Collective Noise Contrastive Estimation for Policy Transfer Learning

Weinan Zhang', Ulrich Paquet’, Katja Hofmann?
tUniversity College London, Microsoft Research

Abstract

We address the problem of learning behaviour policies to op-
timise online metrics from heterogeneous usage data. While
online metrics, e.g., click-through rate, can be optimised ef-
fectively using exploration data, such data is costly to collect
in practice, as it temporarily degrades the user experience.
Leveraging related data sources to improve online perfor-
mance would be extremely valuable, but is not possible using
current approaches. We formulate this task as a policy trans-
fer learning problem, and propose a first solution, called col-
lective noise contrastive estimation (collective NCE). NCE is
an efficient solution to approximating the gradient of a log-
softmax objective. Our approach jointly optimises embed-
dings of heterogeneous data to transfer knowledge from the
source domain to the target domain. We demonstrate the ef-
fectiveness of our approach by learning an effective policy for
an online radio station jointly from user-generated playlists,
and usage data collected in an exploration bucket.

Introduction

Interactive systems, such as web search engines, news rec-
ommender systems, and online radio stations, face the prob-
lem of finding a behaviour policy (e.g., which search re-
sults to show, news items to recommend, or songs to
play) that optimises user satisfaction, typically measured
in terms of some online metrics (e.g., positive feedback
ratio, click-through rate) (Zhao, Zhang, and Wang 2013;
Li et al. 2010). Contextual bandit approaches allow learning
such behaviour policies directly from user interactions while
balancing exploration (of new policies) and exploitation (of
known good policies) (Li et al. 2010). However, learning a
policy from scratch, by exploring and exploiting feedback
obtained from real users, is a dangerous game: by the time
a good policy is learned, all users would have abandoned
the system. One is therefore forced to collectively leverage
other available data sources to bootstrap a good initial pol-
icy. Conversely, much work has focused on learning from
explicitly labelled data (Koren, Bell, and Volinsky 2009;
Mnih and Salakhutdinov 2007), or user-provided example
policies (Chen et al. 2012a). However, these approaches do
not directly optimise online performance, and it is currently
not clear how to bridge the gap between these approaches.

Copyright (©) 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper we formalise the task of learning a behaviour
policy from heterogeneous data sources as a policy trans-
fer learning problem. Given a set of exploration data, and
additional heterogeneous data sources (e.g., user-provided
example policies), how can the additional data be used to
guide the policy learned from exploration data? As a run-
ning example, and for the empirical part of our work, we
focus on the particularly challenging task of policy learning
for online radio stations. An online radio station (referred
to as agent) like that of Xbox Music is driven by a pol-
icy that stochastically streams music according to a proba-
bility P(next track|context).! Whilst listening to music, the
listener provides partial feedback by skipping songs (low re-
ward), or fully listening to songs (high reward). More for-
mally, consider a context space I (e.g., the currently playing
artist), actions in set J (e.g., artists to play next), and a re-
ward signal r (user satisfaction with action j given context
7). Following standard contextual bandit formulations (Li et
al. 2010; 2015), in each round the environment selects the
context ¢ and the correponding reward vector 77 across all
actions J, and provides ¢ to the agent. The agent selects an
action j, and sends it to the environment. The environment
reveals T_Z‘>[j], the reward for action j only, in response (de-
noted as r for simplicity). Our goal is to learn an agent be-
haviour policy that has high expected reward.

We assume two types of data sources available for learn-
ing a policy with binary reward » € {1, —1}: first, positive
examples Dp = {(i,7,7 = 1)} — these are user-provided
positive examples of good policies, here obtained in the form
of user generated playlists; second, exploration data in the
form of (¢, j, 7, pp(j|i)), where pp(j]7) is the probability of
selecting the action j given context ¢ under the data collec-
tion policy.?

"For the purpose of this work we focus on individual transi-
tions and model these as independent of longer-term history. De-
pendency on history could be extended by considering longer se-
quences as context, or through extension to the full MDP formu-
lation. Also note that we focus on finding a good policy using ex-
isting data, corresponding to the “exploration first” scenario that is
particularly relevant in practical applications.

2We assume exploration data was collected before training us-
ing an arbitrary data collection policy. Solutions for estimating
pp(j]¢) for unknown or non-stochastic exploration policies are
proposed in (Langford, Strehl, and Wortman 2008; Strehl et al.
2010).

