

Characterizing and Predicting Which Bugs Get Reopened

Thomas Zimmermann 1
tzimmer@microsoft.com

Nachiappan Nagappan 1
nachin@microsoft.com

Philip J. Guo 2
pg@cs.stanford.edu

Brendan Murphy 3
bmurphy@microsoft.com

1 Microsoft Research, USA 2 Stanford University, USA 3 Microsoft Research, UK

Abstract—Fixing bugs is an important part of the software
development process. An underlying aspect is the effectiveness
of fixes: if a fair number of fixed bugs are reopened, it could
indicate instability in the software system. To the best of our
knowledge there has been on little prior work on understand-
ing the dynamics of bug reopens. Towards that end, in this
paper, we characterize when bug reports are reopened by us-
ing the Microsoft Windows operating system project as an
empirical case study. Our analysis is based on a mixed-
methods approach. First, we categorize the primary reasons
for reopens based on a survey of 358 Microsoft employees. We
then reinforce these results with a large-scale quantitative
study of Windows bug reports, focusing on factors related to
bug report edits and relationships between people involved in
handling the bug. Finally, we build statistical models to de-
scribe the impact of various metrics on reopening bugs ranging
from the reputation of the opener to how the bug was found.

Keywords—bug triage, bug reopen, bug report

I. INTRODUCTION

A key activity in the software development process is fix-
ing bugs submitted by testers and end users. An important
but oft ignored aspect is the bug reopen rate in this process.
Bugs can be reopened for a variety of reasons ranging from
poorly fixed bugs, incorrectly fixed bugs, new changes that
required prior closed bugs to be reopened, bugs reopened
due to the identification of the actual cause of prior closed
bugs, or better reproducibility of a bug. The process of bug
reopens also has its own dynamics given the number of bugs
assigned to a developer, the geographical distribution of the
people opening the bugs, and the type of bugs.

Understanding bug reopening is of significant interest to
the practitioner community in order to
 Characterize actual quality of the bug fixing process
 Identify important issues that are not fixed and later

reopened
 Identify areas which need better tool support
 Improved bug triage process
 Plan and estimate the effort for bug fixing activity tak-

ing into account the reopen rates

To the best of our knowledge there, has been only little
work on studying the bug reopen process in research The
closest related work is by Shihab et al. [1] who predict which
bugs will be reopened in Eclipse using metrics related to
work habits, bug report, bug fix and team as input to a pre-
diction model. Our study perfectly complements the work by
Shihab et al. [1] and is significantly different from that work:
the goal of our paper is not to predict for each individual bug

the likelihood of being reopened, but to characterize the
overall reopen process. In order to do so we employ a more
foundational approach wherein we first survey a large popu-
lation of experienced developers on the fundamental reasons
for bug reopens and qualitatively analyze the responses. We
then assess the reasons for reopens from a quantitative per-
spective using data from Microsoft Windows. To explain the
relationship between multiple factors and bug reopens, we
also build a statistical descriptive model—not to predict reo-
pens—but as a way to identify statistically the most im-
portant factors affecting bug reopens.

An important factor in our paper (and not addressed by
Shihab et al. [1]) is the impact of distributed (global) soft-
ware development and organizational structure. Often large
projects are developed in a distributed fashion around the
world. Is the effectiveness of the bug fixing process affected
by organizational and geographic barriers? We address this
question with data from two releases of Microsoft Windows.
Further, we identify the impact of the reputation of the bug
opener and the engineer fixing the bug on the likelihood of a
reopen. We also observe that how bugs are found (such as
human review, code analysis tool, system testing, customer
found, etc.) has a noticeable impact on bug reopens.

Our overall motivation is to help engineers and scientists
understand the bug reopen dynamics in large scale software
development. Bug reopens have a significant importance in
both open source and commercial software systems. The
primary aim is helping engineers plan effort for future work,
improve the bug triage process, and identify areas for better
training for the employees, which can reduce the number of
bug reopens caused by limited technical knowledge. In addi-
tion, our paper contributes a (partial) replication of the work
by Shihab et al. [1], thus increasing the generality of their
results, while at the same time contributing new empirical
findings, for example, a detailed list of causes of bug reopens
and the relationship between bug reopens and geographic
and organizational distance.

This paper is organized as follows. In Section II, we
summarize related work and in Section III, we describe the
methodology of our study. In Section IV, we identify causes
of bug reopens (based on qualitative survey responses) and
in Section V and VI we present the results of the quantitative
analysis of Windows bug reports. In Section VII, we discuss
the threats to validity and we conclude in Section VIII.

II. RELATED WORK

The work closest to this paper is by Shihab et al. [1] who
predicted reopened bugs in the Eclipse project. They used
measures from four dimensions—work habits, bug report,

bug fix and team—as input for decision trees (C4.5), which
predicted reopened bugs with a precision of 62.9% and a
recall of 84.5%. With a top node analysis they found that the
bug report dimension was most influential. With this paper,
we replicate some of the measures by Shihab et al. [1] on the
Windows bug database and include new measurements (for
example organizational and geographic distance). In addition
to the work by Shihab et al. [1], our paper includes a strong
qualitative component on the causes of bug reopens (identi-
fied through survey comments) and also presents complete
descriptive models. While Shihab et al. [1] used decision
trees which are descriptive too, they only presented the trees
aggregated to the top nodes in their paper.

Several other studies modeled the lifetimes of bugs, in-
vestigating properties like time-to-resolve (how long it takes
a bug report to be marked as resolved), where the resolution
can be of any outcome (e.g., FIXED, WON’T FIX, DUPLICATE,
WORKS FOR ME). Hooimeijer and Weimer [2] built a descrip-
tive model for the lifetime of a bug report based on self-
reported severity, readability, daily load, reputation, and
changes over time. Panjer [3] used information known at the
beginning of a bug's lifetime such as severity, component,
platform, and comments to predict its time-to-resolve. Bet-
tenburg et al. [4] observed that bug reports are fixed sooner
when they contain stack traces or are easy to read. An-
balagan and Vouk [5] found that the more people are in-
volved a bug, the higher its time-to-resolve. Mockus et al. [6]
found that in Apache and Mozilla, bugs with higher priority
are fixed faster than bugs with lower priority. Herbsleb and
Mockus [7] observed that distributed work items (e.g., bug
reports) take about 2.5 times as long to resolve as co-located
work items. Cataldo et al. [8] found that when coordination
patterns are congruent with their coordination needs, the
resolution time of modification requests (similar to bug re-
ports) was significantly reduced. In contrast to these time-to-
resolve studies, we analyze when bug reports are reopened.

