Ziria: Wireless Programming for Hardware Dummies

Gordon Stewart Mahanth Gowda Geoffrey Mainland
Princeton UIuC Drexel
Bozidar Radunovi¢ Dimitrios Vytiniotis

MSR

Abstract

Software-defined radio (SDR) brings the flexibility of software to
the domain of wireless protocol design, promising both an ideal
platform for research and innovation and the rapid deployment
of new protocols on existing hardware. However, existing SDR
platforms either require careful hand-tuning of low-level code,
negating many of the advantages of software, or are too slow to
be useful in the real world.

In this paper we present Ziria, the first software-defined radio
platform that is both easily programmable and performant. Ziria
introduces a novel programming model tailored to wireless physical
layer tasks and captures the inherent and important distinction
between data and control paths in this domain. We describe an
optimizing compiler for Ziria, provide a detailed evaluation, and
give a line-rate Ziria implementation of 802.11a/g.

1. Introduction

The past few years have witnessed tremendous innovation in the
design and implementation of wireless protocols, both in industry
and academia (cf. [7,[21}128]]). Much of this innovation has occurred
at the physical (PHY) layer of the protocol stack which manages
the translation between radio hardware signals and protocol packets.
These innovations have taken the form of numerous new signal
processing algorithms and novel coding schemes, both of which have
greatly increased the efficiency of existing radio communication
channels.

Many of these innovations were first implemented using software-
defined radio (SDR) platforms. Software-defined radio refers to
wireless protocol design in which a protocol’s complex signal
processing is performed in software rather than in hardware. There
are clear advantages to implementing novel protocol designs in
software, such as ease of development, fast and cheap deployment,
and a much shorter development cycle compared to a hardware
implementation. For example, GnuRadio [2| [10], currently one
of the most widely-used SDR platforms, is implemented in a
combination of C++ and Python, meaning it is very easy to program
and extend. Unfortunately, this extensibility and ease of use comes
at a cost: GnuRadio suffers from serious performance limitations
compared to hardware implementations (for example [25]] reports
bus transfer delays of hundreds of us). Signal processing algorithms
often require substantial processing power, and modern PHYs
impose tight time constraints. For example, WiFi requires a receiver
to process each signal sample in 25ns. Meeting these demands
is challenging in general, and impossible with GnuRadio. These
performance requirements make GnuRadio and similar platform of
limited utility for testing real network deployments where line-speed
operation is critical.

MSR

This is not to say that no SDR architecture provides acceptable
performance: Warp [23], Sora [29], and TI KeyStone [1] are high-
performance hardware-software SDR platforms. These platforms
can meet tight timing deadlines, and thus provide “real-time” support
for protocol designers wishing to test at line rate. However, they
suffer from another problem, which has seriously limited their
adoption: these platforms are difficult to program. FGPA-based
platforms, such as WARP, require substantial digital design expertise.
CPU and DSP-based platforms, such as Sora and TI KeyStone,
require the ability to write code that is highly-tuned to the underlying
processor’s architecture. For example, Sora relies heavily on
externally created lookup tables for performance. Furthermore,
different parts of the receiver are manually placed onto different
cores in order to balance CPU load. Such contortions are heavily
hardware dependent and must be performed manually for each new
architecture.

In this paper, we present a new language, Ziria, and corresponding
programming model closes the gap between performance and flexi-
bility. Ziria consists of two components: (1) a high-level domain-
specific language for programming wireless protocols, and (2) an
execution model and compiler transform Ziria programs to line-rate
software radio implementations. In this way, Ziria combines the
best features of extensible, highly programmable, but low perfor-
mance platforms like GnuRadio, with those of high performance but
difficult-to-program platform such as Sora. To demonstrate that our
system supports designing real signal processing code, we present
a Ziria implementation of WiFi 802.11a/g. The optimizations im-
plemented in our compiler, which include automatic vectorization,
automatic lookup table (LUT) generation, and annotation-guided
pipeline parallelization, allow our Ziria implementation to gener-
ously meet the timing limits imposed by the 802.11a/g standards;
its performance even approaches that of hand-optimized code. To
the best of our knowledge, we are the first to present a high-level
programming platform that can implement the 802.11a/g protocol
on a general-purpose CPU while meeting timing constraints. In
summary, our contributions are as follows:

e We present Ziria, the first software radio platform that provides

a flexible, high-level programming model while meeting the

timing constraints required for line-rate deployments.

Our compiler for Ziria implements automatic vectorization, auto-

matic lookup table generation, and annotation-guided pipelining,

optimizations that are vital to performance and provide up to an

order of magnitude speed-up over un-optimized code.

¢ To demonstrate the viability of Ziria as a platform for developing
SDR applications, we implement 802.11a/g. Our implementa-
tion meets the timing constraints imposed by the protocol speci-
fication, and its performance approaches that of hand-optimized
code.

2014/6/16

In Ziria, all signal processing code aside from a few heavily used
standard functions, e.g., Fast Fourier Transform (FFT) and Viterbi
decoding, is written in the high-level language without reference
to the underlying hardware architecture. This leads to a program-
ming model in which Ziria programs closely resemble the original
protocol specifications. Nonetheless, the programmer does not have
to sacrifice line-rate speed to gain this clarity, as our benchmarks
show. Indeed, it is the very high-level nature of Ziria that gives
our optimizer the opportunity to transform code into an efficient,
low-level implementation.

2. Ziria by example

In this section we give a high-level overview of the main components
of the Ziria language and its execution model. We then examine
fragments of our 802.11 implementation: first, the imperative
innards of a Ziria scrambler block, which is used in our WiFi
transmitter to XOR input packet data with a pseudorandom sequence
in order to shape the transmitted signal, and then the outer pipeline
of our WiFi 802.11a/g receiver. We introduce necessary signal
processing concepts along the way.

2.1 Language and execution model

Execution in Ziria is centered around stream processing: reading
values from a (potentially infinite) input stream and writing values
to an output stream. For example, at a high level, a WiFi receiver is
just a computation that reads a stream of complex numbers from the
A/D unit of a radio and outputs a stream of MAC-layer packets.

Language Ziria provides both traditional stream processors,
which map values from input to output streams and which never
terminate, which we call stream transformers, and stream comput-
ers, a novel stream processing language construct. Figure[T]depicts
both stream transformers and stream computers. On the left, two
transformers are composed vertically into a two-stage pipeline. On
the right, a stream computer is composed with a stream transformer.
Like stream transformers, stream computers map stream inputs to
stream outputs. However, unlike stream transformers, computers
need not execute indefinitely. Instead, they execute for a while,
consuming input and producing output, and then halt and return a
control value. In Figure |1} this is depicted as the fat “Control”
arrow connecting the computer to the transformer. If a stream
computer is at the outermost position in a Ziria program, then its
return value is just the program’s return value. Otherwise, the
control value is used to dynamically reconfigure the rest of the
processing pipeline; in the figure, this corresponds to switching from
the “Computer” to the “Transformer” in the lower right corner. After
reconfiguration, the inputs that originally flowed to the computer
are routed to the next component in the pipeline—in this case, the
“Transformer.” Both components output to the same stream. This
dynamic reconfiguration directly reflects the control flow of many
PHY-layer protocols, which read a preamble or packet header from
the input stream and then reconfigure computation of the rest of the
stream based on data in the preamble.

