Zing: Exploiting Program Structure for
Model Checking Concurrent Software

Tony Andrews*, Shaz Qadeer*, Sriram K. Rajamani*,
Jakob Rehof*, and Yichen Xief

*Microsoft Research
fStanford University
http://www.research.microsoft.com/zing/

Abstract. Model checking is a technique for finding bugs in systems
by systematically exploring their state spaces. We wish to extract sound
models from concurrent programs automatically and check the behaviors
of these models systematically. The ZING project is an effort to build a
flexible infrastructure to represent and model check abstractions of large
concurrent software.

To support automatic extraction of models from programs written
in common programming languages, ZING’s modeling language supports
three facilities present in modern programming languages: (1) procedure
calls with a call-stack, (2) objects with dynamic allocation, and (3) pro-
cesses with dynamic creation, using both shared memory and message
passing for communication. We believe that these three facilities capture
the essence of model checking modern concurrent software.

Building a scalable model-checker for such an expressive modeling
language is a huge challenge. ZING’s modular architecture provides a
clear separation between the expressive semantics of the modeling lan-
guage, and a simple view of ZING programs as labeled transition systems.
This separation has allowed us to decouple the design of efficient model
checking algorithms from the complexity of supporting rich constructs
in the modeling language.

ZING’s model checking algorithms have been designed to exploit ex-
isting structural abstractions in concurrent programs such as processes
and procedure calls. We present two such novel techniques in the paper:
(1) compositional checking of ZING models for message-passing programs
using a conformance theory inspired by work in the process algebra com-
munity, and (2) a new summarization algorithm, which enables ZING to
reuse work at procedure boundaries by extending interprocedural data-
flow analysis algorithms from the compiler community to analyze con-
current programs.

1 Introduction

The goal of the ZING project is to check properties of concurrent heap-
manipulating programs using model checking. By systematically exploring the
state space, model checkers are able to find tricky concurrency errors that are
impossible to find using conventional testing methods. Industrial software has

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 1-{I5l 2004.
(© Springer-Verlag Berlin Heidelberg 2004

2 T. Andrews et al.

such large number of states and it is infeasible for any systematic approach to
cover all the reachable states. Our goal is to automatically extract a model from
a program, where a model keeps track of only a small amount of information
about the program with respect to the property being checked. Then, it is feasi-
ble to systematically explore all the states of the model. Further, we want these
models to be sound abstractions of the program —a property proved on the
model should hold on the program as well.

How expressive should the model be? Choosing a very restricted model such
as finite-state machines makes the task of building the model checker easy, but
the task of extracting such a model from a program becomes hard. On the other
hand, building a model checker directly for a programming language is hard, due
to the number of features present in programming languages. We believe that
the following features capture the essence of modern concurrent object oriented
languages, from the point of building sound abstractions for model checking: (1)
procedure calls with a call-stack, (2) objects with dynamic allocation, and (3)
processes with dynamic creation, using both shared memory and message passing
for communication. We designed ZING’s modeling language to have exactly these
features.

Building a scalable model checker for the ZING modeling language is a huge
challenge since the states of a ZING model have complicated features such as
processes, heap and stack. We designed a lower-level model called ZING object
model (or zoM), and built a ZING compiler to convert a ZING model to ZOM.
The compiler provides a clear separation between the expressive semantics of
the modeling language, and a simple view of ZzOM as labeled transition systems.
This separation has allowed us to decouple the design of efficient model checking
algorithms from the complexity of supporting rich constructs in the modeling
language.

Writing a simple DFS model checker on top of ZOM is very easy and can be
done with a 10-line loop. However, this simple model checker does not scale. For
building scalable checkers, we have to exploit the structural boundaries present
in the source program that are preserved in the zZING model. Processes, proce-
dures and objects are perhaps the structural abstractions most widely used by
programmers. Structural boundaries enable compositional model checking, and
help alleviate the state-explosion problem. For implementing optimized model
checking algorithms that exploit such structure, we had to expose more infor-
mation about the state of the model in ZoM.