Given these datasets, our goal is then to learn a policy
P(jli,» = 1) to maximise the expected policy value V,
particularly, the expected reward directly calculated from
the user feedback V' = E; [Ep(j‘i7r/:1)[ﬁ[j]]]. Within this
framework, two optimisation objectives are studied: one is
the joint data generation likelihood of the observations from
two data sources; the second links the data generation to
the unbiased expectation of the policy value with inverse
propensity scores (IPS). Modelled as a softmax selection
policy, the costly calculation of the object gradient is over-
come via collective noise contrastive estimation (collective
NCE) on both domains. We find the proposed solution to be
highly efficient.

Our empirical study based on two real-world music usage
data sources from Xbox Music shows excellent performance
in terms of both data generation likelihood and expected
policy value from successfully transferring knowledge from
user generated playlists to their radio listening behaviour.

Contributions. (i) To our knowledge, this is the first work
to leverage related data sources to optimise online metrics
within a novel framework of policy transfer learning. (ii)
Based on our framework, two optimisation objectives are
studied and solved by efficient collective NCE. In particu-
lar, the second objective directly enables the optimisation
of the IPS policy value via lower bound maximisation. (iii)
This is the first work that extends the NCE algorithms to the
applications of real-world interactive recommender systems
(here: music recommendation).

Related Work

Online Learning for Recommender Systems. In inter-
active recommender system applications, users interact with
the recommended items and the recommender system could
perform online learning from user feedback to refine its
recommendation to the specific user (Zhao, Zhang, and
Wang 2013). These applications are ideally suited for con-
textual bandit algorithms, a type of reinforcement learn-
ing problem that focuses on balancing exploitation and ex-
ploration (Li et al. 2010; Zhao, Zhang, and Wang 2013).
Seen as a reinforcement learning problem, (Liebman, Saar-
Tsechansky, and Stone 2015) proposed an approach to learn-
ing sequences of songs for online radio stations with the fo-
cus on longer-term learning and planning. Our work also fo-
cuses on context-aware sequence transitions but leverages
heterogeneous feedback for transfer learning.

Offline Policy Evaluation. As pointed out in (Li 2015),
direct online evaluation and optimisation is expensive and
risky. However, it is cheap and risk-free if policy can be
optimised and evaluated using historic data that was previ-
ously collected using another policy. (Li et al. 2011) pro-
posed to use historic data for unbiased offline evaluation us-
ing experience replay and rejection sampling. Prerequisites
of this approach are that the exploration policy is known,
and that it has sufficiently explored all actions in the sup-
port of the evaluated policy (Langford, Strehl, and Wortman
2008). For cases where historic data is collected using a bi-
ased (non-uniform) or non-stationary policy, (Dudik et al.
2012) suggested an adaptive rejection sampling approach.
For case where the exploration policy is unknown, an eval-

uation scheme with the estimated propensity scores and a
lower bound of the data observation probability was pro-
posed in (Strehl et al. 2010).

Transfer Learning for Reinforcement Learning. Trans-
fer learning has been proven to work on a variety of prob-
lems (Pan and Yang 2010), including reinforcement learn-
ing (Ramon, Driessens, and Croonenborghs 2007; Taylor
and Stone 2007; 2009). As pointed out in (Taylor and Stone
2009), there are different goals of transfer learning in rein-
forcement learning. Out of these, our goal is the “jumpstart”,
i.e., to achieve high initial performance on the target task
(online radio) by using data from a different task (user gen-
erated playlists). We specifically focus on the questions of
how knowledge can be transferred in a policy learning set-
ting, and whether such transferred knowledge lead to better-
performing policies.

Model

Softmax-based Stochastic Policy

Our goal is to learn an effective behaviour policy for stream-
ing online radio. Following (Chen et al. 2012a), we define
our radio policy using a softmax distribution (corresponding
to the “single-point model” in (Chen et al. 2012a)). How-
ever, differently from this earlier work, we model the joint
distribution of action and reward. This extension is the basis
for integrating heterogeneous usage data as will be shown
below. Specifically, for the given context ¢, the probability
of the softmax policy playing a track of the artist j and re-
ceiving reward r is parameterised as

Pe(j, r|z) _ esg(i,j,'r) /Zw Zj/ese(i,j’,r’>) (1)