As an example, consider two Ziria stream computer primitives, emit
and take. emit takes an expression e and immediately writes its
value to the output stream while returning the unit control value, ().
take is computer that pulls a single value from the input stream
and immediately halts computation, returning the input as a control
value. These basic building blocks are composed in Ziria to perform
arbitrary stream processing using Ziria’s bind operator, which has
the notation x <« ci; c2. Bind runs the stream computation c;
until it produces a return value v, and it then runs the dynamically
configured stream processor cz2[v/z] (c2 with v substituted for).
For example, the following is a small Ziria program that maps a

Input Input
stream stream
Computer
Output
stream
B Transformer
Transformer

l Output' Output

stream stream

Figure 1. Transformer-transformer composition (left); computer-
transformer composition (right).

function f over an input stream of x’s, emitting a stream of results,
f(x), to the output stream.

repeat (x <« take; emit(f(x)))

The semicolon between take and emit is bind. It produces a program
that behaves like take for one step, until take returns a control value
x, then behaves like emit for one step, until emit yields the value
f(x) onto the output stream. In our small example, this process
is repeated indefinitely using Ziria’s repeat combinator, which
converts a stream computer (x<take; emit(f(x))) into a stream
transformer by reinitializing the computer every time it returns a
control value. Note that x«take binds the control result of take,
namely x, in emit(f(x)). Bind is similar to the switch operator
in Yampa [13]; however Yampa conflates control and data paths,
whereas Ziria carefully maintains a distinction between the two.
Dataflow composition in Ziria is achieved by sequencing compu-
tations with the arrow combinator, >>>. This form of composition
is similar to standard stream transformer composition operators in
dataflow languages such as Streamlt [31]. It takes a Ziria com-
putation that maps stream inputs to stream outputs and routes its
output to the input stream of a second Ziria computation. If either
computation returns a control value, then the entire compound com-
putation returns that control value. As illustration, consider the
following Ziria program, which computes the square root of -1 and
then immediately returns.

emit(-1) >> repeat (x <« take; emit(sqrt(x)))

This program yields the value -1 onto an intermediate stream
(emit(-1)), pulls the -1 off the intermediate stream (x «take), and
then is dynamically reconfigured to emit(sqrt(-1)), which prints
sqrt(-1) to the output stream and returns unit.

Execution model At runtime, each Ziria computation is imple-
mented as a pair of functions, called “tick” and “process.’ﬂ We con-
sider process first. A computation’s “process” function takes a single
argument, a value from the Ziria program’s input stream, performs
the required computation on the input value, and returns a result of
an enumerated type in r. Results r ::= skip | yield(v) | done(v)
are either yield(v), indicating that the value v is ready to be written
to the program’s output stream, skip, indicating that the program
should be called again but that no output is immediately available, or
done(v), indicating successful program termination with a returned
control value v. Note that only stream computers may produce a
result done(v); transformers must either skip or yield.

Tick is used to drive computation of blocks that do not require
values from their input stream in order to do useful work. For
example, the Ziria program emit 1; emit 2 writes the sequence

! Because our compiler generates code in continuation-passing style, “tick”
and “process” are actually code labels, and calls to these functions are
actually jumps. These details are not important here; see Section [for a
more in-depth discussion.

2014/6/16

1,2 onto its output stream but does not require any input to do so.
The tick function returns an enumerated type called a result kind.
Result kinds & ::= imm(r) | cons are either imm, for “immediate,”
indicating that the current computation is ready either to yield an
output value or to return a done value, or cons, which indicates
that the computation needs to consume input to proceed. The outer
loop of every Ziria program first ticks the computation, processing
immediate results along the way, until either cons or imm(done(v))
is returned. On cons, the outer loop proceeds to call the program’s
process function with a value from the input stream, handles the
result, then returns to calling tick once again.

In compound blocks such as © « c¢1; c2 and ¢1 > co, the
computation c¢; to the left of the bind or arrow combinator need
not return an immediate value directly to the driver loop. In
c1 3> c2, c1 yields stream output values by immediately calling the
process function of c2. We use a similar strategy when compiling
T «— c1; c2: control values produced by c¢; are written to a statically
allocated private buffer shared by c; and c2, and references to the
variable z in co are translated to reads from this shared buffer.

2.2 WiFi 802.11a/g: TX scrambler and RX pipeline

In order to illustrate the versatility of Ziria, this section walks
through two examples of real Ziria code. The first, a signal
scrambler, is typical of the kind of imperative code that lives within
the blocks of a Ziria pipeline. The second example is the full pipeline
of our 802.11a/g receiver.

Scrambler In signal processing domains, the purpose of a scram-
bler is to XOR input data with a pseudorandom sequence. This
reduces the probability of sending data sequences that have unde-
sirable signal properties, such as all 1’s or all 0’s, over the air (cf.
Section 17.3.5.4 of [19])).

1 let scrambler() =

2 letref scrmbl_st: arr[7] bit := {1,1,1,1,1,1,1};
3 tmp: bit; y: bit;

4 in repeat (

5 X <« take;

6 return (

7 tmp := (scrmbl_st[3] ”~ scrmbl_st[0]);

8 scrmbl_st[0:5] := scrmbl_st[1:6];

9 scrmbl_st[6] := tmp;

10 y = x "~ tmp);

11 emit (y))

Listing 1. Scrambler function of WiFi 802.11a/g transmitter in Ziria

The scrambler above, a let-bound Ziria computation taking no ar-
guments, is an example of a feedback shift register. The scrambler’s
body declares three local variables in lines[2]through B} scrmblst,
an array of 7 bits that gives the current state of the shift register,
and two one-bit references: tmp and y. The scrambler takes a value
from the input stream (line[5), then performs an imperative compu-
tation that assigns tmp the XOR of taps 3 and O in the shift register,
shifts the register state left by one, feeds tmp into position 6 of the
register, and finally returns the XOR of tmp and the input bit x.

There are two interesting aspects to this code. First, because both
the standard and the code in the listing operate on bit arrays, one
can easily verify by inspection that the listing code matches the
definitions found in the WiFi standard. This would be more difficult
if we implemented the scrambler directly in a more efficient fashion,
say by using an integer rather than a bitvector to store the scrambler
state, and by shifting instead of indexing into the array. Second, we
remark that, when compiled with the Ziria compiler, the scrambler
in Listing[T]compiles to quite efficient code. In the context of our
WiFi pipeline, the Ziria compiler first automatically generates a
lookup table for the scrambler (cf. Section [d.3), then vectorizes
the code to operate on multiple inputs at a time (cf. Section {.2).

‘ Packet &

Channel ‘

Detect [|SBY| Estimate iéfs' Invert
Carrier Channel Channel
l[Packet ;
Decode infg. Decode
Header Packet

I

Figure 2. Schematic representation of a WiFi receiver. The shaded
box is a transformer; the white boxes are computers.

This gives a 14.8 x speedup (cf. Section[5) over the same code
compiled without optimizations. As comparison, in the current Sora
implementation, the same scrambler is defined as a hand-written
lookup table, an excerpt of which is shown in Listing|[T]

const unsigned char
SCRAMBLE_11A_LUT[SCRAMBLE_11A_LUT_SIZE] = {
0x00, 0x91, 0x22, O0xb3, 0x44, 0xd5, 0x66, Oxf7,
0x19, 0x88, 0x3b, 0Oxaa, 0x5d, Oxcc, O0x7f, Oxee,
//... 13 lines elided ...
0x87, 0x16, 0xa5, 0x34, 0xc3, 0x52, Oxel, 0x70,};

NN BN =

Listing 2. Sora lookup table corresponding to the Ziria scrambler imple-
mentation in Listing|T]

The lookup table implementation may be efficient, but it gives the
reader no insight into the computation being performed. Nor is
it easy to verify by inspection that this implementation meets the
scrambler specification given in the WiFi standard.