In well-synchronized shared memory programs, any computation of a process
can be viewed as a sequence of transactions, each of which appears to execute
atomically to other processes. An action is called a right (left) mover if it can be
committed to the right (left) of any action of another process in any execution.
A transaction is a sequence of right movers, followed by at most a single atomic
action, followed by a sequence of left movers. During model checking, it is suf-
ficient to schedule processes only at transaction boundaries, and this results in
an exponential reduction in the number of states explored. To implement such
transaction-based reduction, we extended the zOM to expose information about

Zing: Exploiting Program Structure 3

the type of action executed —right mover, left mover, both left and right mover,
neither left nor right mover.

The ability to summarize procedures is fundamental to building scalable in-
terprocedural analyses. For sequential programs, procedure summarization is
well-understood and used routinely in a variety of compiler optimizations and
software defect-detection tools. This is not the case for concurrent programs.
If we expose procedure boundaries in the ZOM, we can summarize procedures
that are entirely contained within transactions. When a transaction starts in
one procedure and ends in another, we can break the summary piece-wise and
record smaller sub-summaries in the context of each sub-procedure. The pro-
cedure summaries thus computed allow reuse of analysis results across different
call sites in a concurrent program, a benefit that has hitherto been available only
to sequential programs [I5].

We are interested in checking that a process in a communicating system
cannot wait indefinitely for a message that is never sent, and cannot send a
message that is never received. A process that passes this check is said to be
stuck-free [L6,[7,[8]. We have defined a conformance relation < on processes with
the following substitutability property: If I < C and P is any environment such
that the parallel composition P | C' is stuck-free, then P | I is stuck-free as well.
Substitutability enables a component’s specification to be used instead of the
component in invocation contexts, and hence enables model checking to scale.
By exposing observable events during the execution of each action in ZOM, we can
build a conformance-checker to check if one zZING model (the implementation)
conforms with another ZING model (the specification).

The goal of this paper is to describe the architecture and algorithms in ZING.
A checking tool is useless without compelling applications where the checker
provides value. We have used ZING to check stuck-freeness of distributed appli-
cations, concurrency errors in device drivers, and protocol errors in a replicated
file system. We have also built extractors from several programming languages
to ZING. Since ZING provides core features of object-oriented languages, building
such extractors is conceptually simple. Describing the details of these applica-
tions and extractors is beyond the scope of this paper.

To summarize, the ZING project is centered around three core principles:

1. It is possible to extract sound models from concurrent programs. To enable
construction of simple extractors from common programming languages, the
ZING modeling language has three core features (1) procedure calls, (2) ob-
jects and (3) processes.

2. Tt is beneficial to construct an intermediate model zOM, which presents a sim-
ple view of ZING models as labeled transition systems. We have constructed
various model checkers over this simple view.

3. Since ZING’s modeling language preserves abstraction boundaries in the
source program, we can exploit these boundaries to do compositional model
checking, and help alleviate the state-explosion problem. Doing this requires
exposing more information about the state and actions in zOM. By expos-
ing mover information about executed actions we have been able to imple-

4 T. Andrews et al.

ment transaction based reduction. By exposing information about procedure
boundaries, we have been able to implement a novel summarization algo-
rithm for concurrent programs. By exposing the observable events during
execution of each action, we have been able to build a novel conformance
checker to compositionally check if a ZING model is stuck-free.

Related Work. The SPIN project [10] pioneered explicit-state model checking of
concurrent processes. The SPIN checker analyzes protocol-descriptions written in
the PROMELA language. Though PROMELA supports dynamic process creation, it
is difficult to encode concurrent software in PROMELA due to absence of procedure
calls and objects. Efforts have been made to abstract C code into PROMELA [11]
to successfully find several bugs in real-life telephone switching systems, though
no guarantees were given as to whether the generated PROMELA model is a sound
abstraction of the C code. Over the past few years, there has been interest in
using SPIN-like techniques to model check software written in common program-
ming languages. DSPIN was an effort to extend SPIN with dynamic software-like
constructs [I2]. Model checkers have also been written to check Java programs
either directly [2IL20,[I8] or by constructing slices or other abstractions [6].
Unlike ZING none of these approaches exploit program abstractions such as pro-
cesses and procedure calls to do modular model checking. The SLAM project [4]
has similar goals to ZING in that it works by extracting sound models from C
programs, and checking the models. SLAM has been very successful in checking
control-dominated properties of device drivers written in C. Unlike ZING, it does
not handle concurrent programs, and it is unable to prove interesting properties
on heap-intensive programs.

