
Stuck-Free Conformance

Cédric Fournet, Tony Hoare, Sriram K. Rajamani, and Jakob Rehof

Microsoft Research
{fournet,thoare,sriram,rehof}@microsoft.com

Abstract. We present a novel refinement relation (stuck-free confor-
mance) for CCS processes, which satisfies the substitutability property:
If I conforms to S, and P is any environment such that P | S is stuck-
free, then P | I is stuck-free. Stuck-freedom is related to the CSP notion
of deadlock, but it is more discriminative by taking orphan messages in
asynchronous systems into account. We prove that conformance is a pre-
congruence on CCS processes, thereby supporting modular refinement.
We distinguish conformance from the related preorders, stable failures
refinement in CSP and refusal preorder in CCS. We have implemented
conformance checking in a new software model checker, zing, and we
report on how we used it to find errors in distributed programs.

1 Introduction

We are interested in checking that message-passing programs are stuck-free [12].
Stuck-freedom formalizes the property that a communicating system cannot
deadlock waiting for messages that are never sent or send messages that are never
received. In this paper we extend [12] by generalizing the theory of conformance
and by reporting on its application in model checking distributed programs. In
our example application, programmers write contracts, which are interfaces that
specify the externally visible message-passing behavior of the program. Con-
tracts can be as rich as CCS processes. Stuck-freedom is ensured by checking
that an implementation conforms to its contract using a model checker.

Checking stuck-freedom by exploring the state space of the entire system
quickly leads to state explosion, because the state space grows exponentially in
the number of concurrent processes; and it requires that the entire system is
available for analysis, which is especially unrealistic for distributed systems. We
therefore wish to check stuck-freedom compositionally. If I is an implementation
of a component and C is its contract, we use the notation I ≤ C to denote that I
conforms to C. For our compositional approach to be sound with respect to stuck-
freedom, the conformance relation ≤ needs to obey the following substitutability
property: If I ≤ C and P is any environment such that P | C is stuck-free,
then P | I is stuck-free as well (P | C denotes the parallel composition of P
and C). Substitutability means that the contract of a component can be safely
used instead of the component in invocation contexts, and hence it helps model
checking to scale.

Our notion of conformance is a novel process preorder that preserves stuck-
ness. Stuckness can be directly observed in any labeled transition system in

R. Alur and D.A. Peled (Eds.): CAV 2004, LNCS 3114, pp. 242–254, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Stuck-Free Conformance 243

which visible actions as well as stability (the inability to perform hidden ac-
tions) can be observed. In our applications this is important, because we want
to analyze a system by executing a model of it and observing what happens.
Stuckness is more discriminative than CSP deadlock or unspecified reception
[10], since stuckness encompasses any “left-over” action on a channel name. In
addition to deadlock, this includes orphan messages that are never consumed
in asynchronous systems and directly models important failure conditions in
software such as unhandled exception messages.

This paper makes the following contributions:

– We define a notion of conformance based on standard CCS transition se-
mantics and prove that it is a precongruence (i.e., it is preserved by all CCS
contexts) satisfying the substitutability property for stuck-freedom. We dis-
tinguish conformance from the most closely related known preorders, CSP
stable failures refinement [3, 6, 13] and CCS refusal preorder [11].

– We have implemented a conformance checker in our software model checker,
zing. The implementation technique is quite general and can be used to
adapt existing model checkers for software to do conformance checking. zing
processes can be regarded as CCS processes, and hence our conformance
theory applies to the zing conformance checker. We have applied zing to
check contract conformance in a non-trivial distributed application, leading
to the discovery of several bugs in the application.