WiFi receiver The next code example illustrates the other end of
the Ziria spectrum: a complete signal processing pipeline for an
802.11a/g receiver. This pipeline consists of a number of signal
processing components, a block diagram for which is given in
Figure[2] We first describe what each component does, then take a
closer look at the corresponding code, which is given in Listing[3]

The first block, “Detect Carrier,” determines whether a WiFi trans-
mitter is operating on the radio channel by looking for a known
constant preamble sequence. Once carrier detection observes the
preamble of a valid packet transmission, the pipeline enters a channel
estimation phase, operating over the subsequent 160 input samples,
in which it attempts to quantify physical effects such as multipath
fading on the transmitted signal. The channel information is then
used in the channel inversion block of the steady state of the pipeline
(in gray) to nullify these effects. This block feeds input data first to
a block that decodes the packet header, then to a block that decodes
the packet payload. Information from the header decoding phase
such as the data rate is used to configure the packet decoding stage.

let detectCarrier() = CCA() in

let channelEstimation = t11alLTS() in

let invertChannel(cInfo:int) =
tllaDataSymbol() >> tllaFreqCompensation() >>
t11aFFT() >> tllaChannelEqualization(cInfo) >>
tPhaseCompensate() >> tPilotTrack()

in read >> downSample() >> (
detectCarrier();
cInfo « channelEstimation();

10 invertChannel(cInfo) >> (

11 pInfo « tllaDecodePLCP();

12 tllaDecode(pInfo))) >> write

O 00~ AN W N —

Listing 3. Top-level Ziria pipeline for WiFi 802.11a/g receiver

2014/6/16

The Ziria code corresponding to the pipeline of Figure[2]is given
in Listing 3] The structure of this code follows that of the block
diagram quite closely. After reading from the input stream and down-
sampling (line[7), the first operation performed is carrier detection
(line[7). Here, detectCarrier() is an alias introduced with a let-
binding (line for another Ziria function, CCA() or clear channel
assessment. Carrier detection is sequenced using the bind operator
with channel estimation, a Ziria stream computer that returns a
channel information value cInfo. The channel information cInfo is
passed as an argument to invertChannel, a Ziria function defined at
line[3] Finally, we stream the output of channel inversion to a Ziria
computer that first decodes the packet header (t1laDecodePLCP()),
and then decodes the packet payload (t1laDecode(pInfo)).

3. Language

In this section, we present more details about the Ziria language
and the key ideas behind its type system and operational semantics.

3.1 Syntax

The key abstraction in Ziria is that of stream computations ¢, whose
syntax is given in Figure [3] We already presented in Section
the primitive combinators take, emit, and repeat. The return
combinator trivially evaluates its argument and returns it on the
control channel. The map(f) combinator applies f to every value
in the input stream, emitting the result onto the output stream.

As explained in Section 2] primitive combinators can be composed
along the control or the data path with Ziria’s composition opera-
tors bind (x < c1; c2) and arrow (c1 3> c¢2), respectively. In
addition to these constructs, Ziria includes local functions that can
bind computations (letfunc) and computation function applications
c(€). It also allows for mutable computation-local state, with the
letref construct. We will return to the use of shared state between
processing pipeline components throughout the rest of the paper,
since the careful treatment of state in Ziria is key to a rich set of
optimizations that dramatically improve performance. The condi-
tional computation if e then ¢ else co configures the computation
to be either ¢ or c2 depending on the value of e. More convention-
ally, Ziria incorporates a sub-language of imperative expressions
(e) and functions (letfun) that can be used in computations such
as map(f) and emit e. This imperative sub-language includes
constructs for manipulating primitive types such as bits, complex
numbers, and arrays. The details are not particularly interesting.

The Ziria type language is stratified into stream (ST) types o and
expression types 7. Stream types describe stream computations. For
example, a stream transformer computation with type ST T a b (e.g.
map(f)) executes indefinitely, transforming a stream of values of
type a to a stream of b’s. As we originally explained in Section[2]
stream computers of type ST (C v) a b are similar, except that
at some point during stream processing they may conclude the
computation by returning a value of type v. The language of
expression types is standard, and includes a rich collection of base
types, arrays, etc. We remark that the type language disallows
arbitrary higher-order functions and partial applications in well-
typed Ziria programs, to avoid closure allocation costs. Finally
streams may only contain values with 7 types.

3.2 Type system

The Ziria type system (Figure [d) includes a judgment form for
typing computations I'; A; 3 ¢ : o as well as a judgment (not
shown) for typing imperative expressions I'; ¥ - e : 7. The typing
rules make use of three type variable contexts. I maps variables to
expression types €, A maps computation variables to computation
types &, and the store typing 3 maps mutable variables to base

Stream computations and imperative expressions

c:ii= T <« c;cC Bind
c>>c Arrow
letref T:7 t= v in ¢ Scoped shared state

letfun ¢ (Z77) = minc¢ Local function
letfunc f(Z77) = c1 in ¢2 Local computation

c(®) Call computation function
take Move to control channel
emit e Emit on data channel
return m Return on control channel
repeat c Repeat c indefinitely
map(f) Map over input stream
if e then c¢; else c2 Conditionals

e,m =z |v|x:=e|mi;me| f(€)] ... Expressions

v =0¢]... Values

Computation and expression types

13 =0 |Too0o Computation types

o ST(C7)77|STT77 Computers/Transformers
0 n=T|T > 7 Expression types

a,b, 7,v = unit | int | complex | ... Base types

Figure 3. Syntax of Ziria

A Hc:o

[A; 2 ¢ :ST(Cv)ab
Iz

v AN ca:STtab T5A; 8 c¢:ST(Cunit)ab

DA x«—ci5e2:STtab T;A;3 - repeatc:STTab
take: ST (Ca)abd
AL emite: ST (Cunit)ar, ifI5EXFe:T
AS returnm: ST (C1)ab, ifY-m:7
map(f): STTab, if (fra—>b)el

Z%(Fl,zl)@(rg,zg)
I'T1;A;31 ¢ :STtabd IT1;A;31F¢1:STTabd
ITT2;A;32Hc2:STTbhe I'T2;A;30c2:STtbe

A Y Fep >3>c:STtae TNA; Y g >>c2:STtac

Yo (1“1,21)@(1“2,22)

Figure 4. Computation typing (¢ € {(Cv), T})

expression types 7. Type checking the access to a mutable variable
looks up the variable in the store typing ¥, whereas accessing a
function argument looks it up in I' (for read-only variable)ﬂ

We discuss some interesting typing rules of Ziria, given in Figure[d]
The typing judgment for bind (z « c1; c2) requires that c; is a
stream computer taking streams of a’s to streams of b’s, potentially
returning a value of type v. The c2 component has a stream type
ST t a b in the extended context I', z:v; A. Note that co may be
either a stream computer or transformer, but its type determines the
type of bind. The rule for repeat c types it as a stream transformer
when c is a computer that returns (). take has type ST (C a) a b
since it takes a value of type a from the input stream and immediately
returns it. It is polymorphic in the output queue and thus can be
composed using >>> with stream computations of arbitrary input
type b. emit e is a stream computer that evaluates an expression
e : 7 and yields it onto the output stream, returning the unit value ()
(ST (C unit) a 7). emit can be composed using >>> to the right of

2The full language also includes a let-binding in the computation and
expression languages for introducing immutable local variables. The types
of these variables are tracked in I".

2014/6/16

stream computations with arbitrary output types a. Finally, return
lifts an expression m : 7 into the language of stream computations
(ST (C 7) a b) by evaluating it and returning it on the control path.
The typing rules for the >>> combinator are slightly more involved.
The arrow combinator (>33>) can appear overloaded, and can be
typed with two typing rules. The first says that ¢; >>> c» has type
ST t a cif c; is a stream computation (transformer or computer)
taking a’s to b’s (ST ¢ a b) and ¢, is a stream transformer (ST T b ¢)
taking b’s to ¢’s. The second >>> rule is symmetric.