Outline. The remainder of the paper is structured as follows. We explain the
features of ZING’s modeling language, and discuss the modular software archi-
tecture of ZING in Section[2] We discuss the novel compositional algorithms of
ZING in Section [3] Section [4]concludes the paper with a discussion of current
status and future work.

2 Architecture

ZING’s modeling language provides several features to support automatic gen-
eration of models from programs written in common programming languages.
It supports a basic asynchronous interleaving model of concurrency with both
shared memory and message passing. In addition to sequential flow, branching
and iteration, ZING supports function calls and exception handling. New pro-
cesses are created via asynchronous function calls. An asynchronous call returns
to the caller immediately, and the callee runs as a fresh process in parallel with
the caller. Primitive and reference types, and an object model similar to C# or
Java is supported, although inheritance is currently not supported. ZING also
provides features to support abstraction and efficient state exploration. Any se-
quence of statements (with some restrictions) can be bracketed as atomic. This
is essentially a directive to the model checker to not consider interleavings with

Zing: Exploiting Program Structure 5

other processes while any given process executes an atomic sequence. Sets are
supported, to represent collections where the ordering of objects is not important
(thus reducing the number of potentially distinct states ZING needs to explore).
A choose construct that can be used to non-deterministically pick an element out
of a finite set of integers, enumeration values, or object references is provided.
A complete language specification can be found in [I]. An example ZING model
that we extracted from a device driver, and details of an error trace that the
ZING model checker found in the model can be found in [2].

,user model Zing
source extraction Compiler
DFS Model-checker
A\ 4 \

Zing object
model (ZOM)

Model-checker with

. event
reduction

trace

>—> visualization

Model-checker with
summarization

Zing runtime
library

Conformance

Checker
_/

Visual Studio.NET

Fig. 1. Architecture of ZING

ZING is designed to have flexible software architecture. The architecture
is designed to promote an efficient division of labor between model checking
researchers and domain experts, and make it possible for model checking re-
searchers to innovate in the core state-space exploration technology while allow-
ing domain-experts to tackle issues such as extracting ZING models from their
source code, and visualization for showing results from the model checker. Once
model extraction is done, the generated ZING model is fed into a ZING compiler
which converts the zING model into an MSII[] object code called ZING object
model (zoM). The object code supports a specific interface intended to be used
by the model checker. The ZOM assembly has an object of type State which has a

1 MSIL stands for Microsoft Intermediate Language which is the instruction set for
Microsoft’s Common Language Runtime.

6 T. Andrews et al.

stack for each process, a global storage area of static class variables, and a heap
for dynamically allocated objects. Several aspects of managing the internals of
the State object can be done generically, for all ZING models. This common state
management functionality is factored into a the ZING runtime library.

The equality operator for the State class is overridden to test equality using
a “fingerprint” of the state with the following property: (1) If state s; is a
symmetric equivalent of state sy then fingerprint(si) = fingerprint(ss), and (2)
If fingerprint(s1) = fingerprint(ss), then states s; and so are equivalent with a
high probability. Because states are compared frequently and the state vector
is potentially large, the use of fingerprints is generally advantageous. Further,
when all of the immediate children of a state have been generated, the full state
representation may be discarded provided the fingerprint is retained. Two states
are equivalent if the contents of the stacks and global variables are identical
and the heaps are isomorphic. The fingerprinting algorithm for the State object
first constructs a canonical representation of the state by traversing the heap
in a deterministic order [I2]. Thus, equivalent states have equal fingerprints.
We observe that most state transitions modify only a small portion of the State
object. The State object records an “undo-log” and uses it to reverse transitions,
thereby avoiding cloning the entire state while doing depth-first search.

