
Resolving the conflict between generality and plausibility in verified computation
Srinath Setty?, Benjamin Braun?, Victor Vu?, Andrew J. Blumberg?, Bryan Parno†, and Michael Walfish?

?The University of Texas at Austin, Austin, TX †Microsoft Research, Redmond, WA

Abstract. The area of proof-based verified computation
(outsourced computation built atop probabilistically check-
able proofs and cryptographic machinery) has lately seen re-
newed interest. Although recent work has made great strides
in reducing the overhead of naive applications of the theory,
these schemes still cannot be considered practical. A core is-
sue is that the work for the server is immense, in general; it
is practical only for hand-compiled computations that can be
expressed in special forms.

This paper addresses that problem. Provided one is willing
to batch verification, we develop a protocol that achieves the
efficiency of the best manually constructed protocols in the
literature yet applies to most computations. We show that
Quadratic Arithmetic Programs, a new formalism for rep-
resenting computations efficiently, can yield a particularly
efficient PCP that integrates easily into the core protocols,
resulting in a server whose work is roughly linear in the run-
ning time of the computation. We implement this protocol in
the context of a system, called Zaatar, that includes a com-
piler and a GPU implementation. Zaatar is almost usable for
real problems—without special-purpose tailoring. We argue
that many (but not all) of the next research questions in veri-
fied computation are questions in secure systems.

1 Introduction
The rise of third-party and cloud computing has led to re-
newed emphasis on a basic systems security problem: al-
lowing one party to check the output of a computation out-
sourced to a separate, potentially undependable party. While
the first party could in principle carry out the computation
itself as a check, that would defeat the purpose of having
outsourced the computation in the first place. For example,
a typical use of cloud computing is performing large-scale
simulations. Given the risk of incorrect program execution,
users want to know that the answers that are returned are
correct—and local checking is not an option.

There are many approaches to solving this problem that
rely on assumptions about the computation or usage model.
Replication [4, 19, 32, 41] assumes that failures are uncor-
related. Trusted hardware [48] and attestation [46, 49] can
work for any failure model but assume a chain of trust that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Eurosys ’13 April 15-17, 2013, Prague, Czech Republic.
Copyright © 2013 ACM 978-1-4503-1994-2/13/04. . . $15.00

is inconsistent with many applications. Auditing [43] can be
effective for highly structured computations but assumes de-
tailed knowledge of the intermediate results.

In principle, there are solutions that make almost no such
assumptions. These solutions, which we refer to as verified
computation protocols, use modern cryptography coupled
with seminal work in complexity theory on probabilistically
checkable proofs (PCPs) [6, 7]. In these solutions, a remote
server returns not only the result of the computation but also
a proof of correctness, encoded to enable efficient checking
by a client. The theoretical guarantees are very strong: there
are no assumptions about the server (besides standard cryp-
tographic ones) or about the computation. Indeed, any pro-
gram can be compiled into such a protocol—in principle.

The stumbling block has been practicality. Although there
are many protocols for general-purpose verified computa-
tion in the literature [26, 30, 31, 33, 34] and have been for
a long time [8], the theory, if implemented naively, is pre-
posterously expensive: hundreds of trillions of CPU-years or
more to verify simple computations [52].

Very recently, researchers have started adapting these pro-
tocols for use in real systems [23, 50, 52, 54, 55]. The good
news is that this work has produced massive performance
improvements over naive implementations (e.g., 20 orders
of magnitude [52, 54]). The bad news is that these systems
are still essentially impractical.

Indeed, the overhead for both verifier and server remains
excessive, owing to the proof encoding needed to make the
proof efficiently checkable. For general computations, the
prover runs in time quadratic in the running time of the com-
putation. To support claims to plausibility, existing work in-
troduces a tradeoff between generality and efficiency. Specif-
ically, by restricting themselves to computations that can be
expressed in special forms, they achieve better performance;
Setty et al. [54] achieve efficiency for hand-tailored proto-
cols for particular computations (e.g., matrix multiplication),
and the work of Thaler et al. [23, 55] is restricted a priori to
computations that are efficiently parallelizable and can be
expressed as concise arithmetic circuits.

This paper resolves this conflict:
(1) Using a new formalism [27], we introduce a novel lin-

ear PCP that works over constraints (these terms are ex-
plained in Section 2) and plugs into the framework of Gin-
ger (the verified computation system of [54]) to provide a
proof encoding that is now linear, instead of quadratic, in
computation running time plus program length (encoded as
constraints).1 As a theoretical matter, this resolves an open

1The observation that the formalism of [27] yields linear PCPs has been

problem posed by Ishai et al. [33] (who speculated that such
an encoding was possible) and results in a protocol in which
the server’s overhead is nearly linear (there are two logarith-
mic factors, as we explain later). As a practical matter, this
demolishes costs: the server’s overhead on all computations
is similar to the overhead for the best manually constructed
computations in prior work [23, 54, 55].

(2) Using the Ginger implementation as a base, we have
integrated our refined linear PCP into a built system for
verified computation, called Zaatar. Zaatar adapts the com-
piler from Ginger (itself descended from the Fairplay com-
piler [40]) to produce the constraints needed by the new lin-
ear PCP. This allows Zaatar to take a high-level language as
input and to leverage Ginger’s GPU implementation.

(3) We perform a detailed experimental evaluation of Za-
atar. We examine real programs that are expressed in a
high-level language and compiled automatically (by con-
trast, most of the evaluated computations in prior work were
manually constructed [23, 52, 54, 55]). For various realistic
benchmark computations, including sorting, clustering, and
shortest paths, Zaatar’s prover is significantly more efficient
than that of its base, Ginger. For instance, with the bench-
mark problems that we experimented with, the prover’s costs
usually reduce by 3–6 orders of magnitude, depending on
the input size. The verifier’s costs drop by similar amounts.
Therefore the verifier can batch-verify a plausibly small set
(thousands) of computations and still gain from outsourcing.
As one would expect, Zaatar’s measured scaling behavior
(linear) is far more favorable than Ginger’s (quadratic).

Although we are not quite ready to start a company, these
results are encouraging. For one thing, they apply in realis-
tic scenarios: regimes in which batching (verifying multiple
instances of the same computation on different inputs) is ac-
ceptable and users are willing to pay something for security
guarantees. These requirements are consistent with current
uses of cloud computing. For instance, large-scale simula-
tions in scientific computing often have repeated structure,
as does the map phase of MapReduce computations (how-
ever, our system does not yet apply in situations where the
verifier does not locally have all of the input).

More importantly, the technical work of this paper re-
duces costs to the point where the problem of verified com-
putation is now at least partially a problem in secure sys-
tems research, realizing the vision of Setty et al. [50]. That
is, there is still overhead (which would ideally be smaller),
but many of the next steps are systems problems. For in-
stance, there are many integration questions. We need to inte-
grate the verification machinery with (potentially untrusted)
storage [17, 18, 36, 38], to handle computations with side-
effects. To apply to MapReduce, we need to modify the pro-
tocols to handle the case where the inputs are not all available
locally. To enable users to write real programs, we need to

independently made in a theoretical context [15], as detailed in Section 6.

Ψ, x

y

queries

prover (P)

responses

verifier (V)

tests

{Z1Z2+Z3=0,
Z4+Z6=0, ...}Ψ

π

Ψ {Z1Z2+Z3=0,
Z4+Z6=0, ...}

z1, z2, ...

accept/
reject

1 1

2

33
3

Figure 1—Our framework at a high level. V specifies a computa-
tion, Ψ. Step À: V and P compile Ψ to constraints. Step Á: P
solves the constraints. Step Â: P produces a proof π, and V queries
P; the responses prove to V that P has solved the constraints. This
latter step uses an efficient argument system built atop PCPs.

integrate Zaatar with standard libraries. There are also many
general systems questions. Most notably, we need a better
compiler. For instance, we need to improve the representa-
tion of floating-point numbers. Currently, the compiler re-
quires input size bounds, so we need to optimize recompila-
tion to handle variable input sizes [39].

A systems obstacle could be conceptual complexity. Thus,
the next section provides a tutorial in the fundamentals. Sub-
sequent sections describe the innovations in this paper.

2 Framework and background
This section describes our framework (§2.1) and the machin-
ery that forms Zaatar’s base (§2.2). We intend to provide the
necessary context for this paper in a way that is accessible to
systems readers. For a more detailed tutorial, see [52, §2].