Here, s¢(i, j,) is the scoring function that measures the util-
ity of playing a track by artist j given context ¢, as parame-
terised by 6 (detailed in Eq. (2)). Context ¢ is an index into
a discrete set of states; for simplicity we index the currently
playing artist. The partition function sums over all possible
artists, which is around 10% in Xbox Music. An intuitive im-
plementation® of the scoring function is

so(i,j,r) =1 w] w; + by,)

with § = (w;,wj,b;). This formulation represents each
artist by an embedding w; € R™. It resembles a basic neu-
ral probabilistic language model (Mnih and Teh 2012) with
the current words (i.e., the current artist) and the next word
(the next artist) embedded as latent feature vectors. The bias
term b; captures the popularity of artist j in the training data.

j=1 2 3 4 5 e N-2 N-1 N

Our model can be understood as selecting a cell (j,7) in a
two-row grid as illustrated above. The predicted user feed-
back Py(rli,j) = 1/(1 + =2 wi) is a logistic function
that normalises to one over the two rows in the above grid.

SExtensions of our method to other scoring functions, e.g., in-
corporating features like user types and artist genres, are straight-
forward (Chen et al. 2012b).

It only depends on the inner product of the artists’ latent fea-
ture vectors, and as such, models the feedback on the qual-
ity of the transition. To recover the playlist-only scenario in
(Chen et al. 2012a), we can condition on = 1. Because in
this setting P(r|i) = P(r) (the desired reward is indepen-
dent of the context) and P(r) is constant, we obtain

Py(jli,r =1) = es0(131) /Zj/GSS(i’jl’l)) 3)

We use this formulation to model estimates for the playlist
data, while the formulation as the joint density (Eq. (2)) is
used to model radio data. Based on this model, we next de-
fine our objectives.

Objectives

In our work, we explore two supervised learning objectives.
The first is the data generation likelihood, which is normally
used in playlist generation tasks (Chen et al. 2012a). The
second is the expected policy value, which is commonly
used in reinforcement learning (Li 2015; Sutton and Barto
1998).

Objective 1: Data Generating Likelihood Maximisation.
The data generation setting is similar to the text generation
process for language models (Lavrenko and Croft 2001). For
playlist data, given the training data Dp = {(4,7,1)}, we
want to find the optimal policy parameterised by 6 to max-
imise the model’s average likelihood Lp(Fy) to generate
each triple in Dp:

EP(PG) = H(i,j,1)eDPP9(j|7;7T =1).)
For radio data, given the training data Dg = {(4,,7)}, we
want to find the optimal 6 to maximise the model’s likeli-
hood L (#) to generate Dg:

['R(PG) = H(i’j’r)eDRPQ(j7r|i) . (5)

With datasets Dp and D g, we can find 6 to collectively op-
timise their combined likelihoods through

11—«
~ =% log Lp (P,
T p(Po)

es0(i.5,7)

[0}
BT TIIP 2R S s e

D
| (4,4,r)€EDR

a
max — 1 Py) +
ax Dn] og Lr(Ps)

1—a es0(1:5,1)

Brl , 2o, B, e ©

(4,5,1)€EDp

with a being the combination hyperparameter to control the
relative importance of the radio task. We emphasise that our
goal is high performance on the task of generating radio
data. The hypothesis underlying the combined objective is
that training on a combination of playlist and radio data can
improve performance through smoothing and regularisation
(c.f., Eq. (16)).

Objective 2: TIPS Policy Value Maximisation. Much
like reinforcement learning, where the policy takes an ac-
tion (samples an artist) according to the state (context)
and then observes the action reward (user feedback), we
can estimate the expected reward of the policy Py, i.e.,
Ei[Ep, (jji,r=1) [77[4]]]. based on the historic radio data Dp.

As Dpr was generated from an underlying data collection
policy, denoted as Pp, it is necessary to eliminate the data
bias from Pp using inverse propensity score (IPS) to per-
form the unbiased estimation of the expected policy value

‘Zps(PO)'

(P = 2

R| . .
(4,5,7)€EDR

1
= a2

(i,5,7)€EDR

rPy(jli,r =1)
Pp(jli)
r ealiaD)
PoGlD) 5, e00D

@)

The data policy Pp in this evaluation scheme should not
have smaller support than the test policy Fp. In order to ease
the parameter gradient calculation we define an approxima-
tion of the IPS policy value:

PICRAY

T
1 — .
2 B B, e

(4,5,7)€DR

‘Zps(PG) = m

®)