Several studies characterized properties of bug reports
and their edit activities: Bettenburg et al. [4] characterized
what makes a good bug report. Aranda and Venolia [9] ex-
amined communication between developers about bug re-
ports at Microsoft to identify common bug fixing coordina-
tion patterns. Breu et al. [10] categorized questions asked in
open-source bug reports and analyzed response rates and
times by category. Bettenburg et al. [11] quantified the
amount of additional information in bug duplicates. Jeong et
al. [12] analyzed the reassignment of bug reports (called bug
tossing) and developed tossing graphs to support bug tri-
aging activities. Ko et al. [13] conducted a linguistic analysis
of bug report titles and observed a large degree of regularity.
Bertram et al. [14] conducted a qualitative study of issue
tracking systems as used by small, collocated software de-
velopment teams. They found that even in collocated teams,
issue trackers are a focal point for communication and coor-
dination. Ko and Chilana [15] quantified the value of contri-
butions by “power users” to open bug reporting in Mozilla.
They observed that the primary value comes from recruiting
a small pool of talented developers and reporters, and not
from the masses. In our own previous work, we character-

ized which bugs get successfully fixed [16] and factors that
lead to reassignments [17]. However, none of these studies
characterized and predicted which bugs get reopened.

To improve bug triaging, previous research proposed
techniques to semi-automatically assign developers to bug
reports [18,19,20], assign locations to bug reports [21], rec-
ognize bug duplicates [22,23,24,25], assess the severity of
bugs [26], and predict effort for bug reports [27]. With this
paper we analyze bug reopens, which allows assessing the
effectiveness of many of these triaging activities.

Empirical studies allow us to build a validated body of
knowledge in software engineering [28] and are crucial for
informing the design of new bug tracking tools. This paper
adds a characterization of what bug reports are reopened to
that body of knowledge.

III. METHODOLOGY

We studied reopens of bug report reopens in the context
of two versions of the Microsoft Windows operating system
project, which we feel is a representative example of a large-
scale commercial software project. Both Windows Vista and
Windows 7 contain several thousand source code files and
40+ million lines of code, written by more than 2000 soft-
ware engineers. The findings we present in this paper are
derived from three sources related to Windows bug reports:
free-response answers from a survey sent to Microsoft em-
ployees, a manual examination of randomly-selected bug
reports, and a high-level quantitative analysis of the entire
Windows bug database.

A. Survey free-response answers

Our primary data source is an online survey we sent in
August 2009 to 1,773 Microsoft employees with questions
about various aspects of the bug triaging and fixing process.
Since we wanted to get the opinions of people well-versed in
handling Windows-related bugs, we chose as our survey
participants the top 10% of people who have opened, been
assigned to, or resolved Windows Vista bugs. We received
358 responses (20% response rate). Most respondents were
either developers (55%) or testers (30%). Most were fairly
experienced, with a median of 11.5 years of work experience
in the software industry and 9 years at Microsoft.

We analyzed responses to most of the survey questions
for another paper [16]; for this paper, we analyzed responses
to the following free-response question, which we did not
explore in our other paper:

In your experience, what are some reasons why a bug
would be reopened multiple times before being suc-
cessfully resolved as Fixed? E.g., why wasn’t it as-
signed directly to the person who ended up fixing it?

Response length varied from one phrase (e.g., “bug cause
was not initially understood”) to long paragraphs. We printed
out all 358 responses on index cards for a card sort [29]. Two
of the authors independently performed an open card sort
and then merged their results into a single taxonomy.

B. Manual examination of bug reports

Informed by our analysis of survey results, we informally
examined the contents of 20 Windows Vista bug reports with
reopens, chosen by randomly sampling. The main reason we
manually examined selected bug reports was to corroborate
the survey respondents’ opinions with firsthand observations
from the bug reports themselves.

C. Quantitative analysis of bug and personnel data

We quantified certain observations to the extent possible
by mining data from the Windows bug database and the Mi-
crosoft employee personnel database. First, we collected all
pre- and post-release bug reports for Windows Vista in July
2009 (2.5 years after Vista’s release date). We consider our
dataset to be fairly complete for the factors we want to inves-
tigate, since very few new Vista bugs are being opened,
compared to when it was under active development (2002-
2007). We also extracted bug reports from Windows 7,
where we used the entire bug database for the development
period of Windows 7 (~3 years). For confidentiality reasons,
we cannot reveal the exact number of bug reports, but it is at
least an order of magnitude larger than datasets used in relat-
ed work [2]. For each bug report, we extracted a list of edit
events that occurred throughout its lifetime. Each event alters
one or more of the following fields (fields not relevant to our
analysis in this paper have been omitted):
 State: Opened, Resolved, or Closed.
 Opener: Who opened this bug?
 Assignee: Who is now assigned to handle this bug?
 Severity: An indicator of the bug’s potential impact

on customers. Crashes, hangs, and security exploits
have the highest severity (Level 4); minor UI blemish-
es, typos, or trivial cosmetic bugs have the lowest se-
verity (Level 1).

 Component path: Which component is the bug in?
e.g., DesktopShell/Navigation/StartMenu

 Bug type: What kind of bug is it? e.g., bug in code,
specification, documentation, or test suite

 Bug source: How was this bug found? e.g., by a cus-
tomer, an internal Microsoft user, or a system test

 Resolution status: How has this bug been resolved?
e.g., FIXED, BY DESIGN, NOT REPRODUCIBLE, WON’T FIX.
(Null if state is not RESOLVED)

Here is a typical bug’s life cycle: When it is first opened,
all of its fields except for “Resolution status” are set. Then
the bug might be edited a few times (e.g., to upgrade its se-
verity). A special type of edit called a reassignment occurs
when the “Assignee” field is edited. When somebody thinks
that he/she has resolved the bug, its “Resolution status” field
is set. After the resolution attempt is approved (usually by
the bug opener), the bug is closed. However, the bug might
be reopened if it has not actually been properly resolved.

To explore the impacts of geographical and organization-
al distance on bug reopens, we obtained the office location
and manager of each employee circa July 2009 from the Mi-
crosoft employee personnel database. Thus, we can deter-

mine whether two employees worked in the same building,
campus, country, or on the same team (i.e., had the same
manager). Sometimes people switch locations or teams, but
in general Microsoft tries to keep employees in the same
location and team during a product cycle [30].