This paper significantly extends the work reported in [12], which proposes a
conformance relation satisfying the substitutability property. The conformance
relation of [12] is limited in several respects. First, conformance in [12] is defined
by reference to the syntactic form of processes1, which precludes a purely obser-
vational implementation of conformance checking by recording actions generated
by transitions. Second, the relation in [12] is not a precongruence, because the
syntactic constraints are not preserved under arbitrary CCS contexts. As a con-
sequence, natural and useful algebraic laws fail, including the desirable modular
principle, that P1 ≤ Q1 and P2 ≤ Q2 implies P1 | P2 ≤ Q1 | Q2. Third, the
theory in [12] is complicated by using a non-standard action2 to treat nondeter-
minism. This paper provides a substantial generalization of conformance that is
purely observational, is based on the standard CCS transition system, and gives
a unified treatment of nondeterminism, hiding, and stability in terms of hidden
actions (τ). It can be implemented in a model checker by observing visible actions
and stability, and it can be compared to other semantic refinement relations. In
addition to proving substitutability, we prove that our generalized conformance
relation is a precongruence, thereby supporting modular refinement. Finally, we
have applied this theory by implementing it in a software model checker and
applying it to contract checking for distributed programs.

1 For example, some cases in the conformance definition of [12] apply only to processes
of the form P#Q or P + Q. Other similar syntactic dependencies of this nature is
present in [12] as well.

2 The action is named ε in [12].

244 Cédric Fournet et al.

The remainder of this paper is organized as follows. In Section 2 we discuss
refinement relations in the CSP and CCS traditions that are most closely related
to stuck-free conformance. In Section 3 we present our theory of conformance.
In order to keep the paper within limits, we have left out all proofs in the pre-
sentation of our conformance theory. Fully detailed proofs can be found in our
technical report [5]. In Section 4 we describe the application of the zing confor-
mance checker to find errors in distributed programs, and Section 5 concludes.

2 Related Work

Our notion of conformance is modeled on stable failures refinement in CSP [3, 6,
13] and is inspired by the success of the refinement checker FDR [13]. Our process
model combines the operational semantics of CCS with a notion of refusals
similar to but distinct from the CSP notion. The definition of conformance relies
on simulation and applies directly to any labeled transition system in which
visible actions and stability can be observed. As is discussed in Section 3.3,
substitutability with respect to stuck-freedom is not satisfied, if stable failures
refinement is adopted directly into CCS. The reason is that stuck-freedom is a
different and more discriminative notion than the CSP concept of deadlock. In
order to accomodate this difference, our conformance relation is based on the
idea of ready refusals, which requires a process to be ready to accept certain
actions while (at the same time) refusing others.
Stuck-free conformance is also related to the refusals preorder for CCS as de-
veloped in Iain Phillips’ theory of refusal testing [11]. Refusal preorder allows
the observation of actions that happen after refusals and can therefore express
readiness conditions in combination with refusals. However, as discussed in Sec-
tion 3.4, stuck-free conformance is a strictly larger precongruence than refusal
preorder.
The notion of 2/3 bisimulation, presented by Larsen and Skou [7] bears some
resemblance to conformance. However, Larsen and Skou do not treat hiding and
internal actions (τ -actions), and therefore the problems of stability do not arise
there. Our theory of conformance gives a unified treatment of internal actions,
non-determinism, and stability, which are essential in our applications.
Alternating simulation [1] has been used to relate interfaces to implementations
in [4]. As discussed in [12], alternating simulation does not satisfy substitutability
for stuck-freedom.

3 Conformance Theory

In this section we give necessary background on CCS [8, 9], we define our no-
tions of stuck-freedom and conformance, and we prove that conformance is a
precongruence (Theorem 1) and that it satisfies the substitutability property
(Theorem 2).

3.1 CCS Processes
We assume a denumerable set of names N = {a, b, c, . . .}. The set L ∆= N ∪ {ā |
a ∈ N} is called the set of labels. The set A ∆= L∪{τ} is called the set of actions.

Stuck-Free Conformance 245

We let α range over A and we let λ range over L, and we write ¯̄a = a. For a
subset X of L we write X̄ = {ā | a ∈ X}. CCS processes, ranged over by P , are
defined by:

P ::= 0 | A〈a1, . . . , an〉 | G1 + . . . + Gn | (P |Q) | (ν a)P
G ::= α.P

Here, A ranges over process names, with defining equations A
∆= P . We say that

the name a is bound in (ν a)P . The free names of P , denoted fn(P), are the
names in P that are not bound.