Function log z monotonously increases w.r.t. x and = >
log « for any © € R*, and Py(j|i,r’ = 1) is nonnegative.
Assuming r > 0 through a linear shift in the reward, then
VipS(Pg) > ‘Zps(Pe), ie. Vips(Pg) is a lower bound to the
true IPS policy value. With this IPS variant IN/ipS(Pg), we can
find 6 to collectively maximise IN/ipS (Py) on radio dataset and
the likelihood £ p(Py) on playlist dataset by

max af/ips(Pg) log Lp(Py)

|DP|

(07 '
—max ———]
| Po(jl) °

D
Rl oenn

e50(:4,1)
S el D)
J

1—« e50(1:5,1)

T log —=——+—— . 9
|Dp| Z = Zj/ ese(i,3’,1) ©

(4,5,1)€Dp

+

Maximising f/ips(Pg) maximises a lower bound on Vips(Pg)
and transfers knowledge from the playlist data.

Parameter Updating with Noise Contrastive
Estimation

Let JU7 ’1)(9) denote an individual term in the rightmost
(playlist) sum in Egs. (6) and (9). In order to maximise the
objectives in (6) and (9), the gradient with respect to 6 is

0 (1) () —

es0(4:4,1)

l-a . 210
Dl 90 *%,

o 0
for each playlist transition observation (4, ,1) for both ob-
jectives. For each radio transition observation (4, j, 1), where

J I({” ’T)(Q) denotes a term in the leftmost (radio) sum in
Egs. (6) and (9), the gradient with respect to 6 is

a 8 es0(,5,7)

aJ(”r)(H)—— log

90 |Dx| > 2, eso) (11)
for objective 1, and
0 (ijr) « 0 es0(i:4:1)
— l — 12
2077 O = Do BoGi) 06 8 S e D 12

for objective 2. In the above three equations, the gradient
calculation on the softmax function

9 o esg(iy]‘v"') o 889(2'7.7‘7 T)
90 Y e T 00

9se(i,5',7)

—Epy i) [T]

13)
needs to iterate over all possible artist j/, which is a very
costly operation. In our work, we follow (Mnih and Teh
2012) to leverage the noise contrastive estimation (NCE)
(Gutmann and Hyvérinen 2012) to employ an efficient ap-
proximated gradient calculation.

The basic tenet of NCE is to define a loss function to
quantify how likely the policy will separate a data point
(i,4,7) from k noise data points {(i, j,m,) }% _; with j,,
generated from a known noise probabilistic distribution
P, (jm). The log probability of distinguishing data from
noise is L7 (6) =

Py(jli,r)

&P
0 (712, 7) + kEPn(

1
7+ Z 8 By Glio?) + kPa i)
(14)

and its gradient

kP, () 889(i7.j7 T)
 ese(iam) + kP, (j5) 00

k

a 1,5,7

_ (15)
Z g0 (H:im,r) 050 (4, jm,)
e56(4,0m,T) +]fPrL(j"L) 90

m=1

can be efficiently calculated. It is proven in (Gutmann and
Hyvirinen 2012; Mnih and Teh 2012) that when k£ —
+00, the gradient -2 El(\fcjg)(0) = 55 log% in
Eq. (13). With NCE as a tool to efficiently calculate the pa-
rameter gradients, we perform SGD to update our model pa-
rameters, i.e., w;, wj, b; in Eq. (2), with i learning rate, as
0 0+nd ,cNgE”(e).

During training, the model is fed the data points (4, j,)
from the two data sources and the two NCE components are
trained on playlist and radio data collectively. We call the
approach Collective NCE.

Regularisation. Our basic regularisation includes the L2
norm of the latent feature vector w; of each artist, as well
as the artist popularity bias b;. Moreover, in order to trans-
fer the knowledge from the source domain (playlist) to the
target domain (radio), we propose a regularisation term to
push the latent feature vectors of the same artist on the two
domains towards each other.

Loss = —(Objective 1 or 2) + A1 Z(Hw]{p)Hg + bj(_p>2)

+ 0 Y (eI + 6
J

In practice, this kind of “soft” bounding of an artist’s fea-
ture vectors across the two data sources performs much bet-
ter than the “hard” bounding that would be obtained by set-
ting Ao to infinity. This is because the behaviour underlying
playlist and radio data are different. We preserve such dif-
ferences to obtain a good fit with the data while enabling
knowledge transfer.

+ 22) [— w75 (16)
J

4See the supplementary material for a detailed derivation at
http://research.microsoft.com/apps/pubs/?id=258572.