IV. CAUSES OF BUG REOPENS

In the card sort, we identified six different categories that
fall into three groups (see also Table 1):

1. Reopened bugs that were resolved as not fixed —
either related to the root cause or the priority of the
bug report. (Section IV.A)

2. Reopened bugs that were resolved as fixed —
typically regressions. (Section IV.B)

3. Process-related bug reopens. (Section IV.C)
Reopens related to the root cause are mostly about repro-

ducing and understanding the bug. When a bug marked as
WON’T FIX is reopened, typically additional steps to reproduce
or information has become available that now allows finding
the root cause.

Several factors matter for the priority of bug reports [16]:
severity (how bad is the bug?), impact (how many people are
affected?), effort to fix (how much time?), and the risk of the
fix (how likely are regressions? where in the product cycle?).
For reopens related to the priority of a bug, typically infor-
mation emerged that increases the priority, for example more
customers experienced the bug (larger impact), feedback
shows a higher severity, or changing business needs.

A. Reopened bugs that were resolved as not fixed

Bug reports resolved as not fixed (for example BY DESIGN,
NOT REPRODUCIBLE, WON’T FIX, etc.) can be reopened when (1)
developers initially could not properly identify the root cause
—because a bug is difficult to reproduce, steps to reproduce
are incomplete or missing, or simply because of misunder-
standings—or (2) developers underestimated the priority of a
bug report or its importance changed over time.

Bugs difficult to reproduce. The largest category in the
card sort corresponds to reopens related to reproducing a
bug. There are several reasons why bug reports can be hard
to reproduce: incomplete, ambiguous, or complex steps to
reproduce; timing related bugs; or Heisenbugs (“a crash that
will not occur when under a debugger”). Typically these
bugs get closed as “no repro” and reactivated if they occur
more often or if new reproduction details surface.

Table 1 Causes of bug reopens.

Not FIXED Related to Root Cause:
 Bugs difficult to reproduce
 Developers misunderstood root cause
 Bug had insufficient information

Related to Priority
 Priority of the bug increased

FIXED  Regression bugs
Process-related  Process

These are usually flaky bugs or hard to repro bugs. For exam-
ple, the developer is not able to reproduce it but the tester is
able to. 1

Most commonly when not readily reproducible, and lacks mul-
tiple reports. Later on a consistent repro may be found, or
more hits may occur, and the bug would be reopened.

Bugs which are difficult to reproduce generally get re-
activated multiple times. At first, developers will give a simple
repro attempt before resolving bugs 'Not repro'. But if the bug
opener is able to reproduce the issue again, or perhaps comes
up with better repro instructions, then the developer will pay
more attention the second time the bug is activated.

Intermittent repro's. Often indicative of race conditions and
other environmental factors. Lack of repro machine.

Some bugs are difficult to reproduce in house and only
happen on customer machines, which makes it more difficult
to verify that bug was fixed correctly.

Bugs which are difficult to repro eventually need to get timed
out and closed. When a repro surfaces, the bug will come
back. But then an evaluation of the customer impact might
cause it to get won't-fixed and closed, but then an actual cus-
tomer hits it so we finally go ahead and fix it now that there's
real data to substantiate the need for a solution.

The bug is hard to reproduce and so the fix was made without
being able to fully verify it. A good example is a customer who
reports something. We think we see the issue in house and fix
that. It turns out we saw something different.

Developers misunderstood the root cause. For some
bug reopens, developers initially did not understand the root
cause and as a result the bug report was incorrectly closed or
fixed. Often root causes are difficult to identify, for example
when related to memory leaks:

The bug is tracking an unidentified symptom and it takes a
while to fully root cause. This comes up a lot with memory
leaks: there will be an unknown memory leak in a component
and the owning team plays whack-a-mole with the code defects
to remove memory issues one-by-one. When this team fixes a
leak, it's not entirely sure that it fixed the entirety of the leaks
inside that component, but it's clear that they changed some-
thing. So, the bug will be resolved with each change and then
reactivated when tests are re-run to isolate the leak further.

There can also be disagreement between teams about the
root cause and who is responsible to fix the bug.

No clear agreement on the root cause – each team involved
thinks the root cause lies in someone else's component

If the wrong root cause is identified, a different issue
might be fixed and the bug report will likely be reopened.

Another variant is an investigation drawing the wrong
conclusions, a fix getting done for some other issue that was
found in the investigation, and test not being able to repro
properly (possibly an interaction with the fix, or never had a
solid repro).

When the root cause is not yet understood, developers
might decide to first fix the symptom and then later revisit
the bug to fix the actual root cause.

1 In the following, each italicized, indented paragraph corresponds
to a quote from the free-response answers in our survey.

Not fixing the root cause and only addressing symptoms.
Without root cause understood for the bug a patch/hack can
often be done that will then be reactivated.

A lack of understanding of the root cause is also related
to bug duplicates. For example, different bugs with similar
symptoms or titles might be accidentally resolved as dupli-
cate and then later reopened.

I have seen several bugs with very similar symptoms getting
resolved as duplicates. In this case the duplicate gets closed
but if we later find out it was a different issue it gets re-
opened. So basically this is not understanding the bug or the
impact it might have.

A related issue is that some bug reports describe multiple
defects (either intentionally or accidentally) and only some
of them are fixed which requires the report to be reopened.

The bug is being used as an umbrella for a bunch of smaller
bugs, so it bounces open and closed as each issue is found and
dealt with.

Multiple code defects at the same time cause the same effect
(bug). Developer only tries and fixes one cause and tester only
verifies that since path initially.

Bug report had insufficient information. Another rea-
son for reopens is that the initial bug report did not have
enough information to understand the bug and locate its root
cause. Especially bug reports with poor quality fall into this
category. They usually get resolved as WON’T FIX and only
after additional information is provided, developers can cor-
rect the bug. New information that becomes available and
leads to bug reopens includes Watson dumps [31], stack
traces, time travel tracing [32], screenshots, or detailed envi-
ronment information (such as hardware, software, and net-
work configuration).

Poor bug quality: If the bug wasn't described well enough, or
not enough diagnostic info was there, the dev will guess and
fix *something* in order to make the bug go away. What they
fix isn't always what the person who filed the bug ran into.

If a bug report does not accurately convey enough information
about what is actually wrong (i.e. it describes incorrect behav-
ior but neglects to mention data loss) or if the bug does not
convey a dependency (such as another team relying on a fix), a
bug may be de-prioritized and resolved without fixing.

The priority of the bug increased. Another reason for
reopens is when the severity or impact of a bug has been
underestimated and new information becomes available that
indicates the higher importance.

