
Zing: A Model Checker for Concurrent Software

Tony Andrews∗ Shaz Qadeer∗ Sriram K. Rajamani∗

Jakob Rehof∗ Yichen Xie†

January 27, 2004

Technical Report
MSR-TR-2004-10

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com



1 Introduction

The zing project is an effort to build a flexible and scalable model checking
infrastructure for concurrent software. The project is divided into four com-
ponents: (1) a modeling language for expressing concurrent models of software
systems, (2) a compiler for translating a zing model into an executable repre-
sentation of its transition relation, (3) a state explorer for exploring the state
space of the zing model, and (4) model generators that automatically extract
zing models from programs written in common programming languages. We be-
lieve that such an infrastructure is useful for finding bugs in software at various
levels: high-level protocol descriptions, work-flow specifications, web services, de-
vice drivers, and protocols in the core of the operating system. The next section
illustrates zing using an example. In the remainder of this paper, we give an
overview of the modular software architecture of Zing, the novel algorithms im-
plemented in the Zing state explorer, and our ongoing efforts to automatically
generate Zing models from C and C# programs.

2 Example

We illustrate using zing to find a concurrency error in a Windows device driver.
The driver under consideration, like every Windows driver, has to handle races
between PNP Stop and other dispatch routines that handle the IRP’s of the
driver. The driver code should satisfy the invariant that during the execution
of a dispatch routine, the PNP Stop routine should not be allowed to stop the
device. It turns out that this invariant is violated in one particular interleaving
of events between the dispatch routine and the PNP Stop routine. PNP stands
for plug-and-play, the feature that allows devices to attach and detach when the
OS is running, and IRP stands for I/O Request Packet which are units by which
the OS communicates I/O operations to the device driver.

The details of the synchronization are shown in the zing model in Fig-
ure 1. The synchronization between the threads is quite complicated. It is imple-
mented using three objects: a boolean flag called driverStoppingFlag in the
device extension, an event called stoppingEvent, and a reference count field
pendingIo in the device extension. The reference count pendingIo is initialized
to 1, and the stoppingFlag is set to false during driver entry. The dispatch
routine first checks the driverStoppingFlag to see if the PNP Stop is immi-
nently going to stop the device. If driverStoppingFlag is true then it fails
the IRP. If driverStoppingFlag is false then it increments the reference count
pendingIo, does whatever work needs to be done by the dispatch routine, and
then decrements the reference count. After decrementing the reference count,
if the reference count reaches 0, then it signals the event stoppingEvent. The
PNP Stop routine sets driverStoppingFlag to true and decrements the refer-
ence count pendingIo. After decrementing the reference count, if the reference
count reaches 0, then its signals the event stoppingEvent. Finally, it waits for
the event stoppingEvent and after the event arrives, it stops the device.



static void PNP_Stop (DEVICE_OBJECT BtDevice){

DEVICE_EXTENSION deviceExtension = BtDevice.deviceExtension;

deviceExtension.driverStoppingFlag = true;

IoDecrement(deviceExtension);

KeWaitForStoppingEvent(deviceExtension);

deviceExtension.stopped = true;

}

static void Dispatch(DEVICE_OBJECT BtDevice){

DEVICE_EXTENSION deviceExtension = BtDevice.deviceExtension;

int status;

status = IoIncrement (deviceExtension);

if(status > 0){

// do work here

assert(!deviceExtension.stopped);

}

BCSP_IoDecrement(deviceExtension);

}

static int IoIncrement(DEVICE_EXTENSION e){

int status;

bool driverStopping = e.driverStoppingFlag;

if(driverStopping == true) status = -1;

else{

InterlockedIncrementPendingIo(e);

status = 1;

}

return(status);

}

static void IoDecrement(DEVICE_EXTENSION e){

int pendingIo;

pendingIo = InterlockedDecrementPendingIo(e);

if(pendingIo == 0) KeSetEventStoppingEvent(e);

}

Fig. 1. A zing model of a device driver.

An invariant we want the driver code to have is that while a dispatch routine
is doing work, the PNP Stop routine should not be allowed to stop the device.
The invariant is encoded using an assertion in the zing model. Suppose the
dispatch thread has just finished checking the driverStoppingFlag and ascer-
tained that it is false. Just before it increments the reference count, if the PNP
Stop IRP gets fired and it sets the driverStoppingFlag to true, decrements
the reference count to 0, and stops the device. In this particular interleaving,
the dispatch thread continues execution after incrementing the reference count,
unaware that the device has been already stopped. The zing state explorer is
able to produce this exact interleaving automatically from analyzing the zing
model for the driver. The zing browser shows this error trace just like a debug-



ger, allowing the user to step through all the events that led to the assertion
violation.