Experiments and Results

We report on two experiments, designed to empirically as-
sess our approach. The first (data generation) aligns with our
objective 1, and measures to what degree a generative model
of the radio data can be learned from different data sources,
and whether knowledge transfer may be possible. The sec-
ond experiment (policy learning) assesses performance in
terms of our key metric, the IPS-weighted (unbiased) esti-
mate of actual online performance.

Dataset Description. We test the proposed models on two
proprietary datasets collected from Xbox Music, an online
commercial music radio service. Both datasets are generated
via a uniform sampling from the artists and playlists/radio
episodes with no fewer than 10 observations from the origi-
nal huge data log. All data was collected in 2014.

The first dataset, D p contains the playlists of tracks gen-
erated by users. It contains 722,741 track transitions from
20,262 user generated playlists with 1,808 artists. The sec-
ond dataset, Dg consists of 97,605 track transition se-
quences with 1,440 artists generated from the radio system
and the users’ feedback on each transition in the form of nor-
mal listening transitions and skips. The two datasets share
1,034 artists due to the different data distributions although
they are generated from the same radio service. Both for
the playlist dataset and radio dataset, we randomly sample
10,000 transitions as the validation data and test data respec-
tively, while the remainder is used as training data. For the
test radio dataset, in order to protect sensitive information,
we balance the numbers of normal listening and skip obser-
vations. Note that although the reported experiment results
are based on a small portion of the whole data on Xbox Mu-
sic, the set of all artists is of order 10°, making the estimation
intractable in brute-force manner as was applied in (Chen et
al. 2012a).

Training Setting. For the playlist data, user feedback on
every transition is regarded as positive, scored as +1. This
means that playlists are considered as user-provided posi-
tive example policies. For the radio data, the positive user
feedback, i.e., normal listening, is scored as 41, while the
negative user feedback, i.e., the skip, is scored as 0.°> The
latent feature vectors are all in 32 dimensions®. Both train-
ing datasets are randomly shuffled before being fed into the
model to avoid spurious effects due to sequential correla-
tions.

During training, for each observation (i, 7j,7), k noise
artists {j,, }*,_, are sampled to calculate the NCE gradient
as shown in Eq. (15). The probability of sampling a noise
artist is proportional to the artist’s frequency (popularity) in
the training data. We tune hyperparameters on the validation
set, before performance is evaluated on the test data.

Evaluation. For the data generation task, our goal is to
learn a good generative model of the radio data. Following

>In the training stage, we shift the negative reward from -1 to 0
in order to make the lower bound in Eq. (8) hold for all cases. In
the test stage, the negative reward is still -1.

%We also conducted experiments with 10D and 64D latent fea-
ture vectors. We found the 32D feature vector setting to achieve a
good balance between effectiveness and efficiency.

(Chen et al. 2012a), we assess this goal in terms of the aver-
aged log-likelihood per transition, i.e., the value of the first
term (without o) in Eq. (6) on the test data. For the pol-
icy value maximisation, we follow (Strehl et al. 2010), and
adopt IPS-weighted unbiased evaluation, i.e., we measure
the value of Eq. (7).

Since our main goal is to model and learn radio poli-
cies, we report the performance corresponding to the radio
component (based on Dp) of objectives 1 and 2, and evalu-
ate whether the knowledge transferred from user-generated
playlist data can successfully improve radio quality. For ob-
jective 2, in order to perform unbiased evaluation, the pol-
icy’s recommendations for a given context are restricted to
the artists that are in the support of the data collection pol-
icy’. The data collection policy applies a pseudo-random se-
lection from a support set of similar artists and its propensity
scores are estimated per artist-pair from the training data.

Compared Algorithms. Besides our proposed collective
NCE solution (denoted as NCE-COLLECTIVE), we com-
pare another 5 baseline policies. The RANDOM policy uni-
formly samples an artist from the available (restricted) artist
set. The POPULARITY policy samples artists with probabil-
ity proportional to their frequency in the training data. These
two policies are context-free. NCE-RADIO is our NCE
model trained only on the radio dataset, which corresponds
to the special case of a = 1 in Egs. (6) and (9). To check
whether a model learned purely from the playlist data can be
directly adopted to model the radio data, we trained NCE-
PLAYLIST with playlist data only, i.e., « = 0 in Eqgs. (6)
and (9), and tested it on the radio task. For the IPS policy
learning task, we added a further policy that is often applied
in practice, SAMEARTIST, which only plays tracks from
the same (currently playing) artist. We also experimented
with the importance sampling solution for log-softmax gra-
dient calculation, as proposed in (Bengio, Senécal, and oth-
ers 2003), but found it to be highly unstable in our experi-
ments, just as reported in (Mnih and Teh 2012).