Stack dfsStack;
Hashtable stateHash;
void addState(State I) {
if (!stateHash.Contains(I)) {
stateHash.Add(I);
dfsStack.Push(I);
}
}

void doDfs(State initialState) {
addState(initiallmplState);
while (dfsStack.Count > 1) {
State I = (State) dfsStack.Peek();
State newl = I.GetNextSuccessor();
if (newl != null)
addState(newl);
else
dfsStack.Pop();

Fig. 2. Simple DFS model checker for zING

The State object exposes a GetNextSuccessor method that returns the
next successor of the state. By iteratively calling this method, all successor
states of the current state can be generated. Model checkers use the method
GetNextSuccessor to execute a process for one atomic step. The execution
semantics of the process, which includes complicated activities like process cre-
ation, function call, exceptions, dynamic memory allocation, are all handled by
the implementation of GetNextSuccessor using support from the ZING compiler
and runtime. Model checkers are thus decoupled from the intricate execution se-
mantics supported by ZING. The actual implementation of the State object is

Zing: Exploiting Program Structure 7

quite complicated since it has to represent stacks for each process, a global area
and the heap. Using the interface provided by zoMm’s State object, a simple
depth-first search model checker for ZING can be written in less than ten lines
as shown in Figure 2l The model checker stores finger prints of visited states in
a hash table stateHash. When visiting each new state, the model checker first
checks if the fingerprint of the new state is already present in the stateHash,
and if present avoids re-exploring the new state. When the checker reaches an
erroneous state, the entire trace that leads to the error is present in the model
checker’s DF'S stack, and we can display the trace at the source level (this is
omitted in Figure [for simplicity).

3 Algorithms

Since ZING’s modeling language preserves abstraction boundaries in the source
program, we can exploit these boundaries to do compositional model checking,
and help alleviate the state-explosion problem. Doing this requires exposing more
information about the state and actions in ZOM. By exposing mover informa-
tion about executed actions, we have been able to implement transaction based
reduction. By exposing information about procedure boundaries, we have been
able to implement a novel summarization algorithm for concurrent programs. By
exposing the observable events during execution of each action, we have been
able to build a novel conformance checker to compositionally check if a zING
model is stuck-free.

3.1 Model Checker with Reduction

We have implemented a state-reduction algorithm that has the potential to re-
duce the number of explored states exponentially without missing errors. This
algorithm is based on Lipton’s theory of reduction [13]. Our algorithm is based
on the insight that in well-synchronized programs, any computation of a process
can be viewed as a sequence of transactions, each of which appears to execute
atomically to other processes. An action is called a right mover if can be com-
muted to the right of any action of another process in any execution. Similarly,
an action is called a left mover if can be commuted to the left of any action of
another process in any execution. A transaction is a sequence of right movers,
followed by a single (atomic) action with no restrictions, followed by a sequence
of left movers. During state exploration, it is sufficient to schedule processes
only at transaction boundaries. These inferred transactions reduce the number
of interleavings to be explored, and thereby greatly alleviate the problem of
state explosion. To implement transaction-based reduction, we augmented the
GetNextSuccessor method so that it returns the type of the action executed
(i.e., left mover, right mover, non mover or both mover), and the model checker
uses this information to infer transaction boundaries.

8 T. Andrews et al.

3.2 Model Checker with Summarization

The ability to summarize procedures is fundamental to building scalable in-
terprocedural analyses. For sequential programs, procedure summarization is
well-understood and used routinely in a variety of compiler optimizations and
software defect-detection tools. The summary of a procedure P contains the
state pair (s, s’) if in state s, there is an invocation of P that yields the state
s’ on termination. Summaries enable reuse—if P is called from two different
places with the same state s, the work done in analyzing the first call is reused
for the second. This reuse is the key to scalability of interprocedural analyses.
Additionally, summarization avoids direct representation of the call stack, and
guarantees termination of the analysis even if the program has recursion.