The developer proposed the following fix for this problem: Change the
dispatch routine to first increment the reference count and then check the
driverStoppingFlag (and decrement the reference count back, if the flag is
set). zing was able to validate the fix by proving that the desired invariant
holds in all possible interleavings between the dispatch routine and the PNP
Stop IRP.

3 The zing modeling language and compiler

zing provides several features to support automatic generation of models from
programs written in common programming languages. zing supports a basic
asynchronous interleaving model of concurrency with both shared memory and
message passing. In addition to sequential flow, branching and iteration, zing
supports function calls and exception handling. New threads are created via
asynchronous function calls. An asynchronous call returns to the caller immedi-
ately, and the callee runs as a fresh process in parallel with the caller. Primitive
and reference types, and an object model similar to C# or Java is supported,
although inheritance is not supported. zing also provides features to support ab-
straction and efficient state exploration. Any sequence of statements (with some
restrictions) can be bracketed as atomic. This is essentially a directive to the
state explorer to not consider interleavings with other threads while any given
thread executes an atomic sequence. Sets are supported, to represent collections
where the ordering of objects is not important (thus reducing the number of
potentially distinct states Zing needs to explore). A choose construct that can
be used to non-deterministically pick an element out of a finite set of integers,
enumeration values, or object references is provided. An example zing model
that we extracted from a device driver, and details of an error trace that the
zing explorer found in the model can be found in our technical report [1].

The zing compiler translates a zing model into a zing object model, which
can be executed to produce transitions between zing states. A zing state has
the following three components:

– Stacks. Each thread in the zing runtime state has its own stack and each
stack consists of stack frames where the local variables and return addresses
are being stored.

– Global storage. Static class variables are stored in a shared global stor-
age area. The number of global variables and their types are determined at
compile time.

– Heap. zing supports dynamic allocation of objects. Dynamically allocated
objects are placed on the heap, which is implemented by a variable sized
array of heap objects indexed by pointers.

A zing model is compiled into an MSIL assembly that manipulates the state
representation according to the semantics of the model. The MSIL assembly can



be loaded and invoked from within the state explorer. In a zing model, process
stacks and heap can grow without limit at runtime due to recursive function calls
and dynamic allocation. This flexibility comes at a price: zing is not guaranteed
to terminate on every model. However, we can still systematically explore a
portion of the state space and look for errors.

4 zing state explorer

The zing state explorer executes the zing object model to explore the state
space of the corresponding zing model. Starting from the initial state, the state
explorer systematically explores reachable states in a depth-first manner. State
transitions are carried out by invoking appropriate methods in the MSIL assem-
bly produced by the zing compiler. The biggest technical challenge with zing, as
with any model checker, is scalability. We have implemented several techniques
that reduce the time and space required for state exploration.
Efficient state representation. We observe that most state transitions modify
only a small portion of the zing state. By only recording the difference between
transitions, we greatly cut down the space and time required to maintain the
depth-first search stack. To further cut down on the space requirements, the
state explorer stores only a fingerprint of an explored state in its hash table. We
use Rabin’s finger-printing algorithm [3] to compute fingerprints efficiently.
Symmetry reduction. A zing state comprises the thread stacks, the global
variables, and a heap of dynamically allocated objects. Two states are equival-
uent if the contents of the thread stacks and global variables are identical and
the heaps are isomorphic. When the state explorer discovers a new state, it first
constructs a canonical representation of the state by traversing the heap in a
deterministic order. It then stores a fingerprint of this canonical representation
in the hash table.
Partial-order reduction. We have implemented a state-reduction algorithm
that has the potential to reduce the number of explored states exponentially
without missing errors. This algorithm is based on Lipton’s theory of reduc-
tion [8]. Our algorithm is based on the insight that in well-synchronized pro-
grams, any computation of a thread can be viewed as a sequence of transactions,
each of which appears to execute atomically to other threads. During state ex-
ploration, it is sufficient to schedule threads only at transaction boundaries. If
programmers follow the discipline of protecting each shared variable with a lock,
then these transactions can be inferred automatically [4]. These inferred trans-
actions reduce the number of interleavings to be explored, and thereby greatly
alleviate the problem of state explosion.
Summarization. The ability to summarize procedures is fundamental to build-
ing scalable interprocedural analyses. For sequential programs, procedure sum-
marization is well-understood and used routinely in a variety of compiler opti-
mizations and software defect-detection tools. This is not the case for concurrent
programs. zing has an implementation of a novel model checking algorithm for
concurrent programs that uses procedure summarization as an essential com-