Bugs are closed because one person or triage team believes
the bug is not worthy of fixing (ie. too risky, don't care, etc.),
but then a few days later a VP or external customer reports the
same issue, then the bug has a higher priority.

We see one repro, nothing happens for a month so we triage
the issue as won't fix, then suddenly we see multiple repros a
day and it becomes more critical.

Bugs can also become more important as business needs,
customer scenarios, and management changes. Bugs that are
not fixed in one release might be fixed in the next release.

Other reason is lack of business justification or too late in
product cycle; reopened when sufficient justification exists or
new cycle begins.

People may argue it is too late in the product cycle to fix the
bug, so it got resolved as wont-fix […] until the next release.

Developers, testers, and triage teams can also disagree
about the priority.

One team may feel an issue is critical while the other does not
see it as important enough, and instead of carrying a discus-
sion, the bug is bounced around.

Disagreement about severity and priority is most often the is-
sue in the bugs I have been dealing with. If the person as-
signed the bug does not view it as severe enough to warrant a
fix (especially as we are nearing release) then every bug has to
be fought for by the person who opened it.

B. Reopened bugs that were resolved as fixed

This category includes mostly regression bugs, i.e., bugs
that were fixed in a previous revision but reappeared in a
current version of the system. Several reasons for regressions
were mentioned in the survey: integrations in the SCM that
incorrectly override a correct bug fix (“branch integration
removed the fix”), an incomplete bug fix, and insufficient
testing

First attempt at fix was flawed in some way, and wasn't caught
because of lack of testing or unknown related scenario regres-
sion.

Issue was fixed, but regresses and bug is reactivated rather
than a new bug getting filed (Fixed).

This usually happens when fixes aren't fully tested before
checked in. So a subsequent less tested fix could break the
original fix causing the bug to be reactivated.

For example developers might have missed a corner case,
which only gets apparent in later testing of the system.

The developer may have overlooked some additional edge cas-
es related to the scenario being tested.

I've seen cases in the past where it was thought that a bug was
fixed only to find that a corner case had been missed. I've also
seen cases where the bug was only being hit due to a timing is-
sue and something changed that affected the timing and the
bug disappeared again.

C. Process-related bug reopens

Several responses were related to the general process of
fixing bugs. For example, bugs can be reopened because the
tester is validating the fix on the wrong version of binaries
because the fix has not yet reached the tester’s branch.

Sometimes bugs are reopened due to a misunderstanding of
process. e.g. dev resolves bug when fix is submitted, but tester
reactivates because bug still repros (because fix has not yet
reached tester).

Tester reopens the bug because they do not realize that the bug
IS fixed but just not in the build that they are testing on (this
happens all the time)

Bug is verified fixed in a feature of developer’s branch and the
fix takes too long to hit the main branch.

Some responses suggested that bug reopens can also
happen when developers do not pay enough attention to the
bug report or testers validate the fix insufficiently.

I found that some devs don't spend much time trying to repro-
duce bugs, rather they just push back on the test team. In this
case, the bug will be resolved, and re-opened multiple times
until the tester either writes a simple repro, or the tester (or
maybe willing dev) actually spends the time to debug the issue.

Having the bug closed and then reactivated multiple times
sounds like a case of the tester doing really bad job. If the bug
wasn't fixed – they shouldn't close it but reactivate it back to
the developer – and at that time provide an more detailed de-
scription of the problem they are seeing – something beyond 'I
can still repro'.

Lastly, while not directly a reason for bug reopens per se,
one respondent pointed out that reopens complicate tracking
of bugs and changes.

First of all, I don’t like the model where we reactivate bugs
that were Fixed but the issue was not resolved. Logically it
makes sense, but tracking the thread of the issue through
multiple checkins & reactivates can be hell if it happens more
than once or twice. I would prefer a model where once a
checkin has been made for a bug, that bug is done! New
issues, or issues that linger despite a previous fix, should/
would be tracked in a new bug.

V. INFLUENCES ON BUG REOPENS

We now present several factors related to bug reports and
people that affect the likelihood of a bug being reopened.

A. Does the source of a bug (how it was found) influence
the likelihood of bug reopens?

We observed that bugs from certain sources were more
likely to be reopened than other bugs. To quantify this effect,
we grouped bugs based on how they were found. Then we
calculated the percent of bugs in each group that were reo-
pened. In Table 2, we report the reopen ratios relative to the
baseline percentages P and Q, which are the reopen rates for
all bugs in Windows Vista and Windows 7 respectively.

In Table 2, we observe that bugs found by code analysis
tools or during human reviews are less likely to be reopened
(0.52~0.73 times for code analysis tools and 0.66~0.85 times
for human review). Possible reasons might be that some bugs
found by code analysis tools are easy fixes; also code analy-
sis tools do not argue that a bug should be fixed, once it has
been closed as WON’T FIX. The group human review consists
of bugs found during code, design, spec, or security reviews.
In previous work we found that bugs identified by human
review are more likely to be fixed [16], thus we expect that
there is less need to reopen unfixed bugs. Furthermore, hu-
man review and code analysis bugs are easy to triage and
require no separate reproduction steps.

Table 2 shows that bugs found by customers and during
system testing (e.g., integration, build, and stress tests) are
more likely to be reopened (1.26~1.46 times for system test-
ing and 1.12~1.33 for customer bugs). Section IV discusses
several reasons for this observation: bugs from these sources
are often more complex and more difficult to reproduce and
thus more difficult to fix. Most users are not trained to write
methodical bug reports like for example professional testers
are. Once new information becomes available these bugs get
reopened.

B. Does the reputation of the opener and first assignee
influence the likelihood of bug reopens?

We found that a bug opened by someone who has been
successful in getting his/her bugs fixed in the past (i.e., has a
better reputation with respect to bug reporting) are less likely
to be reopened—surprisingly also bugs by highly unsuccess-
ful people are less likely to be reopened.

We quantify the reputation of bug openers using the same
metric as Hooimeijer and Weimer [2], which is based on
success rate: bug	opener	reputation = |Opened ∩ Fixed||Opened| + 1

For each bug, we calculate its opener's reputation by dividing
the number of previous bugs that he/she has opened and got-
ten fixed by the total number of previous bugs he/she has
opened (+1). Adding 1 to the denominator prevents divide-
by-zero (for people who have never previously opened any
bugs) and, more importantly, prevents people who have
opened very few bugs from earning high reputations: without
the extra +1 term, someone who has opened 1 bug and gotten
it fixed will have the same reputation as someone who has
opened 100 bugs and gotten all 100 fixed; intuitively, the
latter person should have a higher reputation (which our met-
ric ensures).