2.1 Problem statement and approach

Problem statement. A verifier V sends a description of a
computation Ψ and input x to a prover P . P computes
y = Ψ(x), and returns y to V . Then, V and P interact in
such a way that: (1) if y = Ψ(x), V accepts y as correct;
but (2) if y 6= Ψ(x), V rejects y, with high probability. The
interaction should be cheaper for V than computing Ψ(x).
Furthermore, the guarantees should depend only on V and
not on, say, whether P obeys the protocol (although we will
make standard cryptographic assumptions about the limits of
P’s computational power).

Our high-level solution is depicted in Figure 1. The first
step is for V to express its computation in a constraint for-
malism. For our purposes, a set of constraints C will mean a
system of equations that uses field operations (addition and
multiplication) over variables (X, Y , Z) in a finite field, F (for
example, {Z1 · Z2 + Z3 = 0, Z4 · Z5 = 0}). The variables
X and Y will be distinguished input and output variables; for
now, we will assume one of each for expositional simplicity.
The notation C(X=x, Y=y) denotes C with variable X bound
to x and variable Y bound to y. If there exists a setting of
the remaining (or unbound) variables that makes all of the
equations hold simultaneously, then the set of constraints is
satisfiable; such a setting is called a satisfying assignment.

For a given computation Ψ, expressed in a high-level lan-
guage, we say that a set of constraints C is equivalent to Ψ if:
for all x, y, we have y = Ψ(x) if and only if C(X=x, Y=y) is
satisfiable. As an example, decrement-by-3 is equivalent to
{X − Z = 0, Y − (Z − 3) = 0}.

In the second step, P obtains y = Ψ(x) by executing Ψ,
and in the process of doing so, identifies z, a satisfying as-
signment of C(X=x, Y=y), where C is the set of constraints
equivalent to Ψ.

The third step is forP to use the theory of probabilistically
checkable proofs (PCPs) to prove to V that it has a solution.
A classical proof for the statement, “These constraints have
a solution” would be an actual satisfying assignment, e.g.,
z, which the verifier could plug into C to check that each
constraint is satisfied. This checking procedure requires the
verifier to read the entire proof.

The surprising content of the PCP theorem [6, 7] in our
context is that for any set of constraints C(X=x, Y=y), there
is a randomized verification algorithm, V , that inspects suit-
ably encoded proofs probabilistically. Specifically, V in-
spects a constant number of randomly chosen locations in a
purported proof (the constant is independent of the constraint
set), runs some checks against the results, and satisfies:

• Completeness. If the constraints are satisfiable—that is,
if y=Ψ(x)—then there exists a suitably encoded proof (a
PCP) that makes V accept.

• Soundness. If the constraints are not satisfiable—that is,
if y6=Ψ(x)—V’s probability of accepting any given proof
is very small. This probability is over V’s random choices.

Unfortunately, the naturally-implementable “textbook”
PCPs [44] are too large to be transferred (and other PCPs,
while asymptotically short [11, 12, 24], appear to have pro-
hibitive constants). However, we can handle long PCPs with
cryptography: if we assume a standard bound on the prover’s
computational abilities, we can use efficient argument sys-
tems. The high-level idea [34] is that the prover commits to
the contents of the proof by publishing a digest. Then V asks
for the values of the proof at particular locations and verifies
that the responses are consistent with the digest. In this way,
P is forced to simulate a fixed proof. That is, an interaction
between V and a fixed proof string becomes an equivalent
interactive protocol between two actors, V and P .

Below, we describe Ginger [54], which is an efficient ar-
gument system that implements the idea above, building on
the foundations of Ishai et al. [33] and Pepper [52].

2.2 Our starting point: Ginger

Figure 2 depicts Ginger. We first describe its constraints, then
its commitment protocol, and then its PCP.

Computations and constraints. Ginger represents a broad
class of computations as degree-2 constraints over F, mean-
ing constraints in which the product terms have no more

Ψ, x

y
Enc(r)

q1, q2, ..., qµ, t

prover (P)

Enc(π(r))

consistency test

π(q1), …, π(qµ), π(t)

linear PCP verifier

π(q1), …, π(qµ)

q1, q2, ..., qµ

r

π(r)

t

π(t)

quad. test
circuit test

verifier (V)

π =
(z, z ⊗ z)

Figure 2—The Ginger protocol [54], which is Zaatar’s base; Zaatar
modifies the shaded pieces. Ginger and Zaatar verify multiple in-
stances of Ψ in a batch; this is not depicted. Also not depicted are
Ψ’s equivalent constraints, C.

than two elements. The computations can have field oper-
ations, primitive floating-point types, if-then-else construc-
tions, logical tests, logical connectives, and inequality com-
parisons [54]. As a simple example, the construct X != Z

can be represented as {0 = (X − Z) · M − 1}, where M
is an auxiliary variable. Ginger’s compiler uses this equiv-
alence and others to transform a high-level language into
degree-2 constraints. This transformation is detailed in [16];
very broadly speaking, it works as follows. The compiler
turns a program (even if it has conditionals and loops) into a
list of assignment statements. Then it produces a constraint
or pseudoconstraint for each statement. Pseudoconstraints
abstract certain operations; for instance, order comparisons
expand to O(log |F|) actual constraints.

Linear commitment. Ginger’s commitment protocol lever-
ages PCP constructions [6] in which the proof is encoded
as a linear function; Ishai et al. call these constructions
linear PCPs [33].2 A linear function π is one for which
π(a) + π(b) = π(a + b) for all a, b in the domain of π.
Note that a linear function π : Fn 7→ F is determined by a
vector. Specifically, there exists a vector u ∈ Fn such that
π(a) = 〈a, u〉, for all a ∈ Fn. Here, F is the same field as
above and 〈a, b〉 is the inner (or dot) product of two vectors.

The protocol has two phases [52]. In the first phase, V asks
P to apply its function to an encrypted vector;3 this forces P
to commit to some fixed function π. In the second phase, V
submits the queries given by the PCP protocol (see below) to
the function π; note that P commits to π before P sees these
queries. V then uses the protocol to check that P’s responses
are given by π. If not, V immediately rejects. If so, V treats
the responses as the PCP responses, and runs the PCP checks
(described below) on these responses.

2To avoid confusion, we note that the term “linear” is relevant in two ways
in this paper. First, “linear PCPs” refers to the form of the proof (rather
than its overhead, which used to be quadratic). Second, the current paper
constructs linear PCPs that have near-linear overhead.

3For this purpose, Ginger requires homomorphic encryption but not fully
homomorphic encryption [28]; Ginger uses ElGamal [25].

A linear PCP. A PCP is normally described as an oracle π
(a fixed function to which V has access). Since the commit-
ment protocol allows V to treat P as implementing that ora-
cle [33, 52, 54], we will be loose about whether V’s queries
are submitted to an oracle π or a prover P . Below, we ex-
plain the PCP protocol [6], starting with the PCP itself, then
V’s queries and checks, and then the costs and guarantees.

Recall that V begins with Ψ and x, receives y, and wishes
to check whether y = Ψ(x); to that end, V is looking to be
convinced that C(X=x, Y=y) has a satisfying assignment. A
correct prover encodes that satisfying assignment z in a vec-
tor u = (z, z ⊗ z), where a ⊗ b denotes the outer product
(the vector consisting of all pairs of products of the compo-
nents) of a and b. This vector u is the linear PCP π. That is,
π = (π1,π2), where π1(·) = 〈·, z〉 and π2(·) = 〈·, z⊗ z〉.
We explain the relevance of outer products below; for now,
we just note that π will enable V to probabilistically check
whether z is a satisfying assignment. Before proceeding,
we give some notation. Let |C| denote the number of con-
straints in C. Further, let Z denote the unbound variables in
C(X=x, Y=y); that is, Z is the set of variables in C that re-
main after X and Y are fixed.

The protocol constructs a polynomial Q(V , Z)—we say
“the protocol constructs” because the polynomial is never
fully materialized by either party—that depends on C and
(x, y), where V = (V1, . . . , V|C|) are variables that V will
set with random choices. We do not give the construc-
tion [6, 33, 52] here but state the properties: the construction
ensures that Q probabilistically “detects” whether a given as-
signment z satisfies C(X=x, Y=y). Specifically, (1) If z is a
satisfying assignment, then Q(V , z) = 0 for all possible val-
ues of V; but (2) If z is not a satisfying assignment, then for
randomly chosen v ∈ F|C|, Q(v, z) 6= 0, except with proba-
bility 1/|F| (and |F| is large; see Section 5.1).