However, the benefit of summarization is not available to concurrent pro-
grams, for which a clear notion of summaries has so far remained unarticulated
in the research literature. ZING has a novel two-level model checking algorithm
for concurrent programs using summaries [I5]. The first level performs reacha-
bility analysis and maintains an explicit stack for each process. The second level
computes a summary for each procedure. During the reachability analysis at the
first level, whenever a process makes a procedure call, we invoke the second level
to compute a summary for the procedure. This summary is returned to the first
level, which uses it to continue the reachability analysis. The most crucial aspect
of this algorithm is the notion of procedure summaries in concurrent programs.
A straightforward generalization of a (sequential) procedure summary to the
case of concurrent programs could attempt to accumulate all state pairs (s, s)
obtained by invoking this procedure in any process. But this simple-minded ex-
tension is not that meaningful, since the resulting state s’ for an invocation
of a procedure P in a process might reflect updates by interleaved actions of
concurrently executing processes. Clearly, these interleaved actions may depend
on the local states of the other processes. Thus, if (s,s’) is an element of such
a summary, and the procedure P is invoked again by some process in state s,
there is no guarantee that the invoking process will be in state s’ on completing
execution of P. However, in well-synchronized programs, any computation of a
process can be viewed as a sequence of transactions, each of which appears to
execute atomically to other processes. Thus, within a transaction, we are free
to summarize procedures. Two main technical difficulties arise while performing
transaction-based summarization of procedures:

— Transaction boundaries may not coincide with procedure boundaries. One
way to summarize such transactions is to have a stack frame as part of
the state in each summary. However, this solution not only complicates the
algorithm but also makes the summaries unbounded even if all state vari-
ables have a finite domain. Our summaries do not contain stack frames. If a
transaction begins in one procedure context and ends in another procedure
context, we break up the summary into smaller sub-summaries each within
the context of a single procedure. Thus, our model checking algorithm uses
a combination of two representations—states with stacks and summaries
without stacks.

Zing: Exploiting Program Structure 9

— A procedure can be called from different phases of a transaction —the pre-
commit phase or the post-commit phase. We need to summarize the proce-
dure differently depending on the phase of the transaction at the call site. We
solve this problem by instrumenting the source program with a boolean vari-
able representing the transaction phase, thus making the transaction phase
part of the summaries.

Assertion checking for concurrent programs with finite-domain variables and
recursive procedures is undecidable [I7]. Thus, the two-level model-checking
algorithm is not guaranteed to terminate. However, if all variables are finite
domain and every call to a recursive procedure is contained entirely within
a transaction, the two-level algorithm will terminate with the correct an-

swer [15].

int g;

int baz(int x, int y){
g = x+1;

}

Fig. 3. Small example to illustrate patterns and effects

Our implementation of the two-level model checking algorithm in ZING rep-
resents a summary as a pattern and effect pair, rather than a state pair. A
pattern is a partial map from (read) variables to values, and an effect is a
partial map from (written) variables to values.The ZOM supports summariza-
tion by exposing (1) whether the executed action is a procedure call or re-
turn, and (2) what variables are read and written during an action. Pat-
terns and effects enable better reuse of summaries than state pairs. For ex-
ample, consider the function baz from Figure Bl If baz is called with a state
(x=0,y=1,g=0), it results in state (x=0,y=1,g=1). We represent a summary
of this computation as a pattern (x=0) and an effect (g=1). Thus, if baz is
called with a state (x=0,y=10,g=3), it still matches the pattern (x=0), and
the effect (g=1) can be used to compute the resulting state (x=0,y=10,g=1).
In contrast, if the summary is represented as a state pair ((x=0,y=1,g=0),
(x=0,y=1,g=1)), then the summary cannot be reused if baz were called at
state (x=0,y=10,g=3).

The model checker BEBOP [3] from the SLAM project represents summaries as
state pairs. In order to illustrate the efficiency of reuse we present empirical com-
parison between ZING’s implementation of summarization and BEBOP’s imple-
mentation. Since BEBOP supports model checking of sequential programs only, we
do the comparison with a parameterized set of sequential ZING models shown in
Figure @ Program P(n) contains n global boolean variables g1,g2,...,gn and
n procedures levell,level2,...,leveln. Figure[Blshows the running times for
ZING and BEBOP for models P(10), P(20),..., P(100). Due to the use of patterns
and effects for representing summaries, the ZING runtime for P(n) scales linearly
with n.