The >>> rules type components ¢; and ¢z of ¢1 > ¢ in different
contexts in order to prevent communication through shared state.
Imagine that ¢; and c2 communicate via a buffered channel. An
element that has been produced by c; under a particular view of
the shared state and emitted on the communication channel may
eventually get processed by c2 under a different view of the shared
state, since c; may have updated the state in the meantime. Under
such conditions the semantics of c¢; >3> c2 becomes difficult to
reason about—in fact, we will see in Sections [4.2]and .4 that the
presence of shared state invalidates two important optimizations.
To avoid these problems we split the store typing 3 into two pairs
(T'1,%1) and (I'2, 32), to ensure that no computation writes to state
that the other component either reads or writes. For reasons of space
we give the rules of this relation just for single-variable contexts:

(z:7) o ((z:7),) @ ((w:7),) (2:7) o€ (- (2:7)) @ ()

(z:7) o () @ (-, (7))

3.3 Reference semantics

Ziria programs compile to an IR in C. We now give a semantics
that captures the essence of the IR execution model. In addition
to the tick/process-based execution (outlined in Section [2), each
component is equipped with an initialization function.

A Ziria computation becomes activated through initialization (judg-
ment =, Figure[6), meaning that it is ready to participate in the main
tick/process loop. The judgment S; ¢ = S’; h initializes the compu-
tation c in state S. Arbitrary code may be executed during initializa-
tion, hence the state S may be updated to S’. A bind (z < h1; c)
that is activated contains an activated first component h, ready to
be ticked. hi >>> hg is the activated version of ¢c; > c2 in
which both components are activated. The activated computation
{ L, h|} arises from local letref definitions. Simple primitives are ac-
tivated immediately but note that emit v and return v only mention
values. The initialization of components that include expressions
forces their evaluation, and this in turn may cause state updates.
Finally, repeat c initializes by activating c to h and reconfiguring
to (h; repeat c), which allows the runtime to subsequently tick the
first component h.

Runtime Once a computation c has been initialized, it can partici-
pate in the main loop. We model the runtime execution in Figure 5]
The — judgment steps triples of an input buffer I, an activated
computation £, and an output component O to a new configuration.
The intuition behind the rules in Figure 3]s that we first try to tick a
component (using {}) and if that returns a result kind of cons, we
peel a value off the input stream and push it through the computa-
tion’s process function using |. Results are emitted onto the output
stream. To make the presentation shorter, the < relation has no
case for done(v) values—we assume that the top-level computation
we evaluate is a stream transformer and hence does not return.

Tick and process As described in Section [2] the process function
of a Ziria computation returns a result r, either skip, yield v, or
done, while tick returns a result kind &: either an immediate result
(imm 7) or a request for more input (consume). Figure[3] gives the
precise definition of | (tick) and | (process) for some of the more
interesting Ziria computations.

Runtime semantics |I;S;h;0 — I';S;h/; 0’

S;h ft S’;h/; imm(skip)
I;S;h;O — I;S"; 050

S;h S’ R; imm(yield(v))
I1;S;h;0 — I; S"; b5 0:0

S;h 1 S’;h'; cons S;h S’;h'; cons
S'sh';v | S”;h"; skip S’ h/ 50 | SR yield(u)

(v:I); S;h;0 = I;S"; 1”0 (v:1); S;h; O — I; S”; " ; (w:0)

Figure 5. Runtime semantics

Basic definitions

r ;= skip|yield(v) | done(v) Results
k ::= imm(r) | cons Result kinds
S,L == -|S,z—wv Stores
h {L,hl} | (x < h1; c2) Activated computations

h1 > ho | take | emit v | return v | map(f)
Computation initialization (excerpt)

S:c1 = S';hy S;c1=S";h1 S'5c0=5"; ho
S; (xec1; c2)=5"; (x—h1; c2) S;(c1>3>c2)=5"; (h1>>>h2)

S;c= S';h
S; repeat ¢ =
S’; (h; repeat ¢)

S, x—uv;c= S h

S;letref T :=vinc =
S 7w, hl

Figure 6. Computation initialization, used in Figure[7]

Tick (excerpt) |S;h § S";h';k

S;h1 fS’;_; imm(done(v))
S'icav/z] = 5" ha S ha ft 8”5 bk

S5 (x «— hy; c2) 8”5k k

S;ho ft S’; hYy; cons
S’shy 1 8”5 Ry imm(yield(v)) S”;hbh;v | S” R

S;h1 3> hy ft S5 k] >> hf; imm(r)

S;emitv |
S; return (); imm(yield(v))

Process (excerpt) | S;h;v | S';h/;r
S;hi;v | S5 _; done(w)
S,L;h;v | S',L';hsr S’; ea[w/z] = S”; ho
Si{L,hlo 4 SSAL W e S (< has ca);v | S5 o skip

S;return v
S; L;return v; imm(done(v))

S;hyi;v L S5 R ; yield(w)
S’ hosw || 8”5 R

S;h1>>hojv || "Wy >>hl;r S;take; v || S;return v; done(v)

Figure 7. Tick and process semantics

The f} judgment takes an initialized h and a store S and maps these
to a new computation h’, a new store S’, and a result kind k. The
|} judgment takes an h that has requested data to process, an input
value v, and an initial store S, and returns a new k', an updated
store S’, and a result 7. The topmost tick rule for bind defines what
happens when the computation h4 returns with imm (done v) (with
possible side effects to .S): First, we reconfigure c2 by substituting

2014/6/16

(T) repeat (x<take;emit(e)) == letfun f(x) = e in map(f)
(%) x<—return e; c == let x = e in c

(*) return e; ¢ == let _ =e inc

times el i (return e2) == return (for i in (0,el) e2)

(x<1letfun f(..) = e in cl); 2
== Tletfun f(..) = e in (x«cl; c2)

letfunc f(..) = return e in ... f(..) ..
== letfun f(..) = e in ... return (f(..)) ...

(if e then cl else c2) >>c3
== if e then c1>>c3 else c2>>c3

Figure 8. Selected rewrite steps performed by the Ziria optimizer

v for x (c2[v/x]) and initialize it to ho. Then we tick hs. Note how
we have discarded the local state of h; as it is no longer needed.
Next consider the tick rule shown for arrow (>>>). While we only
show one of four rules for > here due to space constraints, all
four >>> rules together encode a single pattern of computation:
When we tick the computation hy 33> ho, we always start by
ticking ho first. This is necessary if ho is a computation like
emit that yields values to the output stream without requiring any
input. For example, ¢; >3> repeat (emit(3)) is a computation that
after initialization will tick indefinitely, producing a stream of 3’s
and ignoring c;. Ticking from right-to-left means that we need no
intermediate buffering between sub-computations, since we always
drain the pipeline before requesting additional input. The other
three tick rules for >>> which we have not shown here encode the
situations in which (1) hs requires input and A1 has an input to push;
(2) hg requires input and h; ticks to an immediate result that is skip
or done but not yield, in which case the whole computation returns
that result; or (3) both h; and ho require input, in which case the
entire computation returns consume. The process rules for >>> are
similar except that instead of ticking from right to left, we process a
value through the pipeline from left to right (i.e., first ~; then hs).
The tick and process rules for base combinators are mostly straight-
forward. Ticking emit e immediately yields e’s value v and steps to
return (), returning the unit value the next time the computation is
ticked. Ticking take immediately returns consume while processing
take with input v just returns done v. There are no process rules
for emit and return because the runtime semantics will never call
process on these components. The process rule for take converts
the take to a return and produces done v as result.