In Figure 1, we grouped Windows Vista (left plot) and
Windows 7 (right plot) bugs by ranges of opener reputations
and plotted the percentage of bugs in each group that were
reopened. The leftmost two points in each plot were specially
calculated: The “First bug” point considers all bugs where
the opener had not opened any bugs before this one. The “0”
point considers all bugs where the opener had opened some
bugs but had gotten none fixed. The rest of the points con-
sider all bugs with opener reputations within a 0.05-point
range. For instance, the rightmost point represents all bugs
with opener reputations between 0.95 and 1.

Looking at the bug reports in Windows Vista (left plot),
starting 0.20 there is a consistent monotonic decrease in bug-
reopen likelihood as the opener reputation increases. Interest-
ingly, bugs opened by first-timers (“First bug” point) and
people with low reputations had a lower reopen likelihood

than bugs opened by people with low reputations between
0.20 and 0.40. All differences between points are statistically
significant since their 95% confidence intervals for binomial
probabilities never overlap [33]. In fact, most confidence
intervals are negligible, so they are invisible in Figure 1.

We observed a similar, although less distinct, effect for
Windows 7 in the right plot of Figure 1. Here, we have the
lowest reopen rates actually for people who opened their first
bug report or never opened a bug that was successfully fixed
(zero reputation). Note that in Windows 7 only few people
had a reputation greater than 0.90, which explains the wide
confidence intervals. We believe that the low reopen rates for
highly successful and highly unsuccessful people are because
they are less likely to argue for a bug. People with high repu-
tation will have the experience to decide whether a reopen is
worth the effort, while people with low reputation might lack
the confidence to argue that a bug report should be fixed.

When we repeated these calculations for the reputations
of the first person who was assigned to each bug, the trends
were nearly identical (see Figure 2). This result shows that
certain people are more effective at either fixing bugs or re-
assigning bugs to others who can fix them, that is, their bugs
are less likely to be reopened after they have been closed.

Figure 1 Percent of reopened Windows Vista (left) and Windows 7 bugs
(right) vs. bug opener reputation (rounded up to nearest 0.05).“First bug”

represents all bugs whose opener had never opened a bug before the current
one. The y-axis is unlabeled for confidentiality.

Figure 2 Percent of reopened Windows Vista (left) and Windows 7 bugs
(right) vs. first assignee reputation (rounded up to nearest 0.05).“First bug”
represents all bugs whose opener had never opened a bug before the current

one. The y-axis is unlabeled for confidentiality.

Table 2 The influence of the bug source on bug reopens

BUG SOURCES Vista Win7
Reopen rate for all bugs P Q

Code analysis tools 0.52P 0.73Q
Human review 0.85P 0.66Q
Ad-hoc testing 0.87P 0.99Q
Internal user 1.12P 0.97Q
Component testing 1.13P 0.81Q
System testing 1.21P 1.46Q
Customer 1.33P 1.12Q

C. Does organizational and geographic distance influence
the likelihood of bug reopens?

We found bug reports were more likely to be reopened
when initially assigned to someone in a different team or
geographical location as the bug opener. We also observed
that bugs that were assigned at some point in time back to the
opener or his/her team were less likely to be reopened—at
first glance this seems to be counterintuitive; however, when
bugs are reopened, they are often assigned back to the opener
or his/her team to solicit additional information. In other
words, assignments back to the bug opener (at some point)
are indicative of problems and reopens..

We quantified these effects by partitioning bugs into
groups based on organizational and geographical profiles of
their openers and assignees. Then we calculated the percent
of bugs in each group that were reopened. In Table 3, we
report ratios relative to the anonymized baseline percentages
X, Y, and Z for Windows Vista and R, S, and T for Windows
7. For instance, Vista bug reports opened by and initially
assigned to people with different managers are 1.37 times as
likely to be reopened as those opened and initially assigned
to the same person (shown in bold near the top of Table 3).

For the initial assignment, bugs opened by and assigned
to the same person are the least likely to be reopened (the X
baseline for Vista). Here the opener is often a developer who
wants to and is able to fix his/her own bug, which means that
many of the causes for bug reopens do not apply in the situa-
tion (for example, the developer very likely could already
reproduce the bug and has an idea how to successfully fix it).
The primary cause of reopens for such self-assigned bugs is
regressions or incorrect/incomplete fixes. Bugs assigned to
someone in the same team or building have a slightly higher
reopen rate in Vista (1.13 and 1.27 times, respectively) and a
slightly lower reopen rate in Windows 7 (0.96 and 0.93
times, respectively). These colleagues can easily talk face-to-
face to resolve ambiguities in bug reports and to hold each
other accountable. As a result reopen rates for within-team/
within-building bugs are comparable to self-assigned bugs.

However, if bugs are assigned to people who work in dif-
ferent buildings or countries, then there is greater overhead
in communication, which leads to more bug reopens, both in
Windows Vista (up to 1.52 times) and in Windows 7 (up to
1.14 times). In our earlier work on which bugs get fixed [16],
a survey respondent cited “poor communication, language
barrier problems with other countries” as hindrances in a
free-response question about what factors affect bug fixes.
Also, Microsoft tries to organize teams so that all members
are located in the same building. Thus, when bugs are as-
signed across buildings, chances are that the participants do
not personally know one another. Herbsleb and Mockus
found that modification requests, which include bug reports,
took longer to resolve when development was globally dis-
tributed [7]. Our findings supplement theirs by showing that
bug reports initially assigned across teams, buildings, and
countries are more likely to be reopened. This might suggest
that sections of software should be outsourced (e.g., the de-
velopment and testing of particular parts of the architecture)
rather than functions (e.g., outsource the testing effort).