Thus, V makes a random choice of v ∈ F|C|; if Q(v, z) =
0, then V accepts, and otherwise rejects. This probabilistic
check of whether the z held by P is a satisfying assignment is
justified because of Q’s properties (1) and (2), stated above.

But how, without direct access to z, does V check whether
Q(v, z) = 0? The answer is that Q(V , Z), when evaluated at
a value V = v, is a degree-2 polynomial in Z (see [6, 33, 52]
for details), which implies that we can write Q(v, Z) as:

Q(v, Z) = 〈γ2, Z ⊗ Z〉+ 〈γ1, Z〉+ γ0,

where the random {vj} determine γ0 ∈ F, γ1 ∈ F|Z|, and
γ2 ∈ F|Z|2 . With Q(v, Z) in this form, V can obtain Q(v, z)
by asking P for π2(γ2) = 〈γ2, z⊗ z〉 and π1(γ1) = 〈γ1, z〉,
and adding γ0. Thus, to check whether Q(v, z) = 0, V checks
whether π2(γ2) + π1(γ1) + γ0 = 0. (Now we can see why P
forms the outer product z⊗ z: to answer the “γ2 queries”.)

The above test consists of issuing circuit queries (γ1 and
γ2) and applying a particular check to the results. There are
two further sets of queries. V must check that π indeed is
a linear function, and that this linear function has the form

(z, z ⊗ z) (else, the circuit test is meaningless). For these
two purposes, V issues to π1 and π2 linearity queries and
quadratic correction queries, and applies a very efficient
check to the results. These tests are run multiple times, with
independent random choices; the number depends on the de-
sired soundness (see below).

Notice that constructing queries requires formulating in-
puts to π1 and π2 and that these inputs are at least as large
as |Z|, which itself is roughly the same size as the compu-
tation. For this reason, Ginger amortizes the cost of gen-
erating the {vj} and the other queries over a batch of size
β: a set of computations with the same Ψ but different in-
puts. Thus, the protocol above should be read as process-
ing in parallel multiple inputs x(1), . . . , x(β), multiple outputs
y(1), . . . , y(β), and multiple proofs π(1), . . . ,π(β). Given this
batched model, cost reductions for V will show up in V’s
break-even batch size, defined as the point at which V gains
from outsourcing: this is the minimum batch size at which
the cost of query construction is less than the cost to run the
computations locally.

We now state the guarantees. IfP computes correctly, then
V accepts the proof and hence believes that y = Ψ(x). If P
does not compute correctly—if it does not participate in the
commitment protocol correctly, if it commits to a function
that is not linear, if it commits to a linear function not of the
form (z, z ⊗ z), or if it commits to a linear function (z′, z′ ⊗
z′) where z′ is not a satisfying assignment—then V rejects
the proof with probability ≥ 1 − ε, where ε is less than one
part in a million, for |F| = 2128 (see [53, Apdx. A.2] for
details). This soundness can be made arbitrarily close to 1
by repeating queries (to reduce the PCP error) and increasing
the field size (to reduce the commitment error, if needed).

3 Collapsing proof length in Zaatar
Ginger [54] faces a severe obstacle to plausible practicality:
the prover’s per-instance work and the verifier’s query setup
work are quadratic in the size of the computation. We make
this statement more precise below, but for now recall that the
server’s proof vector u is (z, z⊗ z), so |u| = |z|+ |z|2. Ginger
addresses this issue by manually tailoring the proof vector
and the queries, but this works only for some computations.

In this section and the next, we describe how Zaatar ad-
dresses the issue in general. This section describes Zaatar’s
encoding, in which the proof vector size and the verifier’s
setup work are linear in the size of the computation.4 How-
ever, this encoding imposes costs. Section 4 weighs these
costs against the benefits, finding that Zaatar is far more fa-
vorable than the alternative.

The high-level idea in Zaatar’s encoding is to retain Gin-
ger’s structure but to replace the linear PCP of Arora et al. [6]
4These costs include an extra log factor applied to the number of steps in
the computation. The reason is that the size of our field F must be larger
than the number of steps in the computation, and meanwhile each entry in
the proof is log |F| bits. However, we neglect this factor in our description
by referring to “the size of the computation”, which captures the field size.

with a new linear PCP that is based on Quadratic Arithmetic
Programs (QAPs), a circuit encoding introduced by Gennaro
et al. [27, §7–8]. This substitution works because (a) the lin-
ear commitment protocol requires only that the PCP is a lin-
ear function; and (b) QAPs have a linear query structure that
yields a PCP, a key observation of Zaatar (Bitansky et al. [15]
concurrently make a similar observation; see Section 6). To
obtain this QAP-based PCP, we extract the essence of Gen-
naro et al.’s construction (which is more complex because
geared to a different regime; see Section 6). Once we do so,
we inherit a prover whose proof vector is, to first approxima-
tion, the satisfying assignment itself.

Since PCPs “derive their magic” from a highly redundant
encoding of the proof, it may seem surprising that we have
a protocol in which the proof vector needs little redundancy.
However, as Ishai et al. observed [33], a linear PCP contains
implicit redundancy because the actual proof is not the vector
but rather the linear function, which is exponentially larger
than the classical proof (if written out as a string, it would
contain an entry for every point in its domain). For this rea-
son, Ishai et al. speculated that avoiding redundancy in the
proof vector might be possible; the construction described
below resolves this conjecture.

Loosely speaking, QAPs achieve this compaction by en-
coding circuits (we adapt the encoding to constraints) as
high-degree polynomials, in contrast to the low-degree poly-
nomials of Section 2.2.

Details. As in Ginger, Zaatar takes as a given a constraint set
C, over the variables (X, Y , Z), that is equivalent to a compu-
tation Ψ. (Recall that X is the set of input variables, Y is the
set of output variables, Z are the unbound variables, and let
|C| be the number of constraints in C.)

The protocol constructs two polynomials. The construc-
tion is somewhat analogous to the description in Section 2.2;
we will mention some of the parallels. The first polyno-
mial, which we call the divisor polynomial, D(t), is univari-
ate (and over F) and fixed for all computations Ψ of a given
size; V explicitly materializes D(t). The second polynomial,
Px,y(t, Z), depends on the constraints C, the input x, and the
purported output y. We write this polynomial as P(t, Z); it is
analogous to the polynomial Q(V , Z) in Section 2.2, though
here t ∈ F, versus V ∈ F|C|. As with Q(V , Z), neither party
fully materializes P(t, Z). We give the complete construction
in Appendix A.1 and here state the relevant properties.

The construction ensures that given z, P(t, z) can be fac-
tored as D(t) · Hx,y,z(t) for some Hx,y,z(t) if and only if z sat-
isfies C(X=x, Y=y). Meanwhile, this factoring (and hence
satisfiability) can be checked probabilistically, as follows.
Let τ be a random choice from F. Then (1) If z satis-
fies C(X=x, Y=y), then the polynomials factor, so we have
D(τ) · Hx,y,z(τ) = P(τ , z), for all possible τ ∈ F; but (2) If
z is not a satisfying assignment, then for all polynomials
H̃(t), we have D(τ) · H̃(τ) 6= P(τ , z), except with probabil-
ity 2 · |C|/|F|. This is because polynomials that are different

are equal almost nowhere in their domains (an extreme case
is two lines, which cross at most once). Since our fields are
large (§5.1), the preceding probability is very small.

The query procedure and P’s proof vector, then, are de-
signed to allow V to check whether D(t) · Hx,y,z(t) = P(t, z),
by checking whether this relation holds at a point τ . Specif-
ically, they allow V to obtain the values H(τ) ∈ F and
P(τ , z) ∈ F, where: V chooses τ randomly from F, P holds
the polynomial H(t) and the assignment z (V has no di-
rect access to either), and neither party materializes P(t, Z).
(The analogy here is with the queries that allow V to obtain
Q(v, z), in Section 2.2.) If D(τ) · H(τ) = P(τ , z), then V
accepts and otherwise rejects. (The analogy is with the con-
dition that Q(v, z) = 0, in Section 2.2.) This procedure prob-
abilistically checks whether z is a satisfying assignment; it is
complete and sound because of properties (1) and (2) above.

The proof vector. A correct proof vector u is (z, h), where
z is a purported satisfying assignment to C(X=x, Y=y), and
h = (h0, . . . , h|C|) ∈ F|C|+1 are the coefficients of the poly-
nomial Hx,y,z(t), introduced above. As in Section 2.2, this
proof vector u can be regarded as two linear functions, which
we denote πz(·) = 〈·, z〉 and πh(·) = 〈·, h〉. Thus, the proof
vector’s length is equal to the number of variables plus the
number of constraints, or |Z|+ |C|.