4. Compiler

Compiling Ziria, as opposed to implementing it as a library, means
that we can apply optimizations to the actual Ziria code, for better
performance. This section details these optimizations, which include
automatic vectorization, automatic lookup table (LUT) generation,
and annotation-guided pipelining. Section[5]measures performance
of each optimization via microbenchmarks and for WiFi pipelines.
The Ziria compiler has a standalone frontend, including a parser
and typechecker. The frontend generates code in an explicitly
typed intermediate language. The code generator outputs C code in
continuation-passing style, which allows us to replace calls to the
tick, process, and initialization functions with direct jumps to labels.

4.1 High-level optimizations

The Ziria compiler implements a series of type- and semantics-
preserving optimizations that eliminate or fuse computations to-
gether in order to decrease the amount of processing that occurs
across computations. This means less copying and fewer jumps to
the outer runtime loop. Figure 8| gives some of the rewrite rules
that the Ziria compiler implements. Particularly interesting are

the rewrite rules (marked) that convert return statements to let
definitions and the auto-map transformation (marked t), which re-
places a repeated take-emit block with a single map transformer.
For example, in our scrambler implementation from Listing[I] the
auto-map transformation allows us to extract the scrambler impera-
tive code (lines [6] through[I0) into a let-bound function definition f
and replace the entire body of the scrambler component with a call to
map (). This transformation is important for producing performant
code, as the overhead measurements in Section[3.2] show.

Other optimizations justified by the runtime semantics of Section 3]
include the conversion of computation loopsto for-loops, inlining
and loop unrolling, and floating definitions and conditionals out of
computations to enable other optimizations like auto-mapping. Note
that the correctness of pushing conditionals above >>> relies on the
state invariants that we decribed in Section[3]

4.2 Vectorization

Wireless protocols are designed and specified so that each basic
component operates at an intuitive data granularity. For example, in
Section [2] we saw that in each step of computation, the scrambler of
Listingtakes a single bit from its input queue and emits a single
bit to its output queue. This implementation matches the granularity
of the specification quite closely. Unfortunately, the tight timing
deadlines of most wireless protocols mean we do not always have
the luxury of sacrifing performance by, e.g., packing one bit per char
or operating on only one 32-bit precision complex number at a time
on a 64-bit CPU. Our pipelines would be much more efficient if we
were able to process arrays of elements simultaneously. Ideally, we
want to batch the inputs and the outputs of components.

However, this is not straightforward. Different components operate
at different data granularities. For example, the Wifi scrambler is
followed by an encoder. Depending on the selected data rate, the
encoder will be configured to one of three variants which take 1, 2,
or 3 input bits, and produce 2, 3, or 4 output bits, respectively. In
order to correctly vectorize, we must ensure that the vectorization of
the scrambler is matched to the vectorization of all possible variants
of the encoder. Otherwise, a component may terminate with un-
emitted data. Matching granularities in a large program is tedious
and has been done manually in frameworks like Sora. A benefit of
our compiler is that it automatically vectorizes programs to operate
on arrays, similarly to [9l 26]. The goal of this transformation
is to rewrite a computation of type ST t a b to one of type
ST ¢ (array[N] a) (array[M] b). This process consists of three
steps:

1. First, an analysis identifies the number of values that a computer
(one of type ST (C v) a b) takes from the input stream (call
this ain) and emits to the output stream (call this cou) before
returning. We call this the cardinality information.

2. Next, for every repeat ¢ with an identified cardinality for ¢ we
take the union of two candidate sets of possible vectorizations:
The first set comes from scale-up vectorization: All candidates
in this set have types of the form ST (C v) (array[k = m =
ain] @) (array[m # aou] b). We allow components to take input
arrays that are any multiple (k£ * m) of the input cardinality, but
restrict the output array so that the multiplicity (m) is divisible
by the output multiplicity. We do not vectorize the output to any
multiplicity of the output cardinality to avoid situations where
the output array is only half-filled but there is no more data to
process on the input. The second set comes from scale-down
vectorization, which only applies if the component has a large
Qin OT Qe cardinality (not uncommon in the Wifi pipelines).
Scale down vectorization will create a transformed computation

3 Defined using the times combinator, a variation of repeat that repeats a
computation a finite number of times.

2014/6/16

that has type ST (C v) (array[din] a) (array[dou] b), for some
divisor din and dou Of cvin and awou respectively.

3. Once we have identified scale-up and scale-down sets for com-
putations in the pipeline, we must compose them across the bind
and arrow operators in the program in a way that maximizes
performance. Note that our optimization should aim to increase
vectorization sizes across all components equally, as the smallest
batch size is likely to be a bottleneck. In order to achieve this
balance, we use the optimization framework from [20], which
is well-studied in the context of networking. Each arrow and
bind operator is assigned a utility number, which is obtained by
applying a predefined concave functiorﬂ to the corresponding
vectorization size. We attempt to find a composition of vector-
izations that respects type correctness and maximizes the sum
of all utilities. One key benefit of the approach from [20] is
that by maximizing the sum of concave utilities we balance the
optimization across all batch sizes. The other key benefit is that
this can be done very efficently, in a greedy manner.

The following is the automatically vectorized version of the scram-
bler from Listing[I]where input and output types have been converted
to arrays of 8-bits that can be conveniently packed into chars in the
generated C code.

let vectorized_scrambler (u: unit) =
letref scrmbl_st: arr([7] bit := {1,1,1,1,1,1,1};
tmp:bit; y:bit
in repeat
(let up_wrap_17 () =
letref ya_19: arr[8] bit in
(xa_18 : arr[8] bit) « take;
(times 8 (\j_21.
X « return xa_18[0%8+j_21x1+0];

return (
tmp := scrmbl_st[3]"scrmbl_st[0];
scrmbl_st[0:+6] := scrmbl_st[1l:+6];
scrmbl_st[6] := tmp;
y 1= x"tmp);
return ya_19[j_21*1+0] :=vy));
emit ya_19

e el
NN WND—R,OOV I N W —

in up_wrap_17())

Listing 4. Auto-vectorized scrambler

Of course this is a relatively complicated computation that includes
many sub-computations, but fortunately the optimizer shines here:
Post-vectorization and post-optimization, this program is automati-
cally converted to use a tight expression-level for-loop and the whole
computation is auto-mapped into a single map computation.

4.3 Lookup table generation

Lookup tables (LUTs) are used pervasively in Sora for performance.
However, as Section 2]demonstrated when comparing Sora’s lookup
table-based implementation of the scrambler (Listing[2) to the Ziria
version (Listing[T), writing functions that use LUTs leads to code
that is difficult to write, read, and modify. Furthermore, the size of
the LUT may depend on the outcome of other optimizations such as
vectorization, leading to frequent LUT recomputation.

Ziria frees the programmer from having to forsake readability for
performance—and from the pain of generating LUTs by hand—
by providing compiler support for transparently compiling high-
level functions to LUTs. Functions may be hand-annotated with
the keyword lut, or the programmer may direct the compiler to
automatically detect portions of a Ziria program that are amenable
to a LUT implementation. In this case, the compiler looks for
expressions that are complex enough to be worth converting to a
LUTSs, but whose LUTS sizes are reasonable.

“1In our implementation we use log(-), as in [20].

For instance, our auto-LUT analysis automatically identifies that the
body of the auto-mapped function obtained by further optimization
of Listing [has inputs of total bitwidth 15 (scrambl_st, and xs_18)
and outputs of total bitwidth 25 (8 for the result of the function, 8
for ya 19, 7 for scrmbl_st, and 2 for tmp and y), and automatically
creates the corresponding ~100K LUT. Moreover, Ziria includes a
bit permutation primitive, bperm, which is automatically converted
to a LUT if the permutation table is statically known. bperm
is useful in wireless interleavers, which reduce errors in signal
transmissions by applying pseudorandom permutations.