Table 3 The influence of organizational (team structure, temporary
employees) and geographical factors on bug reopens

INITIAL ASSIGNMENT Vista Win7
Opened by and initially assigned to …

… the same person X R
… someone with the same manager 1.13X R
… someone with a different manager 1.37X R

Opened by and initially assigned to …
… the same person X R
… someone in the same building 1.27X 0.93R
… someone in a different building but
… in the same country

1.45X 1.00R

… someone in a different country 1.52X 1.14R

ASSIGNMENT AT SOME POINT IN TIME Vista Win7
Assigned to opener at some point in time Y S

Never assigned to opener, but assigned to
someone with the same manager as opener

0.54Y S

Never assigned to anyone with same manager 0.27Y S
Assigned to opener at some point in time Y S

Never assigned to opener, but assigned to
someone in the same building

0.41Y S

Never assigned to anyone in same building,
but assigned to someone in the same country

0.31Y S

Never assigned to anyone in the same country 0.20Y S

TEMPORARY EMPLOYEES Vista Win7
Opened by a permanent employee Z T
Opened by a temporary employee 1.26Z T
Initially assigned to temp. employee 1.18Z T
Assigned to temp. employee at any point 1.62Z T

Things change however when bugs are reassigned back

to the bug opener or his/her team at some point in time of the
bug’s lifecycle. In Table 3, bugs opened by and assigned to
the same person at some point in time actually have the
highest reopen rate (baseline Y for Vista). The lowest reopen
rates are for bugs that never return to the same team or the
same country (0.27 and 0.20 times respectively). The reopen
rates in these situations are similar for Windows 7 (0.34 and
0.20 times respectively, with baseline Y). There are two rea-
sons for this phenomenon: (1) as mentioned before, when
bugs are reopened, they are often assigned back to the opener
or his/her team to solicit additional information and thus bug
reopens and assignments back to the opening team (at some
point) are related events, and (2) bugs that never return to the
opener’s team (or building, country) might not be critical for
the opener and thus they are less likely to reopen the bug
when it gets resolved as say WON’T FIX.

At another extreme, temporary employees (for example,
contractors or interns) have lower reputation and fewer rela-
tionships with developers, so their bug reports might not be
taken as seriously as those from core employees. Table 3
shows that bugs involving temporary employees are more
likely to be reopened (up to 1.62 times) compared to bugs by

permanent employees (baselines Z and T) with the exception
of Windows 7 bugs that were initially assigned to temporary
employees (0.82 times) .

VI. DESCRIPTIVE STATISTICAL MODEL

A problem that often arises when presenting a series of
single-variable correlations (as we've done in the previous
section with factors that correlate with reopened bugs) is that
their effects might be cross-correlated, thereby diminishing
their validity. To show that the factors have independent
effects, we built a logistic regression model [34].

A. Model building

A logistic regression model aims to predict the probabil-
ity of an event occurring (e.g., will this bug be reopened?)
using a combination of factors that can be numerical (e.g.,
bug opener reputation), Boolean (e.g., was severity upgrad-
ed?), or categorical (e.g., bug source).

Using our entire bug dataset as training data, we built
three models to describe the different aspects of bugs in
Windows Vista and Windows 7 (see Table 4):

1. Probability that a bug will be reopened.

2. Probability that a bug will be fixed after the bug has
been reopened.

3. Probability that a bug will be fixed. We addressed this
question in previous work [16]. However, to facilitate
comparison we include this model in this paper. (Note
that the earlier work only listed the coefficients for
Windows Vista because of space reasons.)

By comparing the second model (likelihood of fix for re-
opened bugs) and the third model (for all bugs) we can iden-
tify factors that more strongly influence the chances of reo-
pened bugs getting fixed than in the general case.

To build the models, we chose the same factors (explana-
tory variables) as in our previous work on which bugs get
fixed in Windows [16] to enable comparison across papers.
For the models that describe the likelihood of reopens, we
exclude the factor “Number of re-opens” (as indicated by the
“n/a”). For each factor, we further tested that its coefficient is
statistically significant at p<0.001. Almost all coefficients
were significant; we indicate coefficients that were not sig-
nificant with “n.s.” in Table 4.

The purpose of this model is to describe the various in-
dependent effects on bug fixes. Note that this model cannot
actually be used to predict the probability that a newly-
opened bug report will be reopened, since it uses factors that
are not available at bug opening time (such as the number of
edits or building changes).

B. Meaning of logistic regression coefficients

One benefit of using logistic regression over other types
of models (e.g., support vector machines) is that its parame-
ters (i.e., the coefficients in Table 4) have intuitive meanings.

Numerical and Boolean factors: The sign of each coef-
ficient is its direction of correlation with the probability of an
event (in our case either successfully fixed or bug reopened).
For example, bug opener reputation is negatively correlated

with bug reopens in Windows Vista, so its coefficient is neg-
ative (–0.266). The magnitude of each coefficient is propor-
tional to how much a one-unit change in the factor affects the
probability (for a Boolean factor, FALSE to TRUE is the only
one-unit change). For details on transforming coefficients
into exact probabilities, see Hosmer and Lemeshow [35].

In general, it's hard to compare coefficient magnitudes
across factors since units might differ. However, it's possible
to compare coefficients for, say, two Boolean factors like
“Opener / any assignee same manager” and “Opener / any
assignee same building'”. For bug reopens in Vista the coef-
ficient of the former (0.721) is larger than that of the latter
(0.468), which means that having the same manager at any
point in the bug life cycle has a larger positive effect on bug
reopen rates than working in the same building.

Categorical factors: If a factor has N categories (levels),
then N–1 of them get their own coefficient, and the remain-
ing one gets its coefficient folded into the intercept term (the
R statistics package chooses the alphabetically earliest cate-
gory to fold, so that's why “Ad-hoc testing” has no coeffi-
cient in Table 4 as indicated by the symbol ). What matters
isn't the value of each coefficient but rather their ordering
across categories. For example, for the categorical factor
“Bug source”, the coefficient for “Code analysis tool” is
lower than that for “Component testing”. This means that
bugs in the former category are less likely to be reopened
than bugs in the latter.

Intercept: In addition to coefficients, logistic regression
also produces a numerical intercept, which here represents
the base probability given that all factors are zero. However,
we cannot report its value due to confidentiality reasons.

C. Interpreting the descriptive model “reopen”

The following factors are positively correlated with bug
reopens, as indicated by the corresponding coefficients,
which are positive: whether the opener was a temporary em-
ployee (only Vista), whether the opener and any assignee
had the same manager or worked in the same building,
whether severity was upgraded (only Vista), and number of
bug report editors and assignee buildings. The following
factors are negatively correlated with bug reopen probability,
so the coefficients are negative: reputation of the bug opener
(both versions of Windows) and first assignee (only Win-
dows 7), the initial severity level, and the numbers of com-
ponent path changes.

As shown in Section V, bugs from different sources vary
in how often they are reopened. Not all sources however are
statistically significant in the model, e.g., human review and
internal user were not significant in Windows Vista. Recall
that for categorical factors the rankings of coefficients have
to be analyzed as in our case they are all relative to the factor
“Ad-hoc testing”. The rankings mostly match Table 4 in Sec-
tion V, except that in the regression model ad-hoc testing
increased its rank from #3 to #2 and customer found bugs
decreased the rank from #2 to #7. This means that when
looking at multiple factors, bugs found by customers are less
likely to be reopened in Windows 7, while in Vista they are
more likely to be reopened.