Data Generation Results. The log-likelihood perfor-
mance of generating the radio test data from the compared
policies is provided in Table 1. We can see the obvious im-
pact of the NCE-RADIO policy, which substantially outper-
forms all baseline non-NCE policies. This indicates the fea-
sibility of leveraging the NCE algorithm for efficient soft-
max gradient calculation in recommender system training.
More importantly, NCE-COLLECTIVE further improves the
log-likelihood from NCE-RADIO, which shows the effec-
tiveness of transferring the knowledge of artist similarity
learned from the playlist data to the radio data. In addi-
tion, NCE-PLAYLIST, which is trained with only playlist
data, performs worse than RANDOM. This means that sim-
ply moving the learned parameters from the playlist domain
to the radio domain does not work at all.

Figure 1 shows the log-likelihood performance w.r.t. the
tuning of the three hyperparameters of our collective NCE
model. We observe that the log-likelihood performance

"Without this restriction, the policy might learn to simply avoid
recommending the artists associated with negative reward, but fail
to capture the artists’ real similarity.

Table 1: Data generation performance comparison.

Algorithm | log-likelihood
Random -7.7932
Popularity -5.8009
NCE-Playlist -10.3978
NCE-Radio -5.5197
NCE-Collective -5.5072
B ——— -5.50
_5.55- ‘5—5510’
% .60/ %—5 515 %
= 5 -6.00
Lg)-s 65 —8)—5 520 8
-6.25
-5.704 -5.525-
m 0.025 0 05)\02 0.075 0.100 1 10K 100

(a) a in Eq. (6) (b) \2inEq. (16) (c) kin Eq. (14)
Figure 1: Log-likelihood of generating the test data with dif-

ferent hyperparameters.

5.5~ -5.545-
algorithm

NCE-Collective

~ NCE-Radio 5850+

o

o
b
o
a
o

algorithm
NCE-Collective-L
-5.560- NCE-Radio-L

log-likelihood
| ;
log-likelihood
1

o
S

CBLBE5- b nctann teea ettty ai s et st

-5.570-

0 25 75 100 0 25 50 75 100
training round

(b) NCE with A; reg.

50
training round

(a) NCE without \; reg.

Figure 2: Log-likelihood convergence with respect to the
training rounds.

changes smoothly as the hyperparameter values change and
it is insensitive to the variations in hyperparameter values
around the peak regions. This shows that the optimal hy-
perparameters can be soundly obtained. Specifically, we ob-
tain the empirically optimal settings of radio-task weight
a = 0.9, inter-domain regularisation term A, = 0.07, and
noise-data ratio £ = 100. There is a slight performance drop
when k£ > 100, which is also reported in (Mnih and Teh
2012). The reason could be some artists sampled as noise
points are actually preferred by the user when performing a
large noise sampling.

Figure 2 further shows that the NCE algorithm conver-
gences over training rounds. Here NCE-X algorithms set
A1 = 0in Eq. (16), while NCE-X-L algorithms sets A\; =
0.05. We can observe that NCE-X algorithms overfit easily
although they reach peak performance quickly. On the con-
trary, NCE-X-L algorithms relatively smoothly approach
the optimal performance (at the expense of more training
rounds), which shows a better model generalisation ability
using A; regularisation.

Policy Learning. Performance in terms of the IPS-based
policy value is presented in Table 2. It is clear that the NCE-
RADIO and NCE-COLLECTIVE policies substantially im-
prove over alternative policies, with the IPS value of 0.3912

Table 2: IPS based policy evaluation comparison.

