append the event to the log. This log provides data for
reverting file system state and deterministically replaying all
the external inputs seen by the program during re-execution.

A concern with this approach is that it may entail instru-
menting a potentially very large API surface. Such a large
surface would create two problems: the large manpower in-
vestment to fully instrument the API and the fact that miss-
ing (or incorrectly handled) API calls would cause strange
failures during time-travel. Identifying a suitable set of in-
terface points ameliorates these problems by restricting the
number of modifications need to capture all environmental
interactions to a small fraction of the API space [44].

However, in a managed runtime, each external API call
already imposes an implementation cost, e.g. ensuring mem-
ory management conventions are observed, and generally in-
cur additional runtime costs. As a result, designers of man-
aged runtime systems seek to minimize the number of these
external APIs and have already invested substantial time into
annotating and structuring the code that calls them. In our
system, we used a custom implementation of the basic class
libraries consisting of 72 external API calls which required
1215 lines of code. The additional code to enable TTD con-
sists of 448 lines of additional replay and logging code.
Thus, as an additional benefit of the API surface minimiza-
tion and virtualization done during managed runtime con-
struction, the TTD functionality can be implemented with
little additional work, increasing the return on the substan-
tial investment in building a managed runtime.



I/O events and NOOP-able calls During replay, input
events, such as receiving a network packet or getting the
current time, are implemented by reading and returning the
needed data from the log. TARDIS converts output events
that are non-idempotent or redundant, such as network sends
or timer registration, into NOOPS and updates the state of
the environment as needed, e.g. writing to the console (UI).

Threads and Asynchronous Events Scheduling related
events, such as thread switches or interrupts that trigger
event handlers, are handled via a uniprocessor execution
model and the information in the event log. The uniprocessor
model [30, 48, 51] multiplexes all threads on a single logical
CPU (even if multiple CPUs are available). This ensures that
there are no thread races during the program execution aside
from those that are due to explicit context switches. Thus,
replaying these explicit thread context switches recorded in
the log ensures deterministic re-execution of the program.

Native Invocation APIs In addition to the native APIs that
managed runtimes virtualize, some systems, including Java
and C#, also expose mechanisms, like JNI and P/Invoke,
that allow a managed program to to call arbitrary native
methods. TARDIS requires that these native calls do not
mutate environmental state, such as files or UI, that are also
accessed from within the managed runtime. This restriction
prevents side-effects to the external state of which the TTD
system is unaware. Our implementation supports native calls
using the standard set of C# blittable types, Byte, Int16,
Int32, etc., as well as opaque native pointers IntPtr.

During normal execution, the result values of native in-
vocations are stored in the event log. When we take/restore
snapshots we cannot serialize or restore the data that the na-
tive IntPtr values reference. At snapshot time, we ignore
the memory pointed to by these references; at restore time,
we save the native pointer values into an array for access
during replay. Native invocations become “NOOP”s during
replay that return the value produced during their forward
execution from the log. Thus, TARDIS can time-travel over
native invocations at the cost logging their return values dur-
ing forward execution.

4. Debugging Optimized Code
Thus far we have assumed that TARDIS is debugging a de-
bug build of a program which guarantees that, at each step in
the execution, the values in the home locations of local and
global variables are consistent with the source-level view of
the program. This is a common assumption for debuggers
and limits the optimizations a compiler can perform, since
it requires, among other things, the preservation of all as-
signments in order. For debug builds, the compiler therefore
produces slower code (frequently by 20% or more) than an
optimized build. TARDIS is not limited to debug builds: as-
suming the compiler is correct, it enables the full-fidelity
source-level debugging of a program, that a debug build pd

provides, while actually executing an optimized build po. To
accomplish this feat, TARDIS

1. Executes the optimized build po and collects state snap-
shots and the execution log as described in Algorithm 1
and Section 3;

2. Launches the debugger and its replay system when en-
countering a breakpoint or exception; and

3. Replays logs starting from snapshots taken from the op-
timized execution against pd, the debug build, instead of
the optimized build po, in Algorithm 2.