We also included in our model some additional factors
that we did not have space to discuss in depth in Section V:

Severity: Bugs opened with a higher initial severity val-
ue (in the range of 1–4) are more likely to be reopened, as
reflected by positive coefficients in Vista and Windows 7. In
Vista, an upgrade in the severity value is also linked to high-
er reopen likelihood. As discussed in Section IV, a higher
severity is one of the main causes of bug reopens.

Num. component path changes: Bugs with more com-
ponent path changes are less likely to be reopened. If people
edit a bug report to change its component path, then that
might be a sign that they have spent more time on locating
the root cause of a bug; thus reopens might be less likely.

D. Interpreting the model “fixed when reopened”

In previous work [16], we identified factors which impact
the likelihood of bugs getting fixed in general (see columns
“Fixed” in Table 4). For this paper, we built a new model to
describe the factors which impact the likelihood of reopened
bugs getting fixed (see columns “Fixed When Reopened”).

By comparing the models we observe that the direction
of the effects (indicated by the sign of coefficients) remains
the same. However, for some factors the effect decreases; for
example, the coefficients for reputation drop from >2.193 in
the general case to ~1.600 in the reopened case. Some factors
even become statistically insignificant, for example bug

found by code analysis tools or during system test (Vista
only), factors related to severity (Vista only) or factors relat-
ed to team structure or geographic location. This suggests
that once a bug report has been reopened, these factors are
not as important anymore to decide about its final outcome.

VII. THREATS TO VALIDTY

Internal validity: We primarily use the bug repository as
the information source. If the bug repository has some error
then it will be reflected in our study. However, it is unlikely
that the bug repository will miss reopen data or other bug
information as Microsoft engineers primarily use this infor-
mation to track all open bugs and it is not possible for any-
one to maintain separate information. Also the study was
done after the fact and none of the engineers have any moti-
vation to influence our results in either way. Also, from the
survey perspective all the authors were part of Microsoft
Research, a parallel organization not associated with any
product group in Microsoft. Hence the engineers had no mo-
tivation to answer our questions in any specific
way/influence the results in any way.

External validity: Our study was performed on using
Microsoft engineers and Windows bugs as a case study.
Drawing general conclusions from empirical studies in soft-
ware engineering is difficult because any process depends on
a potentially large number of relevant context variables [28].
For this reason, we cannot assume that the results will gener-

Table 4 Descriptive logistic regression models for (1) bug reopen rate, (2) bug-fix probability for reopened bugs, and (3) bug-fix probability for all bugs.
Models are trained Windows Vista and Windows 7 bugs respectively. The factor labeled  folds into the intercept term, which is omitted for confidentiality.

 COEFFICIENTS (Windows Vista) COEFFICIENTS (Windows 7)

FACTOR Reopen Fixed When
Reopened

Fixed [16]

Reopen Fixed When
Reopened

Fixed

Bug source (7 categories)
Human review n.s. 0.377 0.511 -0.343 0.529 0.770
Code analysis tool -0.503 n.s. 0.357 -0.291 0.884 0.349
Component testing 0.238 -0.160 0.065 -0.116 0.406 0.488
Ad-hoc testing      
System testing 0.204 n.s. -0.129 0.182 -0.342 -0.040
Customer  0.239 -0.498 -0.347 -0.466 -0.511 -0.427
Internal user  n.s. -0.465 -0.454 -0.611 -0.398 -0.723
(Relatively fewer bugs from sources marked as  were fixed, due to many dupli-
cate bug reports and difficulty of reproducing bugs reported by field users)

Reputation of bug opener -0.266 1.632 2.193 -0.948 1.601 2.480
Reputation of 1st assignee n.s. 1.651 2.463 -0.697 1.589 2.407
Opened by temporary employee 0.178 -0.144 -0.125 n.s. -0.403 -0.260

Initial severity level 0.127 n.s. 0.033 0.081 0.383 0.202
Severity upgraded? 0.331 n.s. 0.256 n.s. 0.463 0.300

Opener / any assignee same manager? 0.721 n.s. 0.676 0.149 n.s. n.s.
Opener / any assignee same building? 0.468 n.s. 0.270 0.376 n.s. 0.493

Num. editors 0.236 0.127 0.240 0.236 0.125 0.289
Num. assignee building 0.090 -0.213 -0.257 0.101 -0.111 -0.145
Num. component path changes -0.160 -0.162 -0.232 -0.053 -0.135 -0.214
Num. re-opens n/a n/a -0.135 n/a n/a 0.024

alize outside of Microsoft or Windows. But there is nothing
specific or different in this case study which prevents it from
replication in the open source domain. Replications of these
studies in different contexts will help generalizing these re-
sults and build an empirical body of knowledge.

VIII. CONCLUSION

Bugs being reopened after being closed are part of the
software development process. In this paper we characterized
the bug reopen process using a mixed methods approach: we
qualitatively identified causes for bug reopens based on the
survey responses of 358 Microsoft engineers and performed
a quantitative analysis using bug reports from the Windows
operating system to assess the impact of the various factors.
The findings highlight areas for process improvement: How
can we reduce the complexity of branching, which allowed
bugs to be 'verified' in the wrong branch and leading to bug
reopens? How could the process be changed to allow for a
better assignment of initial priorities so that this factor of
reopens could be reduced?

Acknowledgments. Thanks to the Microsoft Windows team for
their help in understanding the data. Philip Guo performed this
work during a summer internship and a visit to Microsoft Research.

REFERENCES

[1] Shihab, E., Ihara, A., Kamei, Y., Ibrahim, W.M., Ohira, M., Adams, B.,
Hassan, A.E., and Matsumoto, K.-i. Predicting Re-opened Bugs: A Case
Study on the Eclipse Project. In Proceedings of the 17th Working
Conference on Reverse Engineering (2010), 249-258.

[2] Hooimeijer, P. and Weimer, W. Modeling bug report quality. In
Proceedings of the 22nd IEEE/ACM International Conference on
Automated Software Engineering (2007), 34-43.

[3] Panjer, L.D. Predicting Eclipse Bug Lifetimes. In MSR '07: Proceedings of
the Fourth International Workshop on Mining Software Repositories
(2007).