Definition 1 (Structural congruence, ≡). Structural congruence, ≡, is the
least congruence relation on terms closed under the following rules, together with
change of bound names and variables (alpha-conversion) and reordering of terms
in a summation:

1. P |0 ≡ P , P |Q ≡ Q|P , P |(Q|R) ≡ (P |Q)|R
2. (ν a)(P |Q) ≡ P |(ν a)Q, if a �∈ fn(P)
3. (ν a)0 ≡ 0, (ν ab)P ≡ (ν ba)P , (νa)(νb)P ≡ (νb)(νa)P

The operational semantics of CCS is given by the labeled transition system
shown in Definition 2. This system is exactly the one given by Milner [9], except
that we have added rule [cong], as is standard in recent presentations of CCS.
In rule [sum] below, M ranges over a summation.

Definition 2 (Labeled transition).

M + α.P
α−→ P [sum]

P
λ−→ P ′ Q

λ̄−→ Q′

P |Q τ−→ P ′|Q′ [react]

P
α−→ P ′

P |Q α−→ P ′|Q [par-l]
P ≡ P ′ P ′ α−→ Q′ Q′ ≡ Q

P
α−→ Q

[cong]

P
α−→ P ′ α �∈ {a, ā}

(ν a)P α−→ (ν a)P ′ [res]

PA[b̃/ã] α−→ P ′ A(a) ∆= PA

A〈b̃〉 α−→ P ′ [ident]

We let P # Q
∆= τ.P + τ.Q. The difference between a.P # b.Q and a.P + b.Q is

important. The former represents internal choice, where the process chooses to
transition to a.P or b.Q, whereas the latter represents external choice [6], where
the environment controls whether the process moves to P or Q by offering ā or
b̄. The distinction between internal and external choice is crucial in our notion
of conformance.

Asynchronous actions are modeled as actions with no sequential continua-
tion in CCS. Hence, asynchronous actions are “spawned”, as in a | P , where a
happens asynchonously.

246 Cédric Fournet et al.

Notation. We write ã and α̃ for (possibly empty) sequences of names and
actions. For α̃ = α0 . . . αn−1 we write P

α̃−→ P ′, if there exist P0, P1, . . . , Pn

such that P ≡ P0, P ′ ≡ Pn and for 0 ≤ i < n, we have Pi
αi−→ Pi+1. We use

the notation P
τ∗λ−→ P ′ , where (τ∗λ) ∈ {λ, τλ, ττλ, . . .}. We write P −→ P ′

if there exists α̃ such that P
α̃−→ P ′; P

α̃−→ means there exists P ′ such that
P

α̃−→ P ′; P −→ means that P
α̃−→ for some α̃. P is stable if P can make no

hidden actions, i.e., P � τ−→, and P is an end-state if P can make no action at all,
i.e., P �−→. Finally, we use the shorthand notation λ∈̄ã to mean that either λ
or λ̄ is among the labels appearing in ã.

3.2 Stuck-Freedom, Ready Refusal, and Conformance

If two processes, P and Q, communicate via local names in ã, we can write the
system as (νã)(P |Q). Since ã are names local to P and Q, no further environment
can interact on ã, and therefore it makes sense to test whether the interaction
of P and Q on ã succeeds completely. Informally, we call a process stuck on ã
if it cannot make any progress, and some part of it is ready to communicate
on a name in ã: the communication on ã has not succeeded, because it did
not finish. In our applications, P is typically a model of a program that has a
local connection ã to a process whose specification (contract) is Q. We wish to
check that the interaction between P and the implementation represented by
Q is stuck-free, i.e., it cannot get stuck. Stuck-freedom is a safety property and
can be checked by a reachability analysis of the system P | Q. The following
definitions make the notions of stuckness and stuck-freedom precise.

Definition 3 (Stuck process). A process P is called stuck on ã, if (νã)P is
an end-state, and P

λ−→ for some λ∈̄ã. We refer to such λ as a residual action.