The queries and check. To carry out the probabilistic check
described above, V must first ensure thatP is holding a linear
function, so V issues linearity queries (as in Section 2.2).

Next, V must obtain the value Hx,y,z(τ) ∈ F. To do so, V
submits qh = (1, τ , τ 2, . . . , τ |C|) to P and asks for πh(qh),
which equals 〈qh, h〉 =

∑|C|
i=0 hi · τ i = Hx,y,z(τ).

V also needs the value P(τ , z) ∈ F. As shown in Ap-
pendix A.1, P(t, Z) is a polynomial in t and Z, with the form

P(t, Z) =

 |Z|∑
i=1

Zi · Ai(t) + A′(t)

 ·
 |Z|∑

i=1

Zi · Bi(t) + B′(t)


−

 |Z|∑
i=1

Zi · Ci(t) + C′(t)

 ,

for some polynomials {Ai(t), Bi(t), Ci(t)}i=1...|Z| and
{A′(t), B′(t), C′(t)}. Now, observe that evaluating P(t, Z) at
t=τ yields P(τ , Z), a polynomial in Z with the form:

P(τ , Z) = (〈qa, Z〉+ La) · (〈qb, Z〉+ Lb)− (〈qc, Z〉+ Lc) ,

where {qa, qb, qc} ∈ F|Z| depend on τ , and {La, Lb, Lc} ∈
F depend on τ , x, and y. Finally we can say how V obtains
P(τ , z): it asks P for πz(qa),πz(qb), and πz(qc).
V’s check is then the following. V computes D(τ) and
{La, Lb, Lc}, and checks

D(τ)·πh(qh)
?
= (πz(qa) + La)·(πz(qb) + Lb)−(πz(qc) + Lc) .

The full protocol and its analysis are in Appendix A (see
also [51]); as in Section 2.2, the soundness error is less than
one part in a million. We now turn to costs.

Ginger [54] Zaatar

proof vector size (|uginger| or |uzaatar|) |Zginger|+ |Zginger|2 |Zzaatar|+ |Czaatar| = 2 · (|Zginger|+ K2)

worst case proof vector size |Zginger|+ |Zginger|2 |uginger| · (1 + δ), where δ is 2/(|Zginger|+ 1)

P’s per-instance CPU costs
Construct proof vector T + f · |Zginger|2 T + 3f · |Czaatar| · log2 |Czaatar|
Issue responses (h + (ρ · `+ 1) · f) · |uginger| (h + (ρ · `′ + 1) · f) · |uzaatar|

V’s per-instance CPU costs
Construct computation-specific queries ρ · (c · |Cginger|+ f · K)/β ρ · (c + (fdiv + 5f) · |Czaatar|+ f · K + 3f · K2)/β
Construct computation-oblivious queries (e+2c+ρ·(2ρlin·c+(`+1)·f))·|uginger|/β (e + 2c + ρ · (2ρlin · c + `′ · f)) · |uzaatar|/β
Process responses d + ρ · (2`+ |x|+ |y|) · f d + ρ · (`′ + 3|x|+ 3|y|) · f
Cginger, Czaatar: Ginger and Zaatar constraint sets for Ψ (§2.1) T: running time of Ψ (§5.2)
|Zginger|: number of variables in Cginger (§2.1) |Zzaatar| (= |Zginger|+ K2): number of variables in Czaatar (§4)
|Cginger| (= |Zginger|): number of constraints in Cginger (§4) |Czaatar| (= |Zginger|+ K2): number of constraints in Czaatar (§4)
K: number of additive terms in Cginger (§4) |x|, |y|: number of elements in input, output (§2.1)
K2 (≤ K): number of distinct additive degree-2 terms in Cginger (§4) β: batch size (number of instances) (§2.2, §5.2)
ρlin, ρ: number of linearity tests, number of PCP repetitions ` = 3ρlin + 2: number of (high-order) PCP queries in Ginger [53]
e, d: cost of encrypting, decrypting an element in F (§5.1) `′ = 6ρlin + 4: number of (total) PCP queries in Zaatar (§A.1)
h: cost of ciphertext add plus multiply (§5.1) f : cost of multiplying in F (§5.1)
c: cost of pseudorandomly generating an element in F (§5.1) fdiv: cost of division in F (§5.1)

Figure 3—Costs to prover and verifier to verify a computation Ψ, under Zaatar and Ginger (the text explains this choice of baseline). Zaatar
increases the number of constraints and variables, and requires additional bookkeeping for the prover and verifier, but these effects are
dominated by a vast reduction in the proof encoding, so the Zaatar prover and verifier are far more efficient overall. The term K2 is key to the
comparison; this term is large only for degenerate computations (see text). The table assumes that the constraints Cginger and Czaatar have been
generated by our compilers. Computation-specific queries refer to those that depend on the structure of the computation and its constraints,
while computation-oblivious queries depend only on the length of the proof vector.

4 Cost-benefit analysis
Given our goal of removing prover overhead, the Zaatar pro-
tocol is very promising. However, we need to consider its
benefits against the cost of its additional requirements. This
section performs an analysis, summarized in Figure 3.

Our chosen baseline for this analysis is the encoding in
Ginger [54]; Ginger was previously the most efficient veri-
fied computation scheme that is both a system and general-
purpose. (See Section 6 for discussion of this assertion.)

Summary of the analysis. Zaatar requires more constraints
over a larger set of variables than Ginger does for the same
computation; all other things being equal, this slight blowup
would increase the prover’s and the verifier’s costs. Also, Za-
atar requires additional bookkeeping from the prover (when
constructing the proof encoding) and the verifier (when con-
structing queries). However, these two effects are dwarfed
by a vast reduction in the size of the proof encoding under
Zaatar. The consequence is a correspondingly vast improve-
ment in both the prover’s work and the verifier’s query setup
work (and hence the break-even batch size, as defined in Sec-
tion 2.2). Finally, while there are cases when Zaatar is worse
than Ginger, they are contrived computations with a partic-
ular structure (e.g., evaluation of dense degree-2 polynomi-
als); none of the computations that we have investigated (§5)
comes close to this degenerate behavior.5

Below, we present the analysis. The comparison depends
5Also, the degenerate cases are detectable, so the compiler could simply
choose to use Ginger (or [23, 55]) over Zaatar; see [57].

heavily on the number of constraints and variables in Zaatar
versus the alternative, so we begin with these quantities.

Constraints in Zaatar versus Ginger. Whereas Ginger re-
quires only that constraints are degree-2 (§2.2), Zaatar im-
poses an additional requirement. Under Zaatar, each con-
straint Qj must be in the form pA · pB = pC, where pA,
pB, and pC are degree-1 polynomials over the variables in
the constraint set. We call this quadratic form; the require-
ment stems from the way that Zaatar, via QAPs, encodes
constraints in polynomials (Appendix A.1 gives detail).

We can obtain constraints Czaatar in quadratic form, given
a set of Ginger constraints Cginger; indeed, our compiler first
compiles to Ginger constraints and then performs the fol-
lowing transformation. For every constraint in Cginger, we re-
tain all of the degree-1 terms and replace all degree-2 terms
with a new variable. For example, if a constraint in Cginger is
{3 ·Z1Z2 +2 ·Z3Z4 +Z5−Z6 = 0}, then Czaatar would replace
that constraint with the following constraints, which are all
in quadratic form: {(3 · Z′1 + 2 · Z′2 + Z5) · (1) = Z6, Z1Z2 =
Z′1, Z3Z4 = Z′2}.

We bound the number of variables and constraints in Czaatar
as follows. Letting |Zzaatar| (resp., |Zginger|) equal the number
of variables in Czaatar(X=x, Y=y) (resp., Cginger(X=x, Y=y)),
by construction of Czaatar we have |Zzaatar| = |Zginger| + K2,
where K2 is the number of distinct degree-2 terms that appear
in all of Cginger. Similarly, |Czaatar| = |Cginger|+ K2.

We analyze the drop in proof vector size at the end of this
section; see also the first two lines of Figure 3.

The prover’s work. Because of the shorter proof vector
length, the prover’s work to reply to queries drops, usually
dramatically (see the “Issue responses” row in Figure 3).
However, the prover has an additional cost under Zaatar.