4.4 Pipelining

As explained in Section when two Ziria computations ¢; and ¢z
are connected by >>>, they cannot mutate shared state and hence can
be pipelined onto multiple cores on SMP platforms. To support this
kind of parallelization the Ziria compiler allows user annotations
of type ¢1|>3>|c2. This code is automatically pipelined onto two
cores by (i) allocating a fresh single-reader single-writer queue g,
(ii) transforming the code to ¢y >>> write(g) |>3>| read(q)>>> c2,
then (iii) spawning two threads: c; >>> write(g), which is pinned to
physical core 1, and read(q)>>> c2, which is pinned to physical core
2. The design of synchronization queues is adapted from Sora [29].

5. Evaluation

In this section we seek to answer the following questions about
the performance of Ziria: (1) What is the overhead of Ziria’s
execution engine (2) What is the speedup of various compiler
optimizations? (3) How does Ziria compare with state-of-the-art
implementations of a real-world wireless protocol? To answer these
questions we perform two sets of measurements. First, we use
a number of microbenchmarks to quantify the overheads of Ziria
combinators bind, arrow (>>>), and pipelined arrow (|>>>|). Then
we present an implementation and a detailed evaluation of WiFi
(802.11a/g) in Ziria. We show the speedups achievable with the
Ziria compiler’s automatic vectorizer, lookup table generator, and
annotation-guided pipeliner, and associated overheads on a real-
world wireless physical layer protocol. As a baseline for comparison,
we use Sora [29]], one of the few CPU-based SDR platforms with a
line-rate implementation of a full WiFi PHY.

5.1 Methodology

We evaluate the Ziria framework on a Dell T3600 PC with an
Intel Xeon E5-1620 CPU at 3.6 GHz, running Windows. In order
to compare our performance results to Sora, we use the same C
compiler as Sora (Windows Driver Development Kit version 7) and
we adapt our runtime to use Sora’s runtime libraries. In particular,
we use Sora’s user-mode threading library, which allows us to run
our user-mode threads at the highest priority and pinned to a specific
core, effectively preventing the OS from preempting the execution.
We evaluate our framework on various DSP algorithms that are part
of a standard WiFi transceiver. Some of these algorithms operate on
bits (e.g. most of the TX) and some on complex samples (e.g. most
of the RX). The throughput of each algorithm is proportional to
the sample width in bits. However, the overhead of Ziria execution
model mainly depends on the number of data items being processed
and not their actual widths. Therefore, throughout this section we
present the throughput in units of Md/s (mega data per second).
Sora hardware, as well as the hardware of other high-performance
SDR platforms, is designed to mitigate I/O overheads. The Sora
software component fetches radio samples through PCI bus at a
speed comparable to main memory reads. In our evaluation we
focus on measuring the performance of the software component.
When we evaluate the components’ performance we read input
samples directly from the memory and discard them at the output.

2014/6/16

?1_5 ?A

= —Bind = —Repeat

E ---Baseline| E 3il'--"Map

ki I |---Baseline

@ 32

o o

0 0.5 o

£ El

5 g .

x O 50 0o &% 50 100

1
Number of blocks Number of blocks

(a) Bind (b) Arrow (>>)
0
2 -
= ---1 thread L
£ |5 —2threads] .~
I
©
5]
o
Q
£
<
£ O
) 100 200

Number of sin() calls
(c) Pipelined arrow (|>>>|)

Figure 9. Overheads of various Ziria components.
5.2 Microbenchmarks

Bind We first measure the overhead of bind. We do this by
measuring the runtime of a program containing n computation
components bound together in sequence, with each component
consisting of a single call to sin(). As a performance baseline,
we use the runtime of a semantically equivalent program in which
all n sin operations are executed in a single component.

The results are depicted in Figure @(a)] The dashed line gives
runtime of the baseline program for n sin computations. The solid
line gives runtimes for n sin components bound in sequence. We
ran each program 10 times on 20 million inputs and report average
execution time per data item (confidence intervals are very small).
We verify that the runtime data fit a linear model as a function of
n, indicating that the cost of bind grows linearly with the number
of components. The cost of a single bind operation on our system,
given by the difference of the slopes of the two lines, is around 3ns.

Arrow Next, we measure the cost of arrow (>3>). To do so we
measure the runtime of a program containing n components com-
posed with >>>, with each component repeating the computation
(x<take; emit(sin(x))). This experiment is labeled Repeat. We
also measured the runtime of an optimized version of this program
that uses map computation map(sin(x)) in the experiment labeled
Map. As abaseline, we use the runtime of a program in which all
n sin calls are merged into a single component. Again, we ran the
code 10 times on 20 million inputs each time and report average
execution time per data item (confidence intervals are very small).

The results are depicted in Figure[9(b)] The cost of a single repeat
arrow operation on our system, given by the difference of the slopes
of the Repeat and Baseline lines, is around 24ns, and the cost of
a single map arrow is around 1ns. This difference stems from
the fact that the repeat computation has to execute several ticks
and procs in each round, whereas the map execution is completely
streamlined. However, as discussed in Section[4.1] our high-level
optimizations are often able to transform a repeat computation into
a map computation, and mitigate this overhead. The overhead is
typically further amortized over multiple inputs due to vectorization.

Pipelined arrow To gauge the overhead of pipelining Ziria pro-
grams onto multiple cores using |>3>|, we measured the runtime
of n sin calls when (i) run on a single core, and (ii) divided evenly

onto two cores. Plot[9(c)|shows the results of this experiment. The
red dashed line and the solid black line give the execution time per
datum in microseconds when running on a single core and on two
cores, respectively. The point at which these two lines intersect,
approximately 30 computations per datum, is the point at which we
break even, i.e., when pipelining gives speedup rather than slow-
down. Furthermore, speedup is approximately 1.7x at 60 calls and
2x at 90 calls. As we show later in the WiFi evaluation, most signal
processing blocks are computationally intensive, and the pipelining
benefits are on the high side.

5.3 Performance of WiFi 802.11a/g

This section evaluates the performance of our Ziria implementation
of the physical layer of 802.11a/g, the most popular variant of the
WiFi protocol. Our implementation consists of ~ 3k lines of Ziria
code in total. We evaluate data throughput of a number of the
processing blocks in our WiFi transmitter (TX) and receiver (RX),
as well as end-to-end performance of both TX and RX.

We compare our Ziria implementation with the manually optimized
Sora implementation [29] and the WiFi requirements. We have first
verified the correctness of each Ziria block against the corresponding
block in the Sora implementation. We then profile each block in
both implementations by sending them the same input data.

Different implementations may use different signal processing
algorithms in an effort to improve the receiver’s performance. To
allow for a fair comparison, our WiFi implementation uses the same
receiver algorithms as the Sora implementation.

As a part of Ziria we provide a basic signal processing library. This
library provides a high-level interface for very efficient implemen-
tations (borrowed from Sora) of three common signal processing
blocks: FFT, IFFT and Viterbi. These blocks are standardized and
reused across all modern physical layers (WiFi, WiMax, LTE), and
their efficient implementations are already available across a large
range of SDR platforms. The library also includes a basic SIMD
library for vector operations that operates on Ziria’s basic types.

In the case of the end-to-end transmitter and receiver code, different
input data may activate different control paths in the code. We
profile these various code paths separately, both for Sora and Ziria
implementations. In particular, we profile the signal detection path
(CCA) at the receiver that is running when the receiver is scanning
for a packet, as well as the transmitter and the receiver at different
data rates (6, 12, 24, and 48 Mbps).