ponent [9]. Our method for procedure summarization is based on the insight
about transactions mentioned earlier. We summarize within each transaction;
the summary of a procedure comprises the summaries of all transactions within
the procedure. The procedure summaries computed by our algorithm allow reuse
of analysis results across different call sites in a concurrent program, a benefit
that has hitherto been available only to sequential programs.
Compositional reasoning. Stuck-freedom is an important property of dis-
tributed message-passing applications [10, 5]. This property formalizes the re-
quirement that a process in a communicating system should not wait indefinitely
for a message that is never sent, or send a message that is never received. To en-
able compositional verification of stuck-freedom, we have defined a conformance
relation ≤ on processes with the following substitutability property: If I ≤ C
and P is any environment such that the parallel composition P | C is stuck-free,
then P | I is stuck-free as well. Substitutability enables a component’s specifi-
cation to be used instead of the component in invocation contexts, and hence
enables model checking to scale. We have adapted the zing state explorer to
implement a conformance checker to verify the relation I ≤ C, where I and C
are zing models.

5 Automatic model generation

zing is designed as a backend to model-generation tools that automatically ex-
tract behavioral models from concurrent systems written in common program-
ming languages. Abstraction can offer huge reductions in state space needed to
be explored. As an example, in the SLAM project [2], when we check if an ac-
quired lock is eventually released, we can typically construct an abstraction that
involves just the device drivers control flow graph and one bit of information as
to whether the lock is held or not. This abstraction has a state space linear in the
size of the driver, and hence can be used to check for proper lock usage on very
large device drivers. We are currently buidling several automatic extractors from
common programming languages, and we are investigating whether abstractions
can be generated using iterative refinement for concurrent programs using zing.

6 Related work

Software model checking is an active area of current research. zing is an explicit-
state model checker, in the spirit of spin [7], jpf [13] and bogor [11]. In com-
parison with spin, zing supports several features like objects and function calls,
which make it a more amenable target for automatic extraction of models from
programming languages. In comparison with jpf and bogor, we implement
newer algorithms for state-space reduction, such as reduction and summariza-
tion. Like bogor, one of our design goals is to keep the architecture flexible and
open. Unlike any of these related efforts, we support a notion of conformance
between two zing models [5]. This feature of zing is related to, but distict from,
the refinement checking feature of the fdr model checker [12, 6].



References

1. T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie. Zing: A model
checker for concurrent software. Technical report, Microsoft Research, 2004.

2. T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via
static analysis. In POPL 02: Principles of Programming Languages, pages 1–3.
ACM, January 2002.

3. A. Broder. Some applications of Rabin’s fingerprinting method. In Sequences
II: Methods in Communications, Security, and Computer Science, pages 143–152,
1993.

4. C. Flanagan and S. Qadeer. Transactions for software model checking. In SoftMC
03: Software Model Checking Workshop, 2003.

5. C. Fournet, C. A. R. Hoare, S. K. Rajamani, and J. Rehof. Stuck free conformance.
Technical report, Microsoft Research, 2004.

6. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
7. G. Holzmann. The model checker spin. IEEE Transactions on Software Engineer-

ing, 23(5):279–295, May 1997.
8. R. J. Lipton. Reduction: A method of proving properties of parallel programs. In

Communications of the ACM, volume 18:12, pages 717–721, 1975.
9. S. Qadeer, S. K. Rajamani, and J. Rehof. Summarizing procedures in concurrent

programs. In POPL 04: ACM Principles of Programming Languages, pages 245–
255. ACM, 2004.

10. S. K. Rajamani and J. Rehof. Conformance checking for models of asynchronous
message passing software. In CAV 02: Computer-Aided Verification, LNCS 2404,
pages 166–179. Springer-Verlag, 2002.

11. Robby, M. Dwyer, and J. Hatcliff. Bogor: An extensible and highly-modular model
checking framework. In FSE 03: Foundations of Software Engineering, pages 267–
276. ACM, 2003.

12. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.
13. W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In

ICASE 00: Automated Software Engineering, pages 3–12, 2000.