The prover must compute the coefficients of the polyno-
mial Hx,y,z(t) = P(t, z)/D(t) (see Section 3). As a starting
point in this computation, the prover knows values taken by
the polynomials {Ai(t), Bi(t), Ci(t)} and {A′(t), B′(t), C′(t)}
at well-known values of t. Using operations based on the
FFT (interpolation [35], polynomial multiplication [21], and
polynomial division), the prover obtains the coefficients of
Hx,y,z(t) in time ≈ 3 · f · (|Czaatar| · log2 |Czaatar|), as depicted
in Figure 3. The process is detailed in Appendix A.3.

The verifier’s work. Like the prover, the verifier in Za-
atar also gains from the shorter proof vector; see the
“Computation-oblivious queries” line in Figure 3. However,
the Zaatar verifier incurs two additional costs, which we
summarize immediately below and detail in Appendix A.3.

The first is the cost to construct the query, which is de-
picted in the “Computation-specific queries” line in the fig-
ure. Under Ginger, the verifier must compute γ1 and γ2 in
order to issue a circuit query (§2.2); this requires generating
a pseudorandom number for each constraint and then mul-
tiplying it with each term in the given constraint, yielding
amortized costs of ρ ·(c · |Cginger|+ f ·K)/β for a batch of size
β. The analog under Zaatar is computing queries to z and to
h, which costs for the batch ρ·(c+(fdiv +5f)·|Czaatar|+f ·K+
3f ·K2). The second cost is that Zaatar’s verifier requires two
more operations per input and output, owing to the details of
query construction (see Appendices A.1 and A.3).

Detailed analysis of |u|. For a given computation, Ginger’s
proof vector has length |uginger| = |Zginger| + |Zginger|2 (per
Section 2.2). By contrast, Zaatar’s proof vector has length
|uzaatar| = |Zzaatar| + |Czaatar| (per Section 3); recalling that
|Zzaatar| = |Zginger|+ K2 and |Czaatar| = |Cginger|+ K2, we can
write |uzaatar| = |Zginger|+|Cginger|+2K2. However, |Cginger| ≈
|Zginger|, and we will in fact take |Cginger| = |Zginger|: our com-
piler, when configured to output Ginger constraints, creates
roughly one new variable for each constraint that it intro-
duces.6 Thus, we get |uzaatar| = 2 · (|Zginger|+ K2).

To compare |uzaatar| to |uginger|, we make three points.

First, |uzaatar| is less than |uginger| as long as K2 < K∗2
def
=

(|Zginger|2−|Zginger|)/2. Indeed, we expect that for most com-
putations, K2 will be far smaller than K∗2 . Roughly speak-
ing, this fails to occur only when the computation involves
adding the product of many multiplications; the reason is
that (a) K∗2 corresponds to a computation in which the aver-
age number of distinct degree-2 terms per Ginger constraint
is (|Zginger| − 1)/2, and (b) our compiler produces a Gin-
ger constraint with more than (|Zginger| − 1)/2 terms only

6A careful analysis of the compiler indicates that the actual bound is
|Cginger| ≤ (1 + α) · |Zginger|, for α = 4/(log2 |F| + 3). However, our
fields are large (§5.1), which is why the text treats α as equal to 0.

when compiling a program excerpt that involves summing
many terms that are degree-2 (or higher).7 If most of the con-
straints have this form, it means that most of the computation
involves such sums, which is a degenerate case. An example
is degree-2 polynomial evaluation, for which the Ginger en-
coding is actually very concise [52].

Second, even in the degenerate cases, |uzaatar| is very
close to |uginger|. The worst case is when K2 is maximal,
which happens when every pair of variables in Zginger ap-
pears as a degree-2 term in Cginger; that is, the maximum
value of K2 is K2 = |Zginger| · (|Zginger| + 1)/2. Recall-
ing that |uzaatar| = 2 · (|Zginger| + K2), we get |uzaatar| ≤
2 · |Zginger|+ |Zginger| · (|Zginger|+ 1) = 3 · |Zginger|+ |Zginger|2.
But |uginger| = |Zginger|+ |Zginger|2, so |uzaatar| ≤ |uginger| · (1+
2/(|Zginger|+ 1)), which is indeed close to |uginger|.

Third, for all of the computations that we investigate and
evaluate, K2 is far smaller than K∗2 (i.e., we are nowhere close
to the degenerate cases), leading to vast improvements in the
length of the proof vector, and hence breakeven batch sizes.

5 Evaluation
In this section, we study the empirical effect of Zaatar’s re-
finements on the end-to-end costs (§5.2) and the proof en-
coding (§5.3). We also discuss the expressibility of con-
straints and the limitations of Zaatar itself (§5.4).

5.1 Implementation, benchmarks, and method

We implemented Zaatar in C++ (about 6000 lines, per [58]).
Both the verifier and the prover can offload their crypto-
graphic operations to GPUs using CUDA [1]; in addition, the
prover can be distributed over multiple machines, with each
machine computing a subset of a batch. Zaatar’s compiler is
derived from Ginger’s compiler [54]; we added about 1500
lines of Java and about 500 lines of Python (again, per [58]),
to translate computations written in SFDL [40] to constraints
in quadratic form (§4). For encryption (see Figure 2 and the
“linear commitment” paragraphs in Section 2.2), we use El-
Gamal [25] with 1024-bit keys; for a pseudorandom genera-
tor, we use the ChaCha stream cipher [13].

Our experiments examine the CPU cost of Zaatar for
a set of benchmark computations: (a) Partitioning Around
Medoids (PAM) clustering [56], (b) root finding via bisec-
tion, (c) Floyd-Warshall all-pairs shortest paths [22], (d) the
Fannkuch benchmark [3], and (e) the longest common sub-
sequence (LCS) problem. Computations (a), (d), and (e) use
32-bit signed integers as inputs with a 128-bit prime as the
field modulus. Computation (b) uses rational number in-
puts with 32-bit numerators, 5-bit denominators, and a field
modulus of 220 bits. Computation (c) also has rational in-
puts, with 32-bit numerators, 32-bit denominators, and 128-
bit field modulus. The details of rational number handling

7The other constructs that produce constraints with degree-2 terms (< and
==) produce only an average of one or two distinct degree-2 terms per
constraint and add at least twice as many new variables.

and representation are given in [54].
In evaluating Zaatar’s CPU costs, we compare to two

baselines: local computation and Ginger [54]. We report the
prover’s per-instance costs, including the CPU time to ex-
ecute the computation and to participate in the verification
protocol. For the verifier, we report the breakeven batch size
(the term is defined in Section 2.2). Note that this quantity
captures only the point at which the verifier’s CPU is better
off verifying a batch versus executing the batch; this quantity
does not take into account the prover’s CPU costs or the net-
work costs. However, one could apply our measurements and
cost models (see Figure 3 and [54, Fig. 2]) to evaluate these
quantities and a breakeven point in terms of, say, dollars.

Our comparisons are aided by our cost model (Figure 3),
whose parameters we now estimate with microbenchmarks.
We run a program that executes each operation 1000 times
and report the average CPU time immediately below, for two
field sizes (standard deviations are within 5% of the means).
The results are immediately below:8

field size e d h flazy f fdiv c

128 bits 65 µs 170 µs 91 µs 68 ns 210 ns 2 µs 160 ns
220 bits 88 µs 170 µs 130 µs 90 ns 320 ns 3 µs 260 ns

We use our cost model to validate our experimental results
for Zaatar; we find that the empirical CPU costs are 5-15%
larger than the model’s predictions. We also use the estimates
above to parameterize a cost model of Ginger (see [54, Fig.
2]), and use this model to estimate Ginger’s end-to-end per-
formance; we use estimates, rather than empirics, because
the computations would be too expensive under Ginger.

Our experiments connect the verifier and the prover to a
local network. The prover runs in various configurations (sin-
gle core, distributed over multiple machines, using GPU ac-
celeration); if the configuration is not specified, the prover
uses a single core. The machines in our experiments have an
Intel Xeon processor E5540 2.53 GHz with 48GB of RAM
and two NVIDIA Quadro FX 5800 GPUs (each GPU has
240 CUDA cores and 4GB of device memory). We measure
CPU time of the prover and verifier using getrusage. Each
reported result will be the mean of three experiments (with
standard deviations within 8% of the means).

5.2 End-to-end performance

Prover’s end-to-end running time. We report on Zaatar’s
and Ginger’s provers with the following combinations of
benchmark computations and input sizes: (a) PAM cluster-
ing with 2560 data points (m=20 samples with d=128 di-
mensions clustered into two groups), (b) root finding for
degree-2 polynomials with m=256 variables and L=8 iter-
ations (c) Floyd-Warshall with m=25 nodes, (d) Fannkuch

8The flazy parameter is not explicitly in Figure 3, but some of the instances
of f in the figure should be read as flazy, which is the cost of a field multi-
plication that does not require applying “mod p”.