These steps allow us to run the optimized build until a
breakpoint or an exception, when replay reconstructs the full
source-level view of the execution state in the debug build.
The key to this approach is ensuring that we can replay a
snapshot and an event log from optimized code against its
debug build.

Snapshot Safe Points Algorithm 1 introduces three classes
of snapshot points: loop headers, procedure calls, and allo-
cation operations, where snapshots are conditionally taken.
To swap snapshots and logs between different versions of a
program, their executions must be convertible. We can safely
use a snapshot from the optimized build po taken at a snap-
shot safe point in the debug build pd of a program if:

1. Calls to builtin procedures and TraceTime operations are
not reordered or moved over any snapshot point in po;

2. The arguments to all builtin procedure calls in po and pd
are identical;

3. Stores to the heap are not removed or moved over any
snapshot point in po; and

4. At snapshot safe points, and for any procedure call loca-
tion that may transitively reach the safe points, the com-
piler has constructed a recovery map [24] for each local
and global variable in pd based on state values in po.

The first two conditions ensure that the logs are identical,
and that the TraceTime timestamps are synchronized; they
prevent any reordering of or argument changes to any oper-
ation that writes to the event log or updates the TraceTime
timestamp. The third condition ensures that all heap objects
are identical across the optimized snapshot and its corre-
sponding snapshot in the debug build. We could force the
optimized build to store all locals and globals to their home
locations before each snapshot safe point, but this would
inhibit many important optimizations — copy propagation,
loop-invariant hoisting, etc. Instead, the final condition al-
lows the compiler to perform optimizations that may result
in a location not containing the needed variable value as long
as it provides a function to reconstruct the correct value for
the variable, much like GC stack maps [28].

The compiler must enforce these conditions so we rely on
its correctness and cannot debug the compiler itself. Under
these assumptions, however, we can guarantee that snapshots



Optimization Level Permitted

Inline statically resolved calls O0 Yes
Inline object/array allocation O1 Yes
Inline virtual calls with guard O1 Yes
Eliminate null/bounds checks O1 Yes
Constant Propagation O1 Yes
Copy Propagation O1 Yes
Common subexpression Elimination O1 Yes
Create hot traces in CFG based on

O1 Yesstatic heuristics
Convert fields in non-escaping objects

O1 Partial(arrays) into local variables.
Convert field loads to variable reads

O1 Yesinside basic-blocks

Table 1. Optimizations used in Jikes Java RVM 2.1.1 com-
piler on O1 optimization level and their compatibility with
TTD-based debugger state reconstruction.

from a program’s optimized build can be used in its debug
build. To better understand the range of permissible opti-
mizations, Table 1 shows optimizations that the Jikes Java
RVM 2.1.1 [3] compiler enables at its O1 optimization level.
These optimizations only increase compilation time slightly
while producing very efficient executables [33].

State reconstruction in TTD-based debuggers permits all
but one of the optimizations in Table 1. The conversion of
fields to local variables (often called scalar replacement of
aggregates [39]) eliminates objects that are allocated on the
heap in the source and in debug builds but are not allocated
in optimized builds. This conversion can still be performed
but with additional restrictions on when. Taking a snapshot
when an object has been converted violates the third safety
requirement for using a snapshot from an optimized execu-
tion in a debug build. Thus, we restrict the compiler to only
convert objects that are non-escaping and whose lifetimes
do not cross snapshot safe points. For the remaining opti-
mizations, we require the compiler to emit recovery maps
to extract variables from the appropriate registers and stack
locations in the optimized build.