5.3.1 Receiver

We start by profiling the receiver’s building blocks. In order to asses
the performance of our vectorization algorithm, we compile each
block with no vectorization, manual vectorization copied from the
Sora implementation, and the automatic vectorization described in
Section[d.2] We also enable lookup table generation, but it does not
play a major role in the receiver since most of the receiver blocks
operate on complex samples and cannot be converted into lookup
tables. The results are given in Table[I]and Table[2]

Although Sora’s WiFi implementation is manually tuned for high
performance, all of the blocks in our high-level Ziria implemen-
tation are less than two times slower than the corresponding Sora
blocks, and many of them approach the performance of their Sora
counterparts. Furthermore, all our end-to-end code paths satisfy the
WiFi specification requirements of 40 Msamples per second.

We also observe that vectorization can significantly improve the
performance of Ziria code, often by more than an order of magnitude.
We see that the performance of our automatic vectorization comes
close to the performance of the manually vectorized Ziria code in
which we use Sora’s vectorization annotation.

2014/6/16

Sora Auto Non Manual

Block vect. vect. vect.
[Md/s] | [Md/s] [Md/s] | [Md/s]
DownSample2 1139 668 81 612
RemoveDC 644 1544 57 925
CCA 193 130 66 131
LTS 364 183 74 183
DataSymbol 4775 2588 72 4201
FreqCompensation 1588 1304 63 1465
FFT 465 392 58 411
ChannelEqualization 1680 1007 64 1404
PhaseCompensate 1716 1302 63 1496
PilotTrack 435 246 52 360
Viterbi 1/2 165 144 84 149
Descrambler 289 370 108 425
DemapBPSK 866 926 82 932
DeinterleaveBPSK 2943 1496 104 1920
DemapQPSK 761 714 49 648
DeinterleaveQPSK 3121 1391 105 1444
DemapQAM16 633 503 35 567
DeinterleaveQAM 16 3312 1496 106 1742
DemapQAM64 522 194 30 226
DeinterleaveQAM64 3365 1485 106 1597

Table 1. Throughputs of different blocks in WiFi receiver

Block Sora | eer | Wi | e
[Md/s] | [Md/s] | [Md/s] [Md/s] [Md/s]
RX 6Mbps 164 91 40 20 115
RX 12Mbps 125 66 40 16 78
RX 24Mbps 81 50 40 14 57
RX 48Mbps 61 40 40 12 45
RX CCA 289 163 40 55 181

Table 2. Throughputs of end-to-end code paths of Wifi receivers

5.3.2 Transmitter

We next profile the performance of the WiFi transmitter. In the
transmitter case, lookup table generation can significantly affect the
performance of the code. Therefore, we compare a Ziria implemen-
tation of the transmitter without any optimization (no lookup tables,
no vectorization), an auto-vectorized Ziria implementation of the
transmitter without lookup tables, and a fully optimized Ziria WiFi
transmitter. The results are given in Tables [3]and[4]

Again, we see that our optimizations significantly speed up the code,
often by more than an order of magnitude. For some blocks our
code is close to the performance of Sora. Other blocks produce
significant slow-down. This slow-down happens only for very fast
blocks with more than 1Gd/s (on a CPU running at 3.6 GHz), where
even a few extra memory operations introduced by the Ziria compiler
greatly affect performance. But these blocks are so fast that they
are not bottlenecks themselves. As can be seen in[d] the end-to-end
transmitter is 2x-4x slower than Sora, but still comfortably above
the WiFi requirements for all code paths.

5.3.3 Pipelining

One of the great potentials of Ziria is seamless pipeline paralleliza-
tion of the code. In this section we evaluate the performance of
the pipelined arrow operator on the WiFi code base. The results
are given in Table[5] We manually find the optimal split for each
example. The performance of the pipelined case is limited by its
slowest part, which is the Viterbi decoder in the receiver and the

Sora LUT, No LUT, | No LUT,

Block vect. no vect. vect.
[Md/s] | [Md/s] [Md/s] [Md/s]

IFFTx 207 157 31 157
AddPilot 759 1237 51 1224
Mapl1aBPSK 2870 1534 147 168
Map11aQPSK 3788 1551 129 207
Map11aQAM16 2923 1895 126 237
Mapl1aQAM64 2796 2770 134 352
InterleaveBPSK 4888 238 89 170
InterleaveQPSK 3805 346 T4 126
InterleaveQAM 16 2026 530 80 224
InterleaveQAM64 1423 639 82 298
ConvEncode 12 3062 342 33 42
ConvEncode 23 2589 590 38 46
ConvEncode 34 3722 306 35 45
Scrambler 3781 843 57 59

Table 3. Throughputs of different blocks in WiFi transmitter

Sora LUT, WiFi No LUT, | No LUT,
Block vect. no vect. vect.
[Md/s] | [Md/s] | [Md/s] [Md/s] [Md/s]
TX 6 54 27 6 5 12
TX 12 98 35 12 7 13
TX 24 145 51 24 9 15
TX 48 231 66 48 11 17

Table 4. Throughputs of different code paths of Wifi transmitter
RX ‘ 1 th. ‘ 2 th. ‘ WiFi H X ‘ 1 th. ‘ 2 th. ‘ WiFi
6Mbps 88 156 40 6Mbps 27 51 6

12Mbps 65 100 40 12Mbps 35 45 12
24Mbps 48 67 40 24Mbps 51 53 24
48Mbps 40 52 40 || 49Mbps 66 70 48

Table 5. Throughputs of WiFi transmitter and receiver with and
without pipelining. All throughputs are expressed in Md/s.

IFFT in the transmitter. The two parts are more balanced at low data
rates, hence we observe almost 90% speed-up at 6 Mbps.

6. Related work

Software-defined radio Existing SDR platforms can be divided
roughly into two groups: FPGA-based [23| 24] and processor-
based [} 12 15} 129]]. Processor-based platforms are popular because
of their low cost and programmability. They typically use program-
ming tools and abstractions that are appealing to wireless engineers
(e.g. C and Python), but require extensive and difficult optimizations
to achieve the line speeds of modern PHYs. Otherwise, like GNU-
Radio [10], they have limited use for testing and experimentation.

Recent programming frameworks for Sora (Bricks [3]) and GnuRa-
dio (blocks [10] and VOLK [27]]), as well as platform-independent
frameworks such as OpenRadio [6] and CODIPHY [[15]], help pro-
grammers extract the most from existing hardware, typically by
providing libraries of hand-optimized DSP blocks. While these
frameworks provide useful resources to programmers, the fact that
they are implemented as libraries means that they impose more
manual configuration and optimization on the user than is typical
in Ziria. Bricks [3]], for example, is a library of hand-optimized
blocks that can be connected with C++ templates to form process-
ing pipelines. Building Brick processing pipelines often requires
manually vectorizing a number of blocks in the processing chain, in
order to match the vectorization widths of connected components.
Sora Bricks often include manually generated lookup tables for

2014/6/16

performance. Similar considerations apply to VOLK, in which the
programmer must choose and manually configure the vectorization
widths of each component in a GNURadio pipeline. In Ziria, we
avoid this sort of manual configuration by automatically vectorizing
and generating lookup tables for compiled Ziria code. The result is
high-level code close to the standard specification that still runs fast.

Dataflow languages In addition to work on SDR, Ziria builds
on a significant body of programming languages research. Syn-
chronous dataflow languages [8 111, 112] have been used in embed-
ded and reactive systems for modeling and verification but—to our
knowledge—never to implement line-rate software PHY designs.
Streamlt [31]], also based on synchronous dataflow, was one of the
early works to target DSP applications in software. Example pro-
grams in Streamlt include software radios, like Wifi and 3GPP PHY.
StreamlIt demonstrated that a DSL can enable significant optimiza-
tions, and emphasized on multicore execution [17]].