Definition 4 (Stuck-free processes). A process P is called stuck-free on ã if
there is no P ′ and α̃ such that P

α̃−→ P ′ with α̃ ∩ ã = ∅, and P ′ is stuck on ã.

In the situation mentioned above we apply Definition 4 by searching for a tran-
sition P | Q

α̃−→ P ′ | Q′ such that α̃ ∩ ã = ∅ and P ′ | Q′ is stuck on ã. The
restriction (νã) in Definition 3 and the condition α̃∩ã = ∅ in Definition 4 enforce
that only internal reactions (τ -actions) can happen on names in ã, consistently
with ã being local. Since P ′ | Q′ λ−→ for some λ∈̄ã, the interaction between P
and Q ends with a residual action, λ, that cannot be matched by any co-action,
λ̄. If λ models an input action, then a component is waiting to receive a message
that never arrives, and if λ models a send action, then a component is sending a
message that is never consumed. An example of the latter is a remote exception
message that is not handled. Such situations are important indicators of prob-
lems in many asynchronous applications. Section 4 has examples of how we have
used Definition 4 in checking conformance of actual systems.

We seek a conformance relation, ≤, such that S ≤ Q guarantees the substi-
tutability property, that if P | Q is stuck-free, then P | S is stuck-free, on any

Stuck-Free Conformance 247

selected names ã. In the example scenario, this means that it is safe to check
stuck-freedom of the system P | Q, where the implementation S is represented
by its contract Q. To achieve this goal, the relation ≤ must be such that, if
S ≤ Q, then Q gets stuck on ã in any context at least as often as S does. This
requirement implies that Q may not promise to offer actions that are not ac-
tually delivered by S and can be elegantly captured by the notion of refusal in
CSP [6]. However, it turns out that the refusal requirement alone is not suffi-
cient, because it does not rule out all cases of residual actions. This motivates
the following definitions, where refusals are strengthened to ready refusals.

Let init(P) = {α | P
α−→}, and let L(1) denote the singleton sets of L together

with the empty set, L(1) = {{λ} | λ ∈ L} ∪ {∅}.
Definition 5 (Refusal). If X is a subset of L, we say that P refuses X if and
only if P is stable and init(P)∩ X̄ = ∅. We say that P can refuse X if and only

if there exists P ′ such that P
τ∗−→ P ′ and P ′ refuses X.

Definition 6 (Readiness). If Y ∈ L(1), we say that P is ready on Y , if and
only if P is stable and λ ∈ Y implies P

λ−→. Notice that any stable process is
trivially ready on ∅.
Definition 7 (Ready Refusal). If X ⊆ L and Y ∈ L(1), we say that P can
refuse X while ready on Y if and only if P can refuse X from a state that is
ready on Y , i.e., there exists P ′ such that P

τ∗
−→ P ′, P ′ refuses X, and P ′ is

ready on Y .

Notice that ready sets are defined in terms of actions (Definition 6) but refusals
are defined in terms of co-actions (Definition 5). Initially, this can be a bit
confusing. For example, the process a refuses {a} and is ready on {a}.
Definition 8 (Conformance Relation). A binary relation R on processes is
called a conformance relation if and only if, whenever P R Q, then the following
conditions hold:

C1. If P
τ∗λ−→ P ′ then there exists Q′ such that Q

τ∗λ−→ Q′ and P ′ R Q′.
C2. If P can refuse X while ready on Y , then Q can refuse X while ready on Y .

Condition [C2] in Definition 8 may appear surprising. It is further motivated
and discussed below, including Section 3.3 and Section 3.4.
If R1 and R2 are binary relations on processes, we define their composition,
denoted R1 ◦ R2, by

R1 ◦ R2 = {(P, Q) | ∃R. (P, R) ∈ R1 ∧ (R, Q) ∈ R2}
Lemma 1. Let {Ri}i∈I be a family of conformance relations. Then

1. The relation ∪i∈IRi is a conformance relation
2. For any i, j ∈ I, the relation Ri ◦ Rj is a conformance relation
3. The identity relation on processes is a conformance relation

248 Cédric Fournet et al.

Lemma 1.1 shows that we can define ≤ as the largest conformance relation by
taking the union of all conformance relations, in the way that is standard for
CCS bisimulation and simulation [8].