Figure 3 shows a small code snippet at the source level
at the top left, then, at the top right, the IR produced after
optimizing and performing register allocation on that code,
and, at the bottom, the recovery map created for the method
call, which may trigger a snapshot and is marked with †. In
this example, the compiler has applied constant propagation
and folding, eliminating the assignments to the variables c

and z and replacing all their uses with constant values. The
recovery map therefore maps c to the constant 4 and z to
8. The variable o was allocated to register r0 and the value
of the field load, which is stored in x, is stored in register
r1. Thus, when recovering the values of these two variables
the map indicates that they should be read out of r0 and r1

L1 :
i n t c = 4 ;
i n t x = o . f ;
i n t y = o . f + c ;
i n t z = c ∗ 2 ;

† foo ( y + z ) ;
goto L2 ;

Source Code

L1 :
r1 = l d r0 f ;
r2 = a d d i r1 4 ;
r3 = a d d i r2 8 ;

† c a l l foo r3 ;
jump L2 ;

Optimized IR

RecoveryMap† = {o→r0, c→4, x→r1, y→r2, z→8}

Figure 3. Top Left: a small code snippet at the source level;
Top Right: the IR produced after optimizing and performing
register allocation; Bottom: the recovery map created for the
method call marked with †.

respectively. Similarly, the value of y is placed in the register
r2 and the recovery map is set similarly. Here the compiler
has converted the repeated field read when computing y into
a local variable read. If the call to foo triggers a snapshot we
can reconstruct the values of all the source level variables
that are needed from the information in the recovery map,
RecoveryMap†, and the state of the optimized program.

Snapshot safe points are less restrictive than the inter-
rupt points used in dynamic deoptimization [24] because the
snapshot safe points are more widely spaced. Specifically,
snapshot safe points are loop headers, method body entries,
allocations, and call sites, while the interrupt points required
for dynamic deoptimization include any point where a break-
point may be set or a runtime error may occur. As a result,
TTD-based reconstruction and snapshot safe points offer a
much larger scope for the application of optimizations and
impose less book-keeping on the compiler as compared to
dynamic deoptimization and interrupt points. In particular,
state reconstruction in TDD-based debugging safely permits
almost all of the standard (and most generally beneficial)
optimizations used in a modern JIT, as as Table 1 shows.
Thus, TARDIS can simultaneously provide both the high-
performance execution of an optimized build and the full-
fidelity source-level value inspection of a debug build.

5. Evaluation
We implemented TARDIS, an optimized TTD system, as de-
scribed in Section 3, for a C# runtime. We use the Common
Compiler Infrastructure (CCI) framework [14] to add hooks
for the debugger, insert code to monitor call frames and local
variables, replace the allocation/GC with our GenMS allo-
cator [28], and rewrite the standard C# libraries to log envi-
ronmental interactions. After rewriting, the bytecode runs on
the 32 bit JIT/CLR in Windows 8, on an Intel Sandy Bridge
class Xeon processor at 3.6GHz with 16GB of RAM and a
7200RPM SATA 3.0 magnetic disk drive. As TARDIS cur-
rently executes on a single core and uses a helper thread for
snapshot compression/write, we use only 2 CPU cores.



To evaluate the overhead of the system, we selected a
suite of programs designed to evaluate both the individual
subcomponents and to understand how the TTD performs
under varied workloads.

I/O Focused To evaluate TARDIS’s file I/O and network
subsystem behavior, we implemented two I/O specific bench-
marks: FileIO and Http. The FileIO program reads all the files
from a directory, computes a histogram of the words in each
file, and writes the results to a fresh file. The Http program
downloads a set of pages from Wikipedia and computes a
histogram of the words and HTML tags on the page.

Compute/Allocation Focused To evaluate the system be-
havior on compute and allocation heavy tasks, we selected
C# ports of well-known benchmark programs from the
Olden suite: BH and Health. We also selected C# ports of
standard application benchmarks, DB and Raytracer from
Spec JVM and C# ports of the benchmarks Compress and
LibQuantum from Spec CPU.

To evaluate the overhead of managed runtime resident
TTD systems, and their subcomponents, we report their
overheads relative to the baseline execution time in which
the program is run through the rewriter but no TTD code, in-
strumentation, or debugger hooks are added. All values were
obtained from the average of 10 runs, discarding the min/-
max times, of the benchmark. In all of our tests, the standard
deviation from the calculated mean was less than 8%. To
cross-validate these overhead measurements, we used the
high-resolution StopWatch class in .Net which provides
sub-300 nanosecond resolution via hardware performance
counters. The overhead values according to the stopwatch
measurements were within 10% of the values calculated by
comparing total runtimes. Thus, we have high confidence
that our measurements reflect the true overheads for the TTD
execution system.