Ziria learns from Streamlt and makes improvements in several
respects. First, StreamlIt programs are graphs of independent filters.
To express control dependencies between nodes in the graph one
uses splitter (demultiplexing) blocks, or teleport messages [32], a
form of asynchronous message passing with guaranteed logical
delivery bounds. Ziria’s explicit treatment of control fortunately
helps here. An example of the need for teleport messaging in
Streamlt comes from frequency hopping (Figure 12 [32]), which
can be expressed in Ziria as:

1 aToD 3> letref freq : float = startFreq in repeat (
2 newFreq <« rfToIf()>>fft()>>checkFreqHop(freq);
3 return (freq := newFreq))

The checkFregHop is a computer that eventually returns a new fre-
quency after emitting some elements with the old frequency. Ziria’s
treatment of shared state with the restricted typing of >>> exposes
pipeline parallelization opportunities. Ziria also exposes state (re-
)initialization and associates it with bind reconfiguration.These fea-
tures are in accordance with lessons distilled from the StreamlIt
experience [30]. Unlike Streamlt, Ziria does not support data paral-
lelism, which appears to be less applicable in wireless PHY design
due to heavy control dependencies in processing pipelines. Finally,
although there is a Streamlt WiFi implementation, it is unknown
whether it can be deployed at line rates.

Functional programming and functional reactive programming
Ziria builds on a broad range of techniques from functional pro-
gramming. The design of Ziria and its key combinators and their
optimization draw from monads and arrows [18}, 22]]. A flavor of
our bind combinator (called “switch”) can be found in Yampa [13],
a popular functional reactive programming (FRP) framework. How-
ever, Yampa encodes control information onto the data channel,
whereas Ziria keeps these notions separate. The Ziria’s tick and
process semantics bears some resemblance to the push and pull
model of computations. Typically FRP uses the pull model, but there
exists recent work on combining the two to improve efficiency [16].

The vectorization transformation is inspired by work in nested data
parallelism [9] 26]. Ziria’s stream computation semantics was
influenced by the work on stream fusion. For example, the result
type we use to implement a single step of stream computation in the
runtime model of Section [3]is effectively the same as that used to
represent streams in Coutts et al. [14].

Finally, there exists recent work on using high-level functional
languages for DSP applications that aspires to match the efficiency
of low-level implementations [4]. In principle, such a language
could replace the imperative sub-language inside Ziria blocks.

7. Conclusion

We presented Ziria, the first high-level SDR platform with a per-
formant execution model. To validate our design, we built a com-
piler that performs optimizations done manually in existing CPU-
based SDR platforms: vectorization, lookup table generation, and
annotation-guided pipelining. To demonstrate Ziria’s viability, we
used Ziria to build a rate-compliant PHY-layer for WiFi 802.11a/g.

References
[1] Texas Instruments TMS320TCI6616 Communications Infrastructure
KeyStone SoC.
[2] Ettus Research, USRP: Universal Software Radio Peripheral.
[3] Microsoft Research, Brick specification, 2011.

[4] E. Axelsson et al. Feldspar: A domain specific language for digital
signal processing algorithms. In FMMC, 2010.

[5] H. V. Balan et al. USC SDR, an easy-to-program, high data rate, real
time software radio platform. In SRIF, 2013.

[6] M. Bansal et al. OpenRadio: a programmable wireless dataplane. In
HotSDN, 2012.

[7] T. Bansal et al. Symphony: Cooperative packet recovery over the wired
backbone in enterprise WLANs. In MOBICOM, 2013.

[8] G. Berry and G. Gonthier. The ESTEREL synchronous programming
language: Design, semantics, implementation. SCP, 19(2), 1992.
[9] G. E. Blelloch and G. W. Sabot. Compiling collection-oriented
languages onto massively parallel computers. JPDC, 8(2):119-134,
Feb. 1990.
[10] E. Blossom. GNURadio: tools for exploring the radio frequency
spectrum. Linux Journal, 2004(122):4, 2004.
[11] P. Caspi. Lucid Synchrone. In Actes du collogue INRIA OPOPAC,
Lacanau. HERMES, November 1993.

[12] P. Caspi and M. Pouzet. Lucid Synchrone, a functional extension of
Lustre. Technical report, Univ. Pierre et Marie Curie, Lab. LIP6, 2000.

[13] A. Courtney and C. Elliott. Genuinely functional user interfaces. In
Haskell Workshop, 2001.

[14] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: From lists
to streams to nothing at all. In ICFP’07,2007.

[15] A.Dutta, D. Saha, D. Grunwald, and D. Sicker. CODIPHY: Composing
on-demand intelligent physical layers. In SRIF, 2013.

[16] C. Elliott. Push-pull functional reactive programming. In Haskell
Symposium, 2009.

[17]1 M. I. Gordon. Compiler Techniques for Scalable Performance of
Stream Programs on Multicore Architectures. PhD thesis, 2010.

[18] J. Hughes. Generalising monads to arrows. SCP, 37(1-3), 2000.

[19] IEEE. Part 11: Wireless LAN MAC and PHY specifications high-speed
physical layer in the 5 GHz band, 1999. URL http://standards.
ieee.org/getieee802/download/802.11a-1999.pdf.

[20] F. P. Kelly. Charging and rate control for elastic traffic. European
Transactions on Telecommunications, 8:33-37, 1997.

[21] T. Li et al. CRMA: Collision-resistant multiple access. In MOBICOM,
2011.

[22] E. Moggi. Notions of computation and monads. Inf. Comput., 93(1),
1991.

[23] P. Murphy, A. Sabharwal, and B. Aazhang. Design of WARP: a
wireless open-access research platform. In ESPC, 2006.

[24] M. C. Ng et al. Airblue: a system for cross-layer wireless protocol
development. In ANCS, 2010.

[25] G. Nychis et al. Enabling MAC protocol implementations on software-
defined radios. In NSDI, 2009.

[26] S. Peyton Jones. Harnessing the multicores: Nested data parallelism in
Haskell. In APLAS, 2008.

2014/6/16

http://standards.ieee.org/getieee802/download/802.11a-1999.pdf
http://standards.ieee.org/getieee802/download/802.11a-1999.pdf

[27] T.Rondeau et al. SIMD programming in GNURadio: Maintainable and
user-friendly algorithm optimization with VOLK. In SDR WinnComm,
2013.

[28] S. Sen, R. R. Choudhury, and S. Nelakuditi. No time to countdown:
Migrating backoff to the frequency domain. In MOBICOM, 2011.

[29] K. Tan et al. Sora: high performance software radio using general
purpose multi-core processors. In NSDI, 2009.

[30] W. Thies and S. Amarasinghe. An empirical characterization of stream
programs and its implications for language and compiler design. In
PACT’10, 2010.

[31] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamlt: a language
for streaming applications. In Compiler Construction, 2002.

[32] W. Thies et al. Teleport messaging for distributed stream programs. In
PPoPP’05, 2005.

2014/6/16

	Introduction
	Ziria by example
	Language and execution model
	WiFi 802.11a/g: TX scrambler and RX pipeline

	Language
	Syntax
	Type system
	Reference semantics

	Compiler
	High-level optimizations
	Vectorization
	Lookup table generation
	Pipelining

	Evaluation
	Methodology
	Microbenchmarks
	Performance of WiFi 802.11a/g
	Receiver
	Transmitter
	Pipelining

	Related work
	Conclusion