Algorithm IPS Value
Random 0.0687
Popularity 0.0747
SameArtist -0.3088
NCE-Playlist 0.0695
NCE-Radio 0.3912
NCE-Collective 0.4111

0.4- 04

0.3- 0.3

»
o

P
)
®
IPS

0.2
0.2-

0.1

02 04 06 08 10 0.1 oo 100 1 10 100
a

) k
(a) vin Eq. (9) (b) A2 in Eq. (16) (c) kin Eq. (14)

Figure 3: IPS on test data with different hyperparameters.

and 0.4111, respectively. This shows that our approach is
able to learn very good radio policies in IPS-based policy
learning setting. Again, NCE-COLLECTIVE further outper-
forms NCE-RADIO in term of the IPS value, which verifies
that the collective training on two domains helps learn good
artist transition for online radio policies. The context-free
policies RANDOM and POPULARITY obtain substantially
lower IPS values, which shows the importance of the select-
ing artists in context in the radio scenario, instead of relying
on, e.g., artist popularity. SAMEARTIST obtains a negative
IPS score of -0.3088, which is surprising given that radio
policies of this type are quite common in industry. It shows
that users may get bored after listening to several tracks from
the same artist (Crossen, Budzik, and Hammond 2002).

Figure 3 shows how the IPS values vary w.r.t. three hy-
perparameters in our model. We find the empirically optimal
settings as the radio-task weight o = 0.5, the inter-domain
regularisation term A2 = 0.1, and the NCE noise sample
number k£ = 30. For both hyperparameters o and Ao, there
is an obvious IPS ascent when tuning their values from 0
(brute-force or no transfer learning) to the optimal values
(an appropriate degree of transfer), which shows the impact
of the knowledge transfer in our scenario. After the hyper-
parameter values pass the optimal values, the performance
drop is relatively gradual, which makes it easy to generalise
model performance to the test data.

Artist Embedding Illustration. To illustrate the perfor-
mance of our method, we train an NCE-COLLECTIVE
model with 2-dimensional artist latent feature vectors and
present the embedded artists in Figure 4. We can see that the
artists are clustered consistently with their genres, although
such genre information is never used in our model. Further-
more, some artists are heavily played, thus lose the transition
preference even if they have informative genres, such as the
famous rock band Green Day and pop singer Katy Perry,
as shown by the embedding in the centre cluster. Moreover,
some example recommended radio streams with the anno-
tated artists in Figure 4 as the seed artist are provided in our
supplementary material.

JessieJames'

" Frankie Valli (Country Pop) *

(Old Rock & Roll)

Leonard Cohen
Graen Da s
04 . ¥fr‘ e .
- A' Blake Shelton Group
D2 (Guntry) Playlist
+ Radio
. Fl‘ me’bu
-1 R (Hggy%d\/lela\}

- \
a X -

S S,y

A
Mraz N
.(Fel Soul) Y. .
27 ~* BiyYoel
(RockK) «
i 7 . ;
-1 0] 3

D1

Figure 4: The 2D artist embedding trained by NCE-
COLLECTIVE for objective 1, with some typical artists an-
notated. It is obvious that (i) artists with different genres get
different clusters. For example, Jason Mraz (folk, soul) is on
the left-bottom, Blake Shelton (country) is on the right side,
etc. Some high-popularity stars with frequent playing every-
where, e.g., Green Day and Katy Perry, are embedded in the
center cluster. (ii) The embedding landscapes of playlist data
and radio data are quite similar, which suggests the feasibil-
ity of transferring the knowledge from the playlist side to the
radio side.

Conclusion

In this paper, we proposed a policy transfer learning frame-
work for collectively training behaviour policies of interac-
tive systems from heterogeneous usage data. To our knowl-
edge, this is the first work applying noise contrastive es-
timation techniques to this setting, and we show that this
framework can be used to effectively optimise a lower bound
on an online performance objective (IPS policy value). At
the same time, our method allows the joint training of two
NCE models to transfer knowledge between different types
of usage data. Our empirical results are obtained in the chal-
lenging domain of learning policies for online radio sta-
tions. Crucially, we show that our approach of optimising a
lower bound on the IPS training objective results in excellent
behaviour policies. We also show that models learned on
playlist data only (as done in previous work) do not result
in good online performance. However, best performance is
achieved when transferring knowledge from playlist data to
the radio policy using our joint optimisation approach. For
future work, we aim to investigate different choices of sam-
pling distribution for obtaining negative items in NCE train-
ing. Also, our focus has been on the “explore first” training
scenario where playlist and exploration data are fixed before
learning. Moving to policies that explicitly balance explo-
ration and exploitation is another promising direction.

Acknowledgements
We sincerely thank Thore Graepel and Noam Koenigstein

for many helpful discussions, and Nir Nice and the Mi-
crosoft Recommendations Team for supporting this project.