Definition 9 (Conformance, ≤). The largest conformance relation is referred
to as conformance and is denoted ≤. We write P ≤ Q for (P, Q) ∈ ≤, and we
say that P conforms to Q.

Condition [C2] of Definition 8 ensures that, if P ≤ Q, then Q gets stuck on a
name a as often as P does. In Definition 8 it is very important that the readiness
constraint is only imposed one name at a time, by the fact that the ready sets Y
are at most singleton sets (choosing Y = ∅ yields the standard refusals condition
with no readiness constraint, as a special case.) This allows a specification to be
more nondeterministic than its refinements, because the specification may resolve
its nondeterminism differently for each name. For example, we have a+b ≤ a#b.
Considered over the alphabet of names {a, b}, the process a + b refuses {a, b}
and is ready on both {a} and on {b}. The process a#b refuses {a, b, b̄} from the
state a, and it refuses {a, ā, b} from the state b. From the state a, it is ready on
{a}, and from the state b it is ready on {b}. Therefore, condition [C2] is satisfied.
The reader may wish to verify a few more interesting examples:

a | b ≤ (a.b)#(b.a), (a.b)#(b.a) �≤ a | b, a | b ∼= a.b + b.a

where we write P ∼= Q if and only if P ≤ Q and Q ≤ P . We also remark that
≡ ⊆ ≤, by rule [cong] (further algebraic properties of conformance can be
found in [5].)

Proposition 1. The conformance relation ≤ is reflexive and transitive.

The following theorems state our main theoretical results, precongruence (the
operators of CCS are monotonic with respect to conformance, Theorem 1) and
substitutability (specifications can safely be substituted for processes that con-
form to them, Theorem 2). Full proofs are given in [5]. Let C range over CCS
contexts, which are process expressions with a “hole” (written []) in them:

C ::= [] | (P | []) | ([] | P) | (α.[] + M) | ((νa) [])

We write C[Q] to denote the process expression that arises by substituting Q
for the hole in C.

Theorem 1 (Precongruence). P ≤ Q implies C[P] ≤ C[Q].

Theorem 2 (Substitutability). Assume P ≤ Q. Then C[Q] stuck-free on ã
implies C[P] stuck-free on ã.

The following two sections imply that conformance is finer than stable failures
refinement in CSP (when conformance is defined in terms of traces or, alterna-
tively, when stable failures refinement is defined in terms of transitions) and
coarser than refusal preorder in CCS. In this sense, conformance is in between.

Stuck-Free Conformance 249

3.3 Conformance and Stable Failures Refinement

Condition [C2] in the definition of conformance is adapted from the theory of
stable failures refinement in CSP [6, 13], which is based on the concepts of traces
and refusals. In the stable failures model, a process P is represented by the set
of its failures. A failure of P is a pair (λ̃, X) where λ̃ is a finite trace of P and
X is refusal set, i.e., a set of events P can refuse from a stable state after λ̃.
Process P failure-refines process Q if the traces of P are contained in the traces
of Q and the failures of P are contained in the failures of Q.

In our conformance definition we use refusals, but using the stronger ready
refusals in condition [C2]. This is motivated by the requirement that conformance
should be substitutable with respect to stuck-freedom. As an example, consider
the two processes P and Q defined by

P = a.0 and Q = a.0 + τ.0

Considered as processes over the label set {a, ā}, the failures3 of P are:
{(〈〉, {a}), (〈a〉, {a, ā})}, and the failures of Q are: {(〈〉, {a, ā}), (〈a〉, {a, ā})}. It
follows that P failure-refines Q. However, P is stuck on a, but Q cannot get stuck,
since its only stable derivative is 0, which is not a stuck process. Hence, even
though P failure-refines Q, stuck-freedom of Q does not imply stuck-freedom
of P . In contrast, the readiness constraint in condition [C2] in our definition of
conformance entails that P �≤ Q, because P can perform action a from a stable
state (P itself), whereas Q can only perform action a from an unstable state (Q
itself).