5.1 Nonintrusive Runtime Overhead
We first evaluate the overhead and data write rates when run-
ning each benchmark under the TTD using the nonintrusive
implementation from Section 3.1 with snapshots taken ev-
ery 0.5 seconds. As the nonintrusive baseline approach is
almost entirely independent of the specifics of the underly-
ing runtime, these results are representative of what can be
achieved with (1) almost any managed runtime regardless of
the GC algorithm or runtime implementation used, and (2)
with minimal implementation effort.

The results in the Overhead column in Table 2 show that
the system tracks all of the information needed for time-
travel debugging with a low overhead. The specialized track-
ing of the files allows the TTD system to eliminate almost
all of the logging overhead for the disk access dominated
FileIO benchmark. The Http benchmark requires the TTD to
log all data received over the network. However, due to the
relative speed of the hard-drive vs. the network, even in the

Program Overhead% Raw MB/s GZip MB/s

BH 18 1.6 0.9

Compress 6 2.6 1.2

DB 22 13.7 5.6

FileIO 5 2.2 0.8

Health 15 14.9 4.1

Http 11 2.7 1.1

LibQuantum 14 0.3 0.2

Raytrace 15 8.1 2.7

Table 2. Nonintrusive Baseline TTD performance with
snapshots taken every 0.5 seconds. The Overhead column
shows the runtime overhead percentage; the raw data gener-
ation rate (per second) is shown in Raw and the rate when
applying gzip compression before writing is shown in GZip.

network focused Http program, the overhead and data-write
rates are low. Thus, the cost of extracting the snapshots dom-
inates the overhead since nonintrusive implementation must
execute the live heap walk-copy loop, Algorithm 3, for ev-
ery snapshot taken. Even incurring this work per snapshot,
the performance overhead is low — 22% or less — across
all of our benchmarks.

The Raw data column in Table 2 shows the rate at which
the TTD system writes data. As described in Section 3.2, the
snapshots can be compressed before storing. The GZip col-
umn shows the data rate when compressing snapshots before
writing them. As can be seen, this substantially decreases the
rate at which data is written (a factor of 2.8× on average).
The nonintrusive TTD implementation copies out all live
memory for each snapshot. Thus, the programs with larger
live heaps can generate large, but still manageable, amounts
of data, e.g. DB at 5.6MB/s.

5.2 Optimized Runtime Overhead
We next look at the overhead and data write rates when
running each benchmark under TARDIS, the optimized TTD
from Section 3.2 taking snapshots every 0.5 seconds. To
reduce the runtime overhead and data write rates of the
baseline implementation, TARDIS (1) eliminates executions
of the walk-copy loop through opportunistic piggybacking
on the GC, (2) for non-piggybacked snapshots, performs the
walk-copy loop only on the nursery, and, (3) for the old-
space, copies only objects modified since the last snapshot.

The results in the Overhead and Compressed columns in
Table 3 show that the optimizations dramatically decrease
the cost of supporting TTD functionality. With the optimiza-
tions, the largest runtime overhead drops to 11% and the max
data write rate improves to 1.3MB/s. The impact of the pig-
gybacking optimization on the runtime overhead is depen-
dent on the nature of the workload. LibQ allocates at a very
low rate so there are very few opportunities to take a low-



Program Overhead% Raw MB/s GZip MB/s

BH 5 0.6 0.4

Compress 4 1.4 0.4

DB 11 1.4 0.6

FileIO 4 0.4 0.1

Health 6 3.9 1.3

Http 9 1.2 0.4

LibQuantum 9 0.2 0.1

Raytrace 8 3.0 1.0

Table 3. TARDIS TTD performance with snapshots taken
every 0.5 seconds. The Overhead column shows the runtime
overhead percentage; the raw data generation rate (per sec-
ond) is shown in the Raw data column and the rate when
applying gzip compression before writing is shown in GZip.

cost (i.e. constant additional cost) snapshot while BH (and
Health) allocate rapidly and constantly providing many op-
portunities to piggyback snapshot extraction on the GC. De-
spite triggering the GC early on some occasions to combine
the GC/snapshot activity, we observed no major disruption
to the behavior of the GC and had at most 1 additional GC
for any benchmark run. Just as in a generational collector,
TARDIS’s generational optimization greatly reduces the time
spent traversing the heap and the amount of data that must
be copied. This is a significant factor in the improvements
in DB, which has a large number of strings that are live (but
unmodified) during the program execution.