[4] Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., and
Zimmermann, T. What Makes a Good Bug Report? In FSE '08:
Proceedings of the 16th International Symposium on Foundations of
Software Engineering (November 2008).

[5] Anbalagan, P. and Vouk, M. On Predicting the Time taken to Correct Bugs
in Open Source Projects (short paper). In ICSM '09: Proceedings of the
International Conference on Software Maintenance (September 2009).

[6] Mockus, A., Fielding, R.T., and Herbsleb, J.D. Two case studies of open
source software development: Apache and Mozilla. ACM Trans. Softw.
Eng. Methodol., 11 (2002), 309-346.

[7] Herbsleb, J.D. and Mockus, A. An Empirical Study of Speed and
Communication in Globally Distributed Software Development. IEEE
Trans. Software Eng., 29 (2003), 481-494.

[8] Cataldo, M., Herbsleb, J.D., and Carley, K.M. Socio-technical congruence:
a framework for assessing the impact of technical and work dependencies
on software development productivity. In ESEM '08: Proceedings of the
Second ACM-IEEE international symposium on Empirical software
engineering and measurement (2008), ACM, 2--11.

[9] Aranda, J. and Venolia, G. The Secret Life of Bugs: Going Past the Errors
and Omissions in Software Repositories. In ICSE' 09: Proceedings of the
31st International Conference on Software Engineering (2009).

[10] Breu, S., Premraj, R., Sillito, J., and Zimmermann, T. Investigating
Information Needs to Improve Cooperation Between Developers and Bug
Reporters. In CSCW '10: Proceedings of the ACM Conference on
Computer Supported Cooperative Work (February 2010).

[11] Bettenburg, N., Premraj, R., Zimmermann, T., and Kim, S. Duplicate Bug
Reports Considered Harmful. Really? In ICSM '08: Proceedings of the
24th IEEE International Conference on Software Maintenance (September
2008), 337--345.

[12] Jeong, G., Kim, S., and Zimmermann, T. Improving Bug Triage with Bug
Tossing Graphs. In ESEC-FSE '09: Proceedings of the European Software
Engineering Conference and ACM SIGSOFT Symposium on Foundations
of Software Engineering (2009).

[13] Ko, A.J., Myers, B.A., and Chau, D.H. A Linguistic Analysis of How
People Describe Software Problems. In VL/HCC '06: Proceedings of the
2006 IEEE Symposium on Visual Languages and Human-Centric
Computing (2006), 127-134.

[14] Bertram, D., Voida, A., Greenberg, S., and Walker, R. Communication,
collaboration, and bugs: the social nature of issue tracking in small,
collocated teams. In CSCW '10: Proceedings of the 2010 ACM Conference
on Computer Supported Cooperative Work (2010), 291-300.

[15] Ko, A.J. and Chilana, P.K. How power users help and hinder open bug
reporting.. In CHI '10: Proceedings of the 28th International Conference
on Human Factors in Computing Systems (2010), 1665-1674.

[16] Guo, P.J., Zimmermann, T., Nagappan, N., and Murphy, B. Characterizing
and predicting which bugs get fixed: an empirical study of Microsoft
Windows. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering (2010), 495-504.

[17] Guo, P.J., Zimmermann, T., Nagappan, N., and Murphy, B. "Not my bug!"
and other reasons for software bug report reassignments. In CSCW '11:
Proceedings of the 2011 ACM Conference on Computer Supported
Cooperative Work (2011), 395-404.

[18] Anvik, J., Hiew, L., and Murphy, G.C. Who should fix this bug? In ICSE
'06: Proceedings of the 28th International Conference on Software
Engineering (2006), 361--370.

[19] Anvik, J. and Murphy, G. Reducing the Effort of Bug Report Triage:
Recommenders for Development-oriented Decisions. ACM Transactions
on Software Engineering and Methodology (TOSEM).

[20] Canfora, G. and Cerulo, L. Supporting change request assignment in open
source development. In SAC '06: Proceedings of the 2006 ACM
Symposium on Applied Computing (2006), 1767--1772.

[21] Canfora, G. and Cerulo, L. Fine grained indexing of software repositories
to support impact analysis. In MSR '06: Proceedings of the International
Workshop on Mining Software Repositories (2006), 105--111.

[22] Hiew, L. Assisted detection of duplicate bug reports. , 2006. The
University of British Columbia.

[23] Runeson, P., Alexandersson, M., and Nyholm, O. Detection of Duplicate
Defect Reports Using Natural Language Processing. In ICSE '07:
Proceedings of the 29th International Conference on Software Engineering
(2007), 499--510.

[24] Jalbert, N. and Weimer, W. Automated duplicate detection for bug tracking
systems. In DSN '08: Proceedings of the Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (2008), 52-61.

[25] Wang, X., Zhang, L., Xie, T., Anvik, J., and Sun, J. An Approach to
Detecting Duplicate Bug Reports using Natural Language and Execution
Information. In ICSE '08: Proceedings of the 30th International
Conference on Software Engineering (May 2008).

[26] Menzies, T. and Marcus, A. Automated severity assessment of software
defect reports. In ICSM '08: Proceedings of the 24th IEEE International
Conference on Software Maintenance (September 2008), 346-355.

[27] Weiss, C., Premraj, R., Zimmermann, T., and Zeller, A. How Long Will It
Take to Fix This Bug? In MSR '07: Proceedings of the Fourth
International Workshop on Mining Software Repositories (2007).

[28] Basili, V.R., Shull, F., and Lanubile, F. Building Knowledge through
Families of Experiments. IEEE Trans. Software Eng., 25 (1999), 456-473.

[29] Barker, I. What is information architecture? , 2005. KM Column,
http://www.steptwo.com.au.

[30] Bird, C., Nagappan, N., Devanbu, P.T., Gall, H., and Murphy, B. Does
distributed development affect software quality? An empirical case study
of Windows Vista. In Proceedings of the 31st International Conference on
Software Engineering (2009), 518-528.

[31] Glerum, K., Kinshumann, K., Greenberg, S., Aul, G., Orgovan, V.,
Nichols, G., Grant, D., Loihle, G., and Hunt, G. Debugging in the (Very)
Large: Ten Years of Implementation and Experience. In SOSP '09:
Proceedings of the Symposium on Operating Systems Principles (2009).

[32] Cheshire, J. Image or ImageButton without ImageUrl Causes HTTP GET
for Default Document.. http://blogs.msdn.com/b/jamesche/
archive/2009/01/28/image-or-imagebutton-without-imageurl-causes-http-
get-for-default-document.aspx.