The natural trace model corresponding to stuck-free conformance modifies
the stable failures model to use ready refusals in its failures, so that a failure is
now a pair (λ̃, R) where R = (X, Y) is a ready refusal consisting of a refusal set
X ⊆ L and a ready set Y ∈ L(1).

The differences between stable failures refinement in CSP and stuck-free con-
formance results from differences between stuckness and CSP deadlock. In CSP,
deadlock is indicated by the absence of a special, successful termination event,√

. Stuckness is directly observable on states in a labeled transition system and
is more discriminative than CSP deadlock.

3.4 Conformance and Refusal Preorder

Our notion of conformance bears resemblance to the refusal preorder as defined
in Iain Phillips’ theory of refusal testing [11]. In the refusal preorder, we can
observe what happens after a refusal (or a deadlock) by turning refusal sets
into observations. Following [2], we can define refusal preorder by adding the
transition rule

P
X−→ P, provided P refuses X

for X ⊆ L. For ρ ∈ ℘(L) ∪ L, we write P
ρ

=⇒ P ′ if and only if P
τ∗−→ P1

ρ−→
P2

τ∗−→ P ′. We lift to vectors ρ̃ in the usual way. We then define failure traces,
3 We express failures in terms of maximal refusal sets and use 〈. . .〉 for sequences.

250 Cédric Fournet et al.

f-traces(P) = {ρ̃ ∈ (℘(L) ∪ L)∗ | P
ρ̃

=⇒}. The refusal preorder, denoted ≤rf ,
is defined by setting P ≤rf Q if and only if f-traces(P) ⊆ f-traces(Q). This
definition captures simultaneous refusal- and readiness properties. For example,

with L = {a, ā}, we have a
{a}−→ a

a−→ 0 which shows that a is a stable state
from which the set {a} is refused and the label a is offered. It is interesting

to observe that we have a �≤rf a + τ.0, because the transition a
{a}−→ a

a−→ 0
cannot be matched by a + τ.0. Indeed, the refusal preorder is strong enough to
guarantee substitutability for stuck-freedom. However, it is more restrictive than
conformance. Consider the processes P and Q defined by

P = (a + b.c)#(c + b.a)
Q = (a + b.a)#(c + b.c)

It can be checked from the definitions (or see details in [5]) that P ≤ Q but
P �≤rf Q. The reason we have P ≤ Q is that Q is allowed to choose different
derivatives as witnesses of condition [C1] and [C2]. Condition [C1] is witnessed
by the derivative (c + b.c) of Q, and [C2] is witnessed by the derivative (a + b.a)
of Q.

4 Application

Based on the theory presented in Section 3, we have implemented a conformance
checker that can be used to analyze asynchronous programs written in common
programming languages. Such languages (e.g., C, Java, C#) have several features
(such as procedure calls, pointers, shared memory, exceptions, and objects) that
are cumbersome to model directly in CCS. Our conformance checker accepts
a language zing, which supports such features directly without the need for
complicated encodings. The operational semantics of zing is given as a labeled
transition system. All statements except the send and receive statements are
modeled as transitions labeled with τ actions. Transitions from send and receive
statements are labeled with the corresponding channel names (ignoring the data
values that are sent or received). Note that Definition 8 of conformance makes
no reference to the syntax of CCS, and is purely based on the semantics of the
labeled transition system. Thus we can define conformance between two zing
processes using Definition 8 directly.

We have applied our conformance checker to check contracts of distributed
programs. We next describe how the conformance checks were done and the
errors that we found.

Our example application is a distributed program for managing inventory
and ordering processes for a bookstore. Contracts are specified as communicat-
ing state machines. We used the zing conformance checker to check that imple-
mentations conform to their contract specifications and that implementations
do not get stuck with contracts specifying other components that they use.