Given the low runtime overheads and data write rates in
Table 3, TARDIS can easily be used as the default debugger
for day-to-day development. Further, with an average slow-
down of 7% and data rate of 0.6MB/s, it is even feasible
to deploy time-travel enabled builds in the wild to assist in
gathering execution and crash data.

5.3 Sampling Interval Selection
The previous evaluations use a fixed snapshot interval of 0.5
seconds. We chose this interval to minimize the overhead
of the TTD system while still ensuring low latency when
initiating time-travel. Increasing the snapshot interval, at the
cost of increasing time-travel latency, reduces the overhead
and data write rates. Thus, we want to identify both a good
default value for the snapshot interval and a reasonable range
of snapshot rates to support the dynamic interval adjustment
from Section 3.2.

Figure 4(a) shows the runtime overhead TARDIS, our op-
timized TTD implementation, imposes for a range of snap-
shot rates ranging from one snapshot every 0.1 seconds to
one every 2 seconds. As expected, the overhead is large for
frequent snapshots and asymptotically decreases as the inter-
val between snapshots lengthened. The time-travel latency
is directly proportional to the snapshot interval (Table 4),

(a) Percentage increase in execution time.

(b) Data written per second.

Figure 4. Cost of TARDIS with various snapshot intervals.

while the runtime overhead drops off rapidly between 0.1s-
0.25s and then more slowly for successive increases in the
sampling interval. Thus, we select a sampling rate of one
snapshot every 0.5 seconds as the sweet spot on the curve
where the runtime overhead drops to 11% for any of the
benchmarks but the latency remains well under one second
(Table 4). Interval values between 0.25 and 2 seconds are
reasonable choices, depending on the particulars of the pro-
gram being executed, and provide the dynamic adjustment a
suitable operating range.

Figure 4(b) shows the rate at which TARDIS writes snap-
shot and logging data. The overall behavior is similar to the
runtime overhead, generally larger for small snapshot inter-
vals, decreasing to below 1.5MB/s at an internal of 0.5s,
and asymptotically approaching a baseline rate of around
0.5MB/s at an interval of 2s. In most benchmarks, increas-
ing the snapshot interval leads to a rapid reduction in the
amount of data written due to the increase in time for an al-
located objects to become garbage (i.e. the generational hy-
pothesis) and thus never be included in a snapshot. How-
ever, the Health benchmark continually allocates new ob-
jects, keeps them live, and modifies them randomly. Thus, it



Figure 5. Percentage increase in runtime with TARDIS for
various heap sizes of the Health program and four possible
snapshot intervals.

does not benefit as much as the other programs but increas-
ing the interval still effectively amortizes the cost of tracking
the object modifications over longer periods. Based on these
results, we identify a default snapshot rate of 0.5s as provid-
ing a low overall rate of data writes (under 1.3MB/s) and all
the data rates between 0.25 and 2 seconds as suitable for the
dynamic adjustment to use.

5.4 Heap Size and Overhead
The results in Table 2 and Table 3, suggest that the snap-
shot overhead follows the overhead trend of the related GC
algorithm [5]. The baseline results in Table 2 mirror those
of a basic full heap collector, such as a semispace or com-
pacting collector, and the optimized results in Table 3 and
Figure 4(a) are similar to those of a generational collector.
To better understand the relationship between heap size and
TTD overhead, we took the Health program and varied its
command line parameters to measure the overhead of the
TARDIS TTD system for a range of live heap sizes and snap-
shot intervals.