100

103

106

109

1012

PAM
clustering

root finding
by bisection

all-pairs
shortest path

Fannkuch
benchmark

longest common
subsequence

ru
nn

in
g

tim
e

(s
ec

on
ds

)

Ging
er

Ging
er

Ging
er

Ging
er

Ging
er

 Z
aa

tar

 Z
aa

tar

 Z
aa

tar

 Z
aa

tar

 Z
aa

tar

Figure 4—Per-instance running time of the prover under Zaatar and
Ginger for various benchmark computations. Zaatar’s theoretical
refinements improve the running time by 1–6 orders of magnitude
compared to the estimated costs of Ginger. The y-axis is log-scaled.

with m=100 permutations of {1, . . . , 13}, and (e) LCS be-
tween two strings of length m=300.

Figure 4 depicts the results. Since Zaatar’s proof vectors
are much shorter (§4, §5.3), the end-to-end running time of
the Zaatar prover is orders of magnitude smaller than the es-
timated running time of the Ginger prover. For most of the
depicted quantities, the difference is 3–6 orders of magni-
tude. In root finding, the depicted difference is between one
and two orders of magnitude because this computation has a
relatively efficient representation under Ginger (see Figure 9,
Section 5.3). Also, as we increase the number of iterations,
L, for instance to 100, the gap between Zaatar and Ginger
widens to 3 or more orders of magnitude (however, this con-
figuration requires a higher field size).

We also compare Zaatar’s prover to the cost of running
the computation locally; see Figure 5. The prover in Zaatar
is substantially slower than local computation. We find that
about 35% of the work done by the prover is in cryptographic
operations, about 40% of the work is in computing the proof
vectors, and the remainder is in answering queries.

While this computational burden is heavy, the latency can
be tamed. Specifically, we expect that (a) hardware acceler-
ation (e.g., GPUs) reduces latency per-instance, and (b) dis-
tributing the prover over more machines makes the latency of
a batch not much greater than the latency of a single instance.
We experiment by running Zaatar under various hardware
configurations (multiple machines, GPUs, etc.), measuring
the latency at the verifier. Figure 6 depicts the results. GPU
acceleration improves per-instance latency by roughly 20%,
and distribution indeed achieves near-linear speedup.

Breakeven batch sizes. We compute Zaatar’s breakeven
batch sizes by measuring the cost to locally execute a com-
putation instance and to verify one; we decompose the latter
into setup costs (which will be amortized) and per-instance
costs. We use these quantities to project the breakeven batch
sizes. For Ginger, we estimate the breakeven batch sizes us-
ing its cost model (as described in Section 5.1).

Figure 7 depicts the results: Zaatar’s breakeven batch
sizes are several orders of magnitude smaller than Ginger’s.
This improvement stems from the reduced proof vector size
(§5.3), since the verifier’s queries are proportional to the
length of the prover’s proof vector.

prover’s costs under Zaatar

computation (Ψ) local solve constraints construct u crypto ops. answer queries e2e CPU time

PAM clustering (m = 20, d = 128) 51.6 ms 8.6 s 5.0 min 5.3 min 2.4 min 12.8 min
root finding by bisection (m = 256, L = 8) 0.8 s 6.3 s 3.3 min 4.1 min 1.4 min 8.9 min
all-pairs shortest path (m = 25) 8.1 ms 1.4 s 6.5 min 5.2 min 2.8 min 14.4 min
Fannkuch benchmark (m = 100) 0.8 ms 7.5 s 4.8 min 5.1 min 2.3 min 12.3 min
longest common subsequence (m = 300) 1.4 ms 13.7 s 12.2 min 10.1 min 5.6 min 28.2 min

Figure 5—Per-instance cost of the Zaatar prover compared to the baseline of local computation (executed with the GMP library [2]), under
various computations. The “e2e CPU time” (last column) is decomposed into its contributions (u refers to the proof vector). The end-to-end
running time of Zaatar’s prover is far more than the cost to execute the computation. However, the costs do not scale up: when batching
computations, the latency of the batch is roughly equal to the latency of an instance; see Figure 6.

 0

 20

 40

 60

 80

PAM clustering all-pairs shortest path

sp
ee

du
p

4C 4C

15
C

+
15

G

15
C

+
15

G

20
C

20
C30

C
+

30
G

30
C

+
30

G

60
C

60
C60

C
(i

de
al

)

60
C

(i
de

al
)

Figure 6—Speedups from parallelizing and distributing the prover.
We run with m=10, d=128, and β=60 for PAM clustering, and
m=15,β=60 for all-pairs shortest paths. Configurations are de-
noted with bar labels; for example, 4C means 4 CPU cores, and
15C+15G means 15 CPU cores with 15 GPUs. GPU acceleration
improves per-instance latency by about 20%, and Zaatar’s prover
achieves near-linear speedup as it gets more hardware resources.

Scalability. We measure the CPU costs of Zaatar’s
prover as we vary the input sizes: (a) for PAM clus-
tering, m={5, 10, 20} (and d=128); (b) for root find-
ing, m={64, 128, 256} (and L=8); (c) for Floyd-Warshall,
m={5, 10, 20}; (d) for Fannkuch, m={25, 50, 100}; and (e)
for LCS, m={75, 150, 300}. We also estimate Ginger’s costs
at these input sizes. Figure 8 depicts the results. As expected,
Zaatar scales better than Ginger.

5.3 Computation encodings

We analyze, as a function of input sizes, the number of vari-
ables and constraints in the constraint set representation of
our benchmark problems; we perform this analysis for both
Zaatar’s constraints and Ginger’s constraints. We also com-
pute the size of the proof vectors in Zaatar and Ginger. Fig-
ure 9 depicts these quantities. The size of Zaatar’s proof en-
coding is linear in the original running time of the computa-
tion and is significantly smaller than Ginger’s.

5.4 Discussion and limitations

This section has established that (a) Zaatar produces vast per-
formance improvements over the prior state-of-the-art imple-
mented systems, (b) Zaatar’s verifier wins only after batch-
ing many computations, and (c) Zaatar’s prover is substan-
tially more expensive than simply executing the computa-
tion. Points (b) and (c) are consequences of the fact that the
computation must be encoded as constraints and because of
intrinsic costs of the verification machinery.

100

103

106

109

1012

1015

PAM
clustering

root finding
by bisection

all-pairs
shortest path

Fannkuch
benchmark

longest common
subsequence

br
ea

ke
ve

n
ba

tc
h

si
ze

s Ging
er

Ging
er

Ging
er

Ging
er

Ging
er

 Z
aa

tar

 Z
aa

tar Z
aa

tar Z
aa

tar

 Z
aa

tar

Figure 7—Breakeven batch sizes under Zaatar and Ginger; Zaatar’s
proof encoding reduces the amount of work done by the verifier,
and hence the breakeven batch sizes reduce by several orders of
magnitude versus in Ginger. The y-axis is log-scaled.

The constraint formalism is expressive: Degree-2 con-
straints can represent any computation that terminates in
polynomial time (this is implied by Pippenger and Fischer’s
result [47]). That is, in principle any program for which an
upper-bound on running time can be established at compile
time can be represented.

However, some programming idioms translate into con-
straints more efficiently than others. Straight-line arithmetic
operations translate directly. Other program structures can
produce a large number of constraints for relatively simple
operations (for instance, we require O(log |F|) constraints
for inequality comparisons; see Section 2.2). Worse, under
natural translations of computations, indirect memory ac-
cesses (for instance, array indices that are not known at com-
pile time) produce an excessive number of constraints.

Less fundamentally, our compiler lacks support for certain
program constructs, such as bitwise operations, division, and
square root operations. However, this is engineering (e.g.,
bitwise operations are supported elsewhere [45]).

Given a computation expressed as constraints, the verifi-
cation machinery imposes further limitations. First, verifica-
tion requires touching each input and output, so the client
saves CPU cycles only when outsourcing computations that
take time superlinear in the input size. Second, the sheer size
of the queries introduces a substantial setup cost for the ver-
ifier; the batched model (§2.2) addresses this cost but the
verifier “breaks even” only when it has enough instances to
batch. Third, the proof encoding introduces overhead for the
prover. Finally, the cryptographic operations are a burden on
the verifier and prover, particularly the prover.