The structure of the system is shown in Figure 1 (top). It contains five compo-
nents, ShoppingCartImpl, InventoryImpl, OrderImpl, PublicInventoryImpl

Stuck-Free Conformance 251

PublicInventory
Impl

InventoryProcessing

InventoryForm

ShoppingCart GUI

ShoppingCart-
Impl

Inventory-
Impl OrderImpl

Inventory
contract

InventoryChangeNotification
contract

Ordering
contract

InventoryReservation
contract

ShoppingCart
contract

Contract ShoppingCart =

AddItem?. ShoppingCart

+ RemoveItem?. ShoppingCart

+ CheckOut?. AcknowledgeOrder!

+ Cancel?. AcknowledgeOrder!

Contract InventoryReservation =

ReserveInventory?. InventoryReservation

+ UnreserveInventory?. InventoryReservation

+ CommitReservation?. Acknowledgement!

+ CancelReservation?. Acknowledgement!

+ Timeout

Fig. 1. Structure of the Bookstore System (top) and two contracts (bottom)

and InventoryProcessing, and, in addition, two user interface processes. There
is an arrow from component A to component B, if A uses (is a client of) B. Each
of the five components has an associated contract, which is a specification of the
publically visible behavior of the component. In Figure 1 (top) each contract
is named in association with the component it specifies. Two of the contracts
are shown in Figure 1 (bottom). A contract specifies a communicating state
machine over a set of message types. For example, the Shoppingcart contract
specifies that the component will repeatedly input messages of type AddItem or
RemoveItem until either a CheckOutmessage or a Cancel message is received (we
use the notation T? for input and T! for output, where T is a message type.) The
Timeout event used in the InventoryReservation contract is a special event.
Timeouts can be attached to input constructs in the implementation language.

The implementation code for a component is placed in a declaration that
states the contract it is supposed to implement, as in:

ShoppingCartImpl ≤ ShoppingCart

252 Cédric Fournet et al.

By relying on the contracts it is possible to automatically translate an im-
plementation into a zing model that substitutes contracts for the components it
uses. In doing so, we rely on Theorem 2.

In addition to checking conformance between a component and its contract,
we always perform a stuckness test that checks for stuck states in the interac-
tion between a component and the contracts it uses. This is necessary, since, for
example, a component might have a trivial contract and yet get stuck with com-
ponents it uses. Such cases are caught and flagged by our conformance checker
as well.

The conformance analysis of the Bookstore system was done by compiling
each component implementation and its associated contract into zing, result-
ing in two zing processes, which were then compared using our conformance
checker. The conformance check was done compositionally, by checking one com-
ponent implementation at a time against its contract specification, substituting
contracts to represent the components that are used. The entire process is fully
automatic. Our conformance analysis detected a number of serious errors includ-
ing a deadlock, which are briefly described below. In the list below we indicate
which contract was checked, and which condition ([C1] or [C2]) of Definition 8
was violated; we also indicate failure of the stuckness test referred to above. We
emphasize that these errors were not found before we checked the code4.

(1) InventoryReservation. Missing timeout specification ([C2]). The con-
tract failed to specify that the component could timeout on its event loop. This
resulted in a ready refusals failure identified by the conformance checker, be-
cause the component would refuse all requests after timing out. The contract
was corrected by adding a Timeout case. A Timeout event is modeled as an
internal (τ) action, and when attached to an input a it is represented by zing
as a + τ.0 (assuming here that nothing happens after the timeout).

(2) InventoryReservation. Repeated input not specified ([C1]). After cor-
rection of the previous error, the conformance checker reported a simulation
failure. The problem was that the contract specified that the component takes
message CommitReservation only once, terminating the event loop of the com-
ponent. However, the implementation did not terminate its loop on receipt of
CommitReservation as it should, and the implementation was corrected.

(3) ShoppingCart. Stuckness. Figure 1 shows the contract ShoppingCart
and the corrected InventoryReservation. The implementation uses the com-
ponents InventoryImpl and OrderImpl. The conformance check finds that the
implementation gets stuck with the InventoryReservation contract in a situ-
ation where the implementation receives a CheckOut message, then goes on to
send a CommitReservation message to the InventoryImpl and then waits to
receive an Acknowledgement. This receive deadlocks, if the InventoryImpl has
timed out. In other situations, the timeout causes stuckness by residual messages
sent from the ShoppingCartImpl. The implementation was corrected.