Figure 5 shows, for four snapshot intervals, the overhead
of the TTD system on max live heap sizes ranging from
10MB to 50MB. As expected, the overhead increases as
the live heap size increases and the curves for the smaller
snapshot intervals lie above the curves for the larger inter-
vals. However, even when the max live heap size is 50MB
the overhead remains just under our target overhead of 25%
for the default 0.5 second snapshot interval and is well under
10% when the snapshot interval is set to 2 seconds. The fig-
ure also shows that the increase in overhead, slope of the
curve, is also smaller for the larger intervals. Again, the
larger interval provides more time for allocated objects to
become garbage and amortizes the cost of tracking multiple
writes to the same object in the old space. As a result, the rate
of increase in overhead for a snapshot interval of 2 seconds,
approximately 2% per 10MB, is much smaller than the rate
of increase for intervals of both 0.5 and 0.25 seconds.

Program Avg. Latency (s) Max Latency (s)

BH 0.37 0.68

Compress 0.23 0.45

DB 0.41 0.62

FileIO 0.27 0.41

Health 0.29 0.48

Http 0.23 0.52

LibQ 0.21 0.45

Raytrace 0.23 0.51

Table 4. Time-travel latency.

For all intervals between 0.5 seconds and 2 seconds, the
average data write rate is less than 19MB/s uncompressed
and 6MB/s compressed. Using a generational design and
write barriers in its snapshot algorithm allow TARDIS to pay
only for old, modified objects, not every live object. The re-
sulting snapshot algorithm scales well even on programs that
have large live heaps. Leveraging other recent advances in
GC design [8, 41] may yield similar performance improve-
ments.

5.5 Time-Travel Latency
The final aspect of TARDIS we evaluate is the latency a
user encounters when initiating a time-travel operation —
reverse-step, reverse-step into, or reverse-run — before con-
trol returns to the debugger. The results in Table 4 show
the average/max latency when initiating time-travel when
performing reverse execution operations at 10 randomly se-
lected points.

The results in Table 4 show that the time required for
a reverse execution is, as expected, close to the average or
max time a point in the program execution can be from the
most recent snapshot. At the selected snapshot interval of
0.5 seconds these values are 0.25 seconds and 0.5 seconds
respectively. Due to delays between the expiration of the
snapshot timer and the next safe snapshot point, along with
the cost of snapshot restoration and trace replaying, these
values are, in practice, slightly larger with an average of
0.28s seconds and a maximum of 0.68s seconds. Although
this latency is large enough for a user to notice, exceeding
0.1s, time-travel is far faster than restarting the program
from the beginning. Further, as we compute a full trace for
the last TRACE RNG instructions in the replay, the latencies
for additional operations is near zero.

6. Discussion
Without OS support, TDD systems cannot monitor file sys-
tem events and cannot time-travel debug multi-process en-
sembles that communicate via the file system. Similarly, if
the debugged processes communicate via other IPC mech-



anisms for which the OS does not provide notifications or
that the broker does not co-ordinate, then we cannot capture
and replay their interactions. As future work, we plan to in-
vestigate building TTD functionality into the core of a man-
aged OS, such as Singularity [25], to enable the same type
of lightweight TTD augmented with awareness of OS events
and, therefore, the ability to synchronize over all communi-
cation channels.

Our current implementation does support multi-threaded
programs but only executes them using a single core, unipro-
cessor execution model. This decision works well for pro-
grams that employ threads primarily to improve UI respon-
siveness, but slows down programs that use multiple threads
for task parallelization and precludes time-travel debugging
some types of data race bugs. An alternative is to utilize tech-
niques from Octet [9], a JVM that provides low overhead,
deterministic replay for concurrent programs.

In this work, we do not snapshot or restore the data
referenced by native pointers. Thus, these values are out-
of-sync during replay in the TTD. As a result, we mark
them as not inspectable in the debugger. This limits the
ability of the developer to fully understand the affects of
statements involving native pointers. However, the use of
native invocation in managed languages is discouraged and
best practice suggests limiting its use to small parts of the
program. At the cost of, potentially much, higher overhead,
these native structures and invocations could be reverted by
using full tracing, such as iDNA [4, 32], to capture and
reverse the sequences of events that occur in a native call.