References

Bengio, Y.; Senécal, J.-S.; et al. 2003. Quick training of
probabilistic neural nets by importance sampling. In AIS-
TATS Conference.

Chen, S.; Moore, J. L.; Turnbull, D.; and Joachims, T. 2012a.
Playlist prediction via metric embedding. In KDD, 714-722.
ACM.

Chen, T.; Zhang, W.; Lu, Q.; Chen, K.; Zheng, Z.; and Yu,
Y. 2012b. Svdfeature: a toolkit for feature-based collabo-
rative filtering. The Journal of Machine Learning Research
13(1):3619-3622.

Crossen, A.; Budzik, J.; and Hammond, K. J. 2002. Flytrap:
intelligent group music recommendation. In ACM IUI, 184—
185.

Dudik, M.; Erhan, D.; Langford, J.; and Li, L. 2012.
Sample-efficient nonstationary policy evaluation for contex-
tual bandits. In Proceedings of the UAI

Gutmann, M. U., and Hyvirinen, A. 2012. Noise-contrastive
estimation of unnormalized statistical models, with applica-
tions to natural image statistics. The Journal of Machine
Learning Research 13(1):307-361.

Koren, Y.; Bell, R.; and Volinsky, C. 2009. Matrix fac-
torization techniques for recommender systems. Computer
(8):30-37.

Langford, J.; Strehl, A.; and Wortman, J. 2008. Exploration

scavenging. In Proceedings of the 25th international con-
ference on Machine learning, 528-535. ACM.

Lavrenko, V., and Croft, W. B. 2001. Relevance based lan-
guage models. In Proceedings of the 24th annual interna-
tional ACM SIGIR conference on Research and development
in information retrieval, 120-127. ACM.

Li, L.; Chu, W.; Langford, J.; and Schapire, R. E. 2010.
A contextual-bandit approach to personalized news article
recommendation. In Proceedings of the 19th international
conference on World wide web, 661-670. ACM.

Li, L.; Chu, W.; Langford, J.; and Wang, X. 2011. Unbiased
offline evaluation of contextual-bandit-based news article
recommendation algorithms. In Proceedings of the fourth

ACM international conference on Web search and data min-
ing, 297-306. ACM.

Li, L.; Chen, S.; Kleban, J.; and Gupta, A. 2015. Counterfac-
tual estimation and optimization of click metrics in search
engines: A case study. In Proceedings of the 24th Interna-
tional World Wide Web Conference (WWW’14), Companion
Volume.

Li, L. 2015. Offline evaluation and optimization for inter-
active systems. In Proceedings of the Eighth ACM Interna-
tional Conference on Web Search and Data Mining, 413—
414. ACM.

Liebman, E.; Saar-Tsechansky, M.; and Stone, P. 2015. DJ-
MC: A reinforcement-learning agent for music playlist rec-
ommendation. In AAMAS, 591-599.

Mnih, A., and Salakhutdinov, R. 2007. Probabilistic matrix
factorization. In Advances in neural information processing
systems, 1257-1264.

Mnih, A., and Teh, Y. W. 2012. A fast and simple algorithm
for training neural probabilistic language models. In Pro-
ceedings of the 29th International Conference on Machine
Learning (ICML-12), 1751-1758.

Pan, S. J., and Yang, Q. 2010. A survey on transfer learn-
ing. Knowledge and Data Engineering, IEEE Transactions
on 22(10):1345-1359.

Ramon, J.; Driessens, K.; and Croonenborghs, T. 2007.
Transfer learning in reinforcement learning problems
through partial policy recycling. In ECML. Springer. 699—
707.

Strehl, A.; Langford, J.; Li, L.; and Kakade, S. M. 2010.
Learning from logged implicit exploration data. In Advances
in Neural Information Processing Systems, 2217-2225.
Sutton, R. S., and Barto, A. G. 1998. Introduction to rein-
forcement learning. MIT Press.

Taylor, M. E., and Stone, P. 2007. Cross-domain transfer for
reinforcement learning. In Proceedings of the 24th interna-
tional conference on Machine learning, 879-886. ACM.
Taylor, M. E., and Stone, P. 2009. Transfer learning for
reinforcement learning domains: A survey. J. Mach. Learn.
Res. 10:1633-1685.

Zhao, X.; Zhang, W.; and Wang, J. 2013. Interactive collab-
orative filtering. In Proceedings of the 22nd ACM interna-

tional conference on Conference on information & knowl-
edge management, 1411-1420. ACM.