10 T. Andrews et al.

class BoolProg {
static bool gil;
static bool g2;

static bool g<n>;

activate static void main() {
levell(true, true, true);
levell(true, true, true);
}
static void level<i>(bool pl, bool p2, bool p3) {
bool a,b,c;
a = false;b = false;c = false;
while('al|!'bl!c) {
if (ta)
a = true ;
else if ('b)
{a = false; b = true;}
else if ('c)
{a = false; b = false; ¢ = true;}
g<i> = false;
level<i+i>(a, b, c);
g<i> = true;
level<i+i>(a, b, c);
g<i> = false;

31}

Fig. 4. Template to evaluate summary reuse using patterns and effects

3.3 Conformance Checker

We are interested in checking that a ZING process cannot get into a state where
it waits for messages that are never sent (deadlock) or has sent messages that are
never received (orphan messages, for example, unhandled exception messages).
We say, informally, that a processes is stuck if it cannot make any transition
whatsoever, and yet some component of it is ready to send or receive a message.
We say that a process is stuck-free, if it cannot transition to a stuck state

In order to check for stuck-freedom compositionally (one component at a
time) for a system of communicating processes, we have defined a refinement
relation <, called stuck-free conformance, which allows us to regard one ZING
process as a specification of another. Stuck-free conformance is a simulation re-
lation on ZING processes, which (i) is preserved by all contexts and (i) preserves
the ability to get stuck. From these properties it follows that, if P and @ are
ZING processes such that P < @, then for any process R, if R | @ is stuck-free,
then R | P is stuck-free (P | @ denotes the parallel composition of P and @,

2 We have formalized the notion of stuckness and stuck-freedom for transition sys-
tems in CCS [14], and we refer to [8|[7] for the precise definition of stuck-free CCS
processes.

Zing: Exploiting Program Structure 11

ZING Vs BEBOP model checking times

o
S

IS
o

IS
o

w
a

w
S

——ZING
—=—BEBOP

Model checking time for model P(10 x n) in seconds
> & 3 >

3

o

Fig.5. Runtimes for ZING and BEBOP on models from Figure (]

which is expressed in ZING via async calls.) Therefore, if P < @), we can safely
substitute @ (a specification) for P (an implementation) in any context when
reasoning about stuck-freedom, thereby enabling compositional checking. Our
definition of stuck-free conformance [8[7] between ZING processes is the largest
relation < such that, whenever P < @), then the following conditions hold:

C1. It P 723 P’ then there exists @’ such that Q k) Q' and P’ < Q.
C2. If P can refuse X while ready on Y, then @ can refuse X while ready on Y.

Here, P T2 P’ means that P can transition to P’ on a sequence of hidden
actions, 7, and a visible action, A\. A process is called stable, if it cannot do any
T-actions. If X and Y are sets of visible actions, we say that P can refuse X

while ready on Y, if there exists a stable P’ such that P 7, P and (i) P’
refuses X, i.e., P’ cannot do a co-action of any action in X, and (ii) P’ is ready
onY, i.e., P’ can do every action in Y. In condition [C2] above, the ready sets
Y range only over singleton sets or the empty set. This requirement on Y leads
to the most permissive simulation satisfying the preservation properties (i) and
(#4) mentioned aboved

We have extended the zOM interface so that we can observe externally visible
actions as well as the occurrence of hidden actions:

3 Our notion of stuck-free conformance can be seen as a restriction of the natural
simulation-based version of CSP stable failures refinement [5][9]19], which in addition
to preserving deadlock also preserves the ability to generate orphan messages. We
refer to [8[7] for more details on the theory of stuck-free conformance.

12 T. Andrews et al.

Stack dfsStack;
Hashtable stateHash;
void addState(State I, State S) {
StatePair combinedState = new StatePair(newl, newS);
if (!stateHash.Contains(combinedState)) {
stateHash.Add(combinedState);
dfsStack.Push(combinedState);

}

void checkConformance(State initiallmplState, State initialSpecState) {
addState(initiallmplState, initialSpecState);
while (dfsStack.Count > 1) {
StatePair P = (StatePair) dfsStack.Peek();
State I = P.first();
State S = P.second();
State newl = I.GetNextSuccessor();
if (newl == null) {
if (isStable(I)) {
// First get all the events we executed from I.
Ezternal Event[] IEvents = I.AccumulatedExternalEvents;
// Check if ready-refusals of I are ready-refused by S as well.
for(int i = 0; i < IEvents.Count; i++) {
if(!checkReadyRefusals(S, IEvents, IEvents[i])) {
Console.WriteLine(” Ready refusals do not match up”);
return;