100

103

106

109

1012

PAM clustering root finding by bisection all-pairs shortest path Fannkuch benchmark longest common subsequence

ru
nn

in
g

tim
e

(s
ec

on
ds

)

Z
aa

ta
r

Z
aa

ta
r

Z
aa

ta
r

Z
aa

ta
r

Z
aa

ta
r

Z
aa

ta
r

Z
aa

ta
r

Z
aa

ta
r

Z
aa

ta
r

Z
aa

ta
r

Z
aa

ta
r

Z
aa

ta
r

Z
aa

ta
r

Z
aa

ta
r

Z
aa

ta
rG
in

ge
r

G
in

ge
r

G
in

ge
r G
in

ge
r

G
in

ge
r

G
in

ge
r

G
in

ge
r

G
in

ge
r

G
in

ge
r

G
in

ge
r

G
in

ge
r

G
in

ge
r G

in
ge

r

G
in

ge
r

G
in

ge
r

Figure 8—Running time of the prover under Zaatar and Ginger for various benchmark computations with varying input sizes (for each
computation and each system, we double the input size twice and report three running times; text has details). Zaatar’s prover’s work scales
linearly; Ginger’s, quadratically. The y-axis is log-scaled.

computation encoding proof encoding

computation (Ψ) O(·) |Zginger| |Zzaatar| |Cginger| |Czaatar| |uginger| |uzaatar|

PAM clustering O(m2d) 20m2d 60m2d 20m2d 60m2d 400m4d2 120m2d
root finding by bisection O(m2L) 2mL m2L 2mL m2L 4m2L2 2m2L
all-pairs shortest path O(m3) 84m3 84m3 89m3 89m3 7140m6 173m3

Fannkuch benchmark O(m) 2200m 2200m 2200m 2200m (4.8 · 106) · m2 4400m
longest common subsequence O(m2) 43m2 43m2 43m2 43m2 1849m4 86m2

Figure 9—Zaatar’s and Ginger’s computation encodings (i.e., the number of variables and the number of constraints). The |Z| columns give
the number of variables, the |C| columns give the number of constraints, and the |u| columns give the number of terms in the proof encoding.
m denotes input size, L denotes the number of iterations in root finding via bisection, and d denotes the number of dimensions in the input
sample; see §5.2 for details. For all computations, Zaatar’s proof vector is significantly shorter than Ginger’s.

6 Related work

Ideally, a protocol for verified computation would be un-
conditional, general-purpose, and practical. The systems lit-
erature contains many practical, implemented systems (see
recent surveys [46, 52]); however, these are either special-
purpose or conditional (e.g., they require trusted hardware).

Very recently, general-purpose work has emerged that uses
tools from cryptography and complexity theory, and relies
only on cryptographic assumptions. For example, several
protocols [20, 26] employ fully homomorphic encryption
(FHE) [28] in protocols for non-interactive verifiable com-
putation. Unfortunately, despite advances in the efficiency of
FHE [29], it remains highly impractical.

In a more plausible vein, several authors have worked on
succinct arguments that do not rely on FHE [27, 31, 37].
Early work in this area [31, 37] supported only Boolean cir-
cuits and suffered from quadratic prover overhead. Gennaro
et al. [27] (GGPR) remove these limitations, by coupling
QAPs (and a related formalism, called QSPs) with sophis-
ticated cryptography.

Zaatar uses QAPs but without the cryptographic machin-
ery of GGPR; this results in a protocol with different char-
acteristics. For instance, GGPR provides public verifiabil-
ity (anyone can check a purported proof) while Zaatar does
not. And unlike Zaatar, GGPR is non-interactive, a property
that it achieves by encrypting query-like values and reusing
them across computations. This reuse obviates batching and
slashes network costs but results in a one-time key setup cost
that is likely to be higher (by small constant factors) than
Zaatar’s per-batch cost. For similar reasons, Zaatar’s prover,

on a per-instance basis, should be lower overhead than the
GGPR prover (Zaatar’s prover answers most of its queries in
the clear, while the GGPR prover computes over encrypted
queries). A more detailed performance comparison to an im-
plemented GGPR refinement [45] is ongoing work.

Independent of us, Bitansky et al. [15] also observe that
QAPs yield linear PCPs. However, unlike Zaatar, Bitansky et
al. incorporate the resulting linear PCPs into linear interac-
tive proofs and then into succinct non-interactive arguments.
This work is part of a theoretical literature that is establishing
promising foundations for systems [9, 10].

The work most closely related to Zaatar is several projects
aimed at implementing interactive protocols for verified
computation, built on different foundations.

One such effort is our prior work [50, 52, 54], which de-
pends on the IKO protocol [33]. IKO coupled a classical lin-
ear PCP [6] with a linear commitment primitive to derive
an efficient argument. Following a position paper [50], Pep-
per [52] strengthened this commitment primitive, exploited
batching, and applied the approach to arithmetic circuits.
Subsequently, Ginger [54] refined the protocols to further
reduce costs, extended the computational model to the con-
straints in Section 2, and implemented the system on GPUs
and with a distributed prover.

Another strand is the protocols of Cormode et al. [23, 55],
which are based on the work of [30]. These protocols do not
need cryptography or batching, and have excellent perfor-
mance for the verifier. However, results for the prover are
more equivocal [54]. Moreover, these protocols require com-
putations to be efficiently parallelizable and expressible as

concise arithmetic circuits, ruling out many programming
constructs that Ginger (and Zaatar) contain (e.g., condition-
als, order comparisons).

7 Summary and conclusion
The top-level insight in this paper is that the efficient cir-
cuit encoding in the QAPs of Gennaro et al. [27] can yield
a linear PCP that works with the efficient argument protocol
of Setty et al. [52, 54] (itself based on the proposal of Ishai
et al. [33]). This observation shows a close relation between
QAPs and PCPs, extracting the essence of QAPs—its ele-
gant and efficient encoding—from the cryptographic context
in which it was proposed (as observed independently [15]).

This (rather technical) observation leads to the paper’s
next contributions: a protocol for verified computation
whose prover has good overhead—nearly linear—for all
computations; an implementation of this protocol in the con-
text of a built system, Zaatar, that includes a compiler and
a parallel GPU implementation; and a detailed experimen-
tal evaluation, which indicates that Zaatar improves perfor-
mance by orders of magnitude over the prior state-of-the-art.

Despite these improvements, Zaatar’s prover is substan-
tially more expensive than simply executing the computa-
tion; the expense enters because the computation must be
encoded as constraints (which generalize arithmetic circuits)
and because of intrinsic costs of the protocol.

Nevertheless, we expect assurance to have a price, and in-
deed, there are regimes in which Zaatar’s costs are not ridicu-
lous. As an example, consider outsourcing data-parallel com-
putations in the cloud. This setup has (a) an abundance of
cheap computing power, meaning that the prover’s overhead
might be tolerable; and (b) a computation structure that pre-
cisely matches the batching requirement of Zaatar’s verifier.

In any case, the theoretical underpinnings of Zaatar were
thought to be laughably impractical several years ago. As a
result of prior work and this paper’s work, many of the next
steps are now systems problems; we consider that progress!

A A linear PCP protocol based on QAPs
This section describes a new linear PCP [33] protocol,
which is used by Zaatar. (Recall that Zaatar’s predeces-
sors [33, 52, 54] use the linear PCP protocol of Arora et
al. [6].) This protocol is based on Quadratic Arithmetic Pro-
grams (QAPs), a construction of Gennaro et al. [27].

Our description will be tailored to our context. In partic-
ular, the PCP protocol will check the satisfiability of con-
straints that are assumed to represent a computation (§2.1).
However, this generalizes to checking the satisfiability of any
degree-2 constraint set. Since degree-2 constraint satisfac-
tion is an NP-complete problem [5], the PCP that we present
here generalizes to checking NP relations. The core idea is
to transform a set of constraints to a set of polynomials in
such a way that the constraints are satisfiable if and only if
the polynomials have a particular algebraic relation.

A.1 The construction

Notation. We are given a constraint set C over the variables
W = (X, Y , Z), where X is the set of distinguished input vari-
ables, Y is the set of distinguished output variables, and Z is
the set of remaining variables. Let |C| denote the number of
constraints in C. Also, let n = |W| and n′ = |Z|. The follow-
ing indexing will be convenient: the variables in Z are labeled
as W1, . . . , Wn′ , and the variables in X and Y are labeled as
Wn′+1, . . . , Wn. We will be working over a finite field, F.

Building blocks. The building blocks described in the next
several paragraphs are borrowed from QAPs [27], though our
notation and phrasing is different, and we work with con-
straints explicitly.