The central goal of this paper is to establish the feasibil-
ity of our general approach to TDD, for the common case
of debugging programs with small-to-moderate input data
and live heap sizes. This result is a first step: we believe that
TARDIS can scale to large heaps, 100+ MB to multi-GB, just
as GC systems have done. In addition many of the snapshot-
ting optimizations presented in this work rely on features of a
generational collector to achieve a low overhead which may
rule out the use of another kind of collector that could give
better performance for a particular application. Thus, fur-
ther study to better understand how the object demograph-
ics, e.g. allocation rates, live heap size, and survival rates,
of a program interact with the engineering choices made
in the GC/snapshot system, e.g. collector behavior, write-
barrier algorithm, COW support, is needed (See [5–7]). Fi-
nally, we observe that leveraging ideas from the recent GC
literature, such as parallel/concurrent operation [41], orga-
nizing the heap to reduce the cost of managing old, large, or
immutable objects [8], and possibly using dedicated hard-
ware to assist in heap management [13], may be key to en-
suring low overheads for a TTD system when dealing with
very large live heap sizes.

7. Related Work
Time-traveling debuggers are an attractive means for im-
proving debugging. Work on them has a long history and
a wide variety of methods for implementing them have been
proposed. In addition, many of the challenges encountered
in their construction must also be overcome when building
systems for other applications such as deterministic-replay,
automatic fault-recovery, transparent system/application mi-
gration, or program invariant checking.

Tracing TTD The most straight-forward mechanism for
implementing a TTD system is simple trace collection with
the ability to revert the program state based on the logged
data [4, 15, 21, 23, 35, 45]. Fundamentally, a trace-based
approach eagerly records all the data needed to revert any
event in the program (regardless of if it will be needed later).
Even with substantial effort to reduce the time/space cost of
this logging [4, 15, 45], using a purely trace-based approach
to TTD results in average runtime overheads of over 10×
and potential logging data rates of 100’s of MB per second.
These high overhead rates make them infeasible for use as
the default debugger.

Record-Replay TTD During debugging only a small por-
tion of the entire execution is likely to be of interest. Thus,
an alternative to eagerly tracing the entire program execution
is to intermittently take snapshots of the entire program state
and then, on demand, restore, and replay [10, 20, 30, 51, 53–
55]. Early work in this area focused on the use of memory
protection features to support incremental and asynchronous
checkpoints using copy-on-write [10, 20, 42]. A similar ap-
proach using hardware virtualization via a hypervisor has
been explored [30]. However, the need to take snapshots
at the coarse grained address space (or full system) level
requires large intervals between snapshots to achieve low
overheads “Overhead is low [16-33%] even for very short
checkpoint intervals of 10 seconds” [30]. Thus, these hyper-
visor based approaches frequently suffer from multi-second
latency when initiating reverse execution, latencies that trig-
ger users to look for other solutions.

A major source of the snapshot overhead is the semantic
gap between memory writes at a hardware level and the live
data at the level of the executing program. This problem is
particularly severe for GC based languages which generally
write to large ranges of memory, only a small portion of
which is live, on a regular basis. As a result, the snapshot
process spends large amounts of time serializing irrelevant
data. This observation was made by Wilson and Moher [54]
who proposed coordinating the snapshot extraction with the
GC in a LISP system to record only live objects, instead of
the full process address space. However, the system was not
implemented and only performance projections of 10% with
a shapshot interval of 2.5 seconds were made as ballpark
overhead estimates. In addition, their work focused solely
on memory state and did not explicitly identify, generalize to



other aspects of the computation, or exploit the more general
idea that a managed runtime has access to the full range of
information needed to construct an optimized TTD system.