4 The code had not been thoroughly tested. Notice, however, that several of the errors
would typically not be found by testing.

Stuck-Free Conformance 253

(4) Inventory. Input not implemented in component ([C2]). An input speci-
fied in the contract Inventory but not implemented resulted in a refusals failure.
The implementation was corrected.

(5) InventoryChangeNotification. Inputs unavailable after receipt of a par-
ticular message ([C2]). In one particular state, on receipt of message Done in its
event loop, the imlmentation PublicInventoryImpl would exit its event loop
without terminating its communication with a publish-subscribe system in the
InventoryProcessing component, whereas the contract does not reflect this
possibility. Messages for that system could therefore be lost, and the implemen-
tation was corrected.

5 Conclusion

We have presented a novel refinement relation for CCS and demonstrated that
it is suitable for compositional checking of stuck-freedom of communicating pro-
cesses. Conformance has the advantage of being directly applicable to a labeled
transition system in which visible actions and stability can be observed. Stuck-
ness is more discriminative than CSP deadlock by taking orphan messages into
account, which is useful for checking asynchronous processes. We proved that
conformance is a precongruence on CCS processes satisfying substitutability,
and we distinguished it from related process preorders. We have built a confor-
mance checker for zing, an expressive modeling language, and have applied it
to a distributed system.

Acknowledgments

We are grateful to Robin Milner for encouraging comments on a draft of this
paper, and to Ranko Lazic for an inspiring conversation. We thank the partici-
pants of workshops arranged by Tony Hoare at Microsoft Research, Cambridge
in June 2002 (Ernie Cohen, Paul Gardiner, Andy Gordon, Robin Milner, and
Bill Roscoe) and at the Computing Laboratory, Oxford University, in November
2003 (Christie Bolton, Michael Goldsmith, Ranko Lazic, and Gavin Lowe). We
also wish to thank Tony Andrews, Microsoft, for his work on the design and
implementation of zing.

References

1. R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refine-
ment relations. In CONCUR 98: Concurrency Theory, LNCS 1466, pages 163–178.
Springer-Verlag, 1998.

2. E. Brinksma, L. Heerink, and J. Tretmans. Developments in testing transition
systems. In Testing of Communicating Systems, IFIP TC6 10th International
Workshop on Testing of Communicating Systems, pages 143 – 166. Chapman &
Hall, 1997.

254 Cédric Fournet et al.

3. S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating se-
quential processes. Journal of the ACM, 31(3):560–599, 1984.

4. L. de Alfaro and T. A. Henzinger. Interface theories for component-based design.
In EMSOFT 01: Embedded Software, LNCS, pages 148–165. Springer-Verlag, 2001.

5. C. Fournet, C.A.R. Hoare, S.K. Rajamani, and J. Rehof. Stuck-free conformance
theory for CCS. Technical report, Microsoft Research, 2004.

6. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
7. K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. In POPL

89: ACM Principles of Programming Languages, pages 344–352. ACM, 1989.
8. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
9. R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-

versity Press, 1999.
10. W. Peng and S. Puroshothaman. Towards dataflow analysis of communicating

finite state machines. In PODC 89, pages 45–58. ACM, 1989.
11. I. Phillips. Refusal testing. Theoretical Computer Science, 50(2):241 – 284, 1987.
12. S. K. Rajamani and J. Rehof. Conformance checking for models of asynchronous

message passing software. In CAV 02: Computer-Aided Verification, LNCS 2404,
pages 166–179. Springer-Verlag, 2002.

13. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.

	1 Introduction
	2 Related Work
	3 Conformance Theory
	3.1 CCS Processes
	3.2 Stuck-Freedom, Ready Refusal, and Conformance
	3.3 Conformance and Stable Failures Refinement
	3.4 Conformance and Refusal Preorder

	4 Application
	5 Conclusion
	References