}

¥
dfsStack.Pop();
continue;

External Event event = newl.ExternalEvent;
// Try to produce a transition from newS with “event” as the observable event.
State newS = executeWithEvent(S, event);
if (newS == null) {
Console.WriteLine(” Implementation has unspecified behavior”);
return;

addState(newl, newS);

Console.WriteLine(”I conforms with S”);

Fig. 6. Conformance checker for zING

1. ExternalEvent is a property which, for a newly generated state, gives the
event (if any) on the transition that was used to generate the state.

2. AccumulatedExternalEvents gives an array of events from all outgo-
ing transitions on a state, once all the outgoing transitions have been
explored.

An implementation of the conformance checker using this interface is given in
Figure 6l By exploring the state spaces of a given process P and a specification
process C, checkConformance(P, ') decides whether P < (', by a direct imple-
mentation of conditions [C1] and [C2]. We assume that the specification does

not have hidden nondeterminism. i.e., for a specification state S, if S 3 S1 and

s T2 So, then S; = S;. This assumption can be relaxed by determinizing the
specification in a pre-processing step, or on-the fly using a subset construction.
The conformance checker works by doing a depth-first-search on the state-space

Zing: Exploiting Program Structure 13

of the implementation, and tracking the “matching” state of the specification
corresponding to each state of the implementation. A hashtable is used to keep
track of states that have been already visited. In our implementation, we store
fingerprints of the visited states in the hashtables for efficiency. At each transi-
tion explored in the implementation, the algorithm checks for conditions [C1].
After all the successors of an implementation state have been explored, it is
popped from the DFS stack. At that time, the algorithm checks if condition
[C2] holds. The algorithm uses three functions executeWithEvent, isStable,
and checkReadyRefusals. The function executeWithEvent searches the spec-
ification for a state which can be obtained by transitioning through the given

event. Formally, executeWithEvent(S, \) returns a state S’ such that S A
if such a state S’ exists (note that such a state is unique if it exists due to the
assumption that the specification does not have hidden nondeterminism). If this
function returns null, then we conclude that condition [C1] has been violated.
The function isStable returns TRUE if the given state S is stable and FALSE
otherwise. The function checkReadyRefusals(S, X, A) returns true if condition
[C2] holds. More precisely, checkReadyRefusals(S, X, \) returns TRUE if there

exists a stable S’ such that (i) S ——» S’ and (i) for all X if Q’ X, then

N e X, and (iii) S’ 2. The algorithm terminates if the state space of the
implementation is finite, and the complexity is linear in the state spaces of the
implementation and the specification. If the state space of the implementation
is too large or infinite, the algorithm can be used to check for conformance in
whatever portion of the state space is explored.

4 Conclusion

The goal of the ZING project is to check properties of concurrent programs that
manipulate the heap, by using natural abstraction boundaries that exist in the
program. In order to support this goal, the ZING modeling language supports the
essential features of modern object oriented languages, and the ZING architecture
enables a clear separation between the expressiveness of the modeling language
and the simplicity of the ZING object model (zoMm). This separation has enabled
us to implement several novel model checking algorithms on top of the zom. We
are currently implementing a few additional algorithms to enable ZING to scale
to larger models:

— Currently non-determinism in data (introduced by the choose statement) is
handled by an explicit case-split. We have designed a technique to handle
such non-determinism symbolically. Our proposed algorithm adds symbolic
fix-point computing capability to ZING, with the possibility of using widening
to accelerate convergence.

— We are currently investigating how to design a sSLAM-like iterative refinement
loop inside ZING. SLAM handles pointers by doing an apriori alias analysis,
and using predicates to refine the imprecision in alias analysis. We believe
that directly handling pointers in the abstraction will scale better.

14 T. Andrews et al.

We have used zING to check stuck-freeness of distributed applications [8]
[7], concurrency errors in devicedriverSE and protocol errors in a replicated file
Systemﬁ Though a discussion of these applications is beyond the scope of this
paper, all of the above algorithms and optimizations were driven by the need to
make ZING scale on these applications.