Persistent Data-Structure TTD Persistent data structures
efficiently version a data structure when it is modified such
that the current or any previous version of the structure can
be efficiently accessed using a timestamp key [19]. The idea
of lifting the program state into a persistent data structure has
been used to produce TTD systems [36, 43]. Reverse execu-
tion in these systems is simply reading the values from the
appropriate version of the persistent structure. Although ef-
ficient specialized implementations of persistent trees [19]
exist, transforming arbitrary (heap) graphs into persistent
structures has a larger overhead. Consequently, these ap-
proaches incur runtime overheads on the order of 3× and,
as the persistent structure grows O(1) in size per write, the
amount of memory devoted to the execution history can
quickly exceed the memory devoted to the program.

Commerical TTD A testament to the appeal of TTD is the
number of industrial offerings in the last decade [15, 26, 47,
51]. Of these products, UndoDB and Chronon are published
under EULAs that prohibit the publication of evaluation re-
sults, so we can only use their marketing material or other
public statements to compare them to TARDIS. According to
their product webpage, UndoDB, a record-replay TTD for
C/C++ on Linux, the “Average slowdown is 2− 4×, though
in pathological cases slowdown can be up to 10x” [52].
Chronon is a trace-based TTD for Java [15] whose web-
page states “The Chronon Recorder puts minimal overhead
on your applications” [16] and whose CTO Prashant Deva
said “We dont [sic] give out performance numbers” [17].
VMware Workstation 7 included whole system replay de-
bugging [47], which was discontinued in 2011 when Work-
station 8 was released. Anecdotally, VMware’s replay de-
bugging imposed a 2–3× slowdown on forward execution.
Microsoft offers Intellitrace [26], which logs only function
argument values, providing limited time-travel functionality.

Related Areas of Research A number of research areas
use technologies that are relevant to the implementation of a
time-traveling debugger. The ability to deterministically re-
play the execution of a program is critical to implementing
a TTD. Of particular interest is recent work on deterministic
replay systems in managed runtimes such as JavaScript [11,
38]. The Mozilla rr [48] tool has explored leveraging hard-
ware performance counters to reduce the cost of record/re-
play with good initial results. Also relevant is recent work
on Octet, a JVM which provides a mechanism for perform-
ing low overhead deterministic replay with concurrent pro-
grams [9]. Checkpoint (snapshot) extraction is another topic
that has been studied in a number of contexts including fault-
recovery [50] and process migration [18, 37, 44]. The idea
of piggybacking on the GC to perform a task (at low cost)
has also been used for efficient heap invariant checking [46].

Execution History Analysis A number of research areas
depend on, or would benefit from the availability of, a low
cost method for obtaining the execution history for a pro-
gram. Work on interrogative debugging [1, 31, 36] utilizes
the execution history to construct a program slice [2] of
the statements that explain why and how a particular value
was computed. Automated error detection and root cause
analysis tools can use execution history information to au-
tomatically identify and localize a variety of software de-
fects [12, 22, 27, 29, 34]. The cost of producing the history,
at the needed level of detail, is a limiting factor in the appli-
cability of all these techniques. Thus, the ability to efficiently
replay snippets of a program’s execution, and track exactly
the required information, is an enabler for further work in
these areas.

8. Conclusion
Managed runtimes, such as the .Net CLR or a JavaScript en-
gine, have already paid the price to support the core features
— type safety, memory management, and virtual IO — that
can be reused to implement a low cost time-traveling debug-
ger. Using this insight, this paper has introduced TARDIS, an
affordable time-traveling debugger for managed languages.
Our experimental results show that TARDIS provides time-
travel functionality while incurring an average overhead of
only 7% during normal execution, a rate of 0.6MB/s of his-
tory logging, and is able to begin time-travel with a worst-
case 0.68s start latency on our benchmark applications.

These low runtime overheads and data write rates, com-
bined with its ability to debug optimized code, make it fea-
sible to envision the use of a time-traveling debugger as the
default debugger during day-to-day development. TARDIS’s
lightweight collection of detailed execution history infor-
mation represents an enabling technology for related re-
search areas including interrogative debugging, automated
fault localization, automatic fault-recovery and reporting.
Thus, TARDIS represents a key step on the path to bringing
time-traveling debuggers into the mainstream and transform-
ing the practice of debugging.
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