Acknowledgments. We thank Jakob Lichtenberg and Georg Weissenbacher for
their efforts in making ZING work inside the SLAM engine. We thank Tom Ball
and Byron Cook for several discussions regarding this effort. We thank Vlad
Levin for making the zING UI display error traces in terms of the driver’s C
code. Abhay Gupta wrote ZING models of a large file-replication protocol. This
effort helped uncover several bugs and performance bottlenecks in ZING and
one serious bug in the protocol. We thank Tony Hoare and Cedric Fournet for
working with us on the theory of stuck-free conformance.

References

1. Zing Language Specification — http://research.microsoft.com/zing.

2. T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie. Zing: A model
checker for concurrent software. Technical report, Microsoft Research, 2004.

3. T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for Boolean pro-
grams. In SPIN 00: SPIN Workshop, LNCS 1885, pages 113-130. Springer-Verlag,
2000.

4. T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via
static analysis. In POPL 02: Principles of Programming Languages, pages 1-3.
ACM, January 2002.

5. S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating se-
quential processes. Journal of the ACM, 31(3):560-599, 1984.

6. M. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. Pasareanu, Robby, W. Visser,
and H. Zheng. Tool-supported program abstraction for finite-state verification. In
ICSE 01: International Conference on Software Engineering, pages 177-187. ACM,
2001.

7. C. Fournet, C. A. R. Hoare, S. K. Rajamani, and J. Rehof. Stuck-free conformance
theory for CCS. Technical Report MSR-TR-2004-09, Microsoft Research, 2004.

8. C. Fournet, C.A.R. Hoare, S.K. Rajamani, and J. Rehof. Stuck-free conformance.
In CAV 04: Computer-Aided Verification, LNCS. Springer-Verlag, 2000.

9. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

10. G. Holzmann. The model checker sPIN. IEEE Transactions on Software Engineer-
ing, 23(5):279-295, May 1997.

11. G.J. Holzmann. Logic verification of ANSI-C code with Spin. In SPIN 00: SPIN
Workshop, LNCS 1885, pages 131-147. Springer-Verlag, 2000.

12. R. Iosif and R. Sisto. dSPIN: A dynamic extension of SPIN. In SPIN 99: SPIN
Workshop, LNCS 1680, pages 261-276. Springer-Verlag, 1999.

4 Jakob Lichtenberg and Georg Weissenbacher started this work as an intern project
in the summer of 2003.
5 Abhay Gupta did this work as an intern project in the summer of 2003.

13

14.

15.

16.

17.

18.

19.
20.

21.

Zing: Exploiting Program Structure 15

R. J. Lipton. Reduction: A method of proving properties of parallel programs. In
Communications of the ACM, volume 18:12, pages 717-721, 1975.

R. Milner. Communicating and Mobile Systems: the w-Calculus. Cambridge Uni-
versity Press, 1999.

S. Qadeer, S. K. Rajamani, and J. Rehof. Summarizing procedures in concurrent
programs. In POPL 04: ACM Principles of Programming Languages, pages 245—
255. ACM, 2004.

S. K. Rajamani and J. Rehof. Conformance checking for models of asynchronous
message passing software. In CAV 02: Computer-Aided Verification, LNCS 2404,
pages 166-179. Springer-Verlag, 2002.

G. Ramalingam. Context sensitive synchronization sensitive analysis is undecid-
able. ACM Trans. on Programming Languages and Systems, 22:416-430, 2000.
Robby, M. Dwyer, and J. Hatcliff. Bogor: An extensible and highly-modular model
checking framework. In FSE 03: Foundations of Software Engineering, pages 267—
276. ACM, 2003.

A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.

S. D. Stoller. Model-checking multi-threaded distributed Java programs. Inter-
national Journal on Software Tools for Technology Transfer, 4(1):71-91, October
2002.

W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In
ICASE 00: Automated Software Engineering, pages 3—12, 2000.

	Introduction
	Architecture
	Algorithms
	Model Checker with Reduction
	Model Checker with Summarization
	Conformance Checker

	Conclusion