We require that each constraint is in quadratic form (§4).
That is, constraint j has the form pj,A(W)·pj,B(W) = pj,C(W),
where pj,A, pj,B, and pj,C are degree-1 polynomials over W.
Now, for variable Wi (which will be a member of X, Y , or
Z), let ai,j be the coefficient of Wi in pj,A. Similarly, let bi,j be
the coefficient of Wi in pj,B, and let ci,j be the coefficient of
Wi in pj,C. Finally, for constraint j, let a0,j, b0,j, and c0,j be the
constant terms in pj,A, pj,B, and pj,C.

We will construct polynomials that encode these con-
straints. On the way there, it will be helpful to visualize three
(n + 1) × |C| variable-constraint matrices: A, B, C. In each
of these matrices, each row represents a variable in W (as a
special case, row i = 0 represents the constant terms), and
each column represents a constraint in C. In the A (resp., B
and C) matrix, the (i, j) cell contains ai,j (resp., bi,j and ci,j);
thus, this cell is non-zero if variable i appears in constraint
j in the pj,A (resp., pj,B and pj,C) component. Observe that
the matrices A, B, C encode the constraints; we will now turn
these matrices into polynomials.

We construct degree-|C| polynomials
{Ai(t)}, {Bi(t)}, {Ci(t)}, for i ∈ [0..n], by interpolation.
Take distinguished non-zero points σ1,σ2, . . . ,σ|C| ∈ F,
and for each i require that Ai(σj) = ai,j, Bi(σj) = bi,j, and
Ci(σj) = ci,j; at this point, there are |C| point-value pairs
constraining each of the Ai(t), Bi(t), and Ci(t). Finally,
require Ai(0) = Bi(0) = Ci(0) = 0; this gets us to |C| + 1
points and evaluations, which fully defines the polynomials
Ai(t), Bi(t), and Ci(t), by interpolation. Moreover, we can
represent each Ai(t), Bi(t), and Ci(t) in terms of their
evaluations at the values {σj}. That is, we can write:

A0(t) = (a0,1, a0,2, . . . , a0,|C|) B0(t) = (b0,1, b0,2, . . . , b0,|C|)

A1(t) = (a1,1, a1,2, . . . , a1,|C|) B1(t) = (b1,1, b1,2, . . . , b1,|C|)

...
An(t) = (an,1, an,2, . . . , an,|C|) Bn(t) = (bn,1, bn,2, . . . , bn,|C|)

We can do likewise for Ci(t): Ci(t) = (ci,1, ci,2, . . . , ci,|C|).
Now, construct the divisor polynomial, D(t):

D(t) =
∏

j∈[1..|C|]

(t − σj).

Finally, encode all of the constraints in a single polyno-
mial P(t, W) over t and the constraint variables W:

P(t, W) =

(
n∑

i=0

Wi · Ai(t)

)
·

(
n∑

i=0

Wi · Bi(t)

)
−

(
n∑

i=0

Wi · Ci(t)

)
.

We now give some notation and conventions. We will
write Px,y(t, Z) to mean P(t, W) with X=x and Y=y. We will
take w = (x, y, z) ∈ Fn to mean an assignment to the vari-
ables (X, Y , Z); by convention, w0 = 1. Thus, Px,y(t, z) means
P(t, W=w), for some w; we often write P(t, W=w) as Pw(t).
Observe that Px,y(t, Z) has the following form, as claimed in
Section 3: Px,y(t, Z) = (

∑n′

i=1 Zi · Ai(t) + A′(t)) · (
∑n′

i=1 Zi ·
Bi(t) + B′(t)) − (

∑n′

i=1 Zi · Ci(t) + C′(t)), where A′(t) is a
linear combination of A0(t), An′+1(t), . . . , An(t), the coeffi-
cients given by 1, x, y, and analogously for B′(t) and C′(t).

Claim A.1. Let w = (x, y, z) be an assignment to the vari-
ables (X, Y , Z). Then D(t) divides Pw(t) if and only if z sat-
isfies C(X=x, Y=y).

Proof. Assume D(t) divides Pw(t). Fix a constraint j ∈
[1..|C|]. By definition of D(t), the polynomial t − σj

is a factor of Pw(t), so σj is a root of Pw(t). Thus,
0 = Pw(σj) =

(∑n
i=0 wi · Ai(σj)

)
·
(∑n

i=0 wi · Bi(σj)
)
−(∑n

i=0 wi · Ci(σj)
)

. By construction of {Ai(t), Bi(t), Ci(t)},
we have

(∑n
i=1 wi · ai,j + a0,j

)
·
(∑n

i=1 wi · bi,j + b0,j
)

=∑n
i=1 wi · ci,j + c0,j. That is, constraint j is satisfied at

w=(x, y, z), by definition of ai,j, bi,j, ci,j. But we chose j arbi-
trarily, so z satisfies all constraints in C(X=x, Y=y).

For the other direction, if the z “piece” of w satisfies
C(X=x, Y=y), then every constraint is satisfied, which im-
plies Pw(σj) = 0 for all {σj}, so all {σj} are roots of Pw(t),
so Pw(t) can be factored into (t − σ1) · · · (t − σ|C|) · Hw(t)=
D(t) · Hw(t), for some Hw(t).

The QAP-based proof oracle. Let z be the prover’s pur-
ported assignment to C(X=x, Y=y). A correct proof oracle
is π = (πz,πh), where πz(·) = 〈·, z〉 and πh(·) = 〈·, h〉. Here,
h = (h0, . . . , h|C|) ∈ F|C|+1 represents the coefficients of
a polynomial H(t); that is, H(t) =

∑|C|
j=0 hj · tj. In a cor-

rect proof oracle for a correct computation, H(t) satisfies
D(t) · H(t) = Pw(t).

The PCP protocol. The protocol is depicted in Figure 10. A
detail is that queries qa, qb, qc, qd are self-corrected (see [6,
§5] or [44, §7.8.3]). The soundness of the protocol is at least
1 − κρ; Section A.2 establishes this bound and quantifies
κ. We cover the verifier’s costs in Sections 4 and A.3. For
now, note that its costs are proportional to the computation
itself, so we amortize them over multiple instances of the
computation (§2.2), in the context of the efficient argument
system described below.

The efficient argument system. Zaatar is an efficient argu-
ment system [33, 34] that composes the PCP in Figure 10

A linear PCP based on QAPs [27]

The verifier V interacts with a proof oracle π as follows. A correct
proof oracle encodes z and h, where z satisfies C(X=x, Y=y), and h
is the coefficients of a polynomial Hw(t) that satisfies D(t)·Hw(t) =
Pw(t), for w = (x, y, z).

Loop ρ times:

• Generate linearity queries: Select q5, q6 ∈R Fn′ and q8, q9 ∈R

F|C|+1. Take q7 ← q5 + q6 and q10 ← q8 + q9. Perform ρlin − 1
more iterations of this step.

• Generate divisibility correction queries:
–– Select τ ∈R F.
–– Take qa ← (A1(τ), A2(τ), . . . , An′(τ)), and q1 ← (qa + q5).
–– Take qb ← (B1(τ), B2(τ), . . . , Bn′(τ)), and q2 ← (qb + q5).
–– Take qc ← (C1(τ), C2(τ), . . . , Cn′(τ)), and q3 ← (qc + q5).
–– Take qd ← (1, τ , τ 2, . . . , τ |C|), and q4 ← (qd + q8).

• Issue queries: Send q1, . . . , q4+6ρlin to oracle π, getting back
π(q1), . . . ,π(q4+6ρlin).

• Linearity tests: Check that π(q5) + π(q6) = π(q7) and π(q8) +
π(q9) = π(q10), and likewise for the other ρlin − 1 iterations. If
not, reject.

• Divisibility correction test:
–– Take Aτ =

(
π(q1)− π(q5) +

∑n
i=n′+1 wi · Ai(τ) + A0(τ)

)
–– Take Bτ =

(
π(q2)− π(q5) +

∑n
i=n′+1 wi · Bi(τ) + B0(τ)

)
–– Take Cτ =

(
π(q3)− π(q5) +

∑n
i=n′+1 wi · Ci(τ) + C0(τ)

)
Check D(τ) · (π(q4)− π(q8)) = Aτ · Bτ − Cτ . If not, reject.

If V makes it here, accept.

Figure 10—See the text for the definition of D(t) and Pw(t), and the
construction of {Ai(t)}, {Bi(t)}, {Ci(t)}, and recall that x and y are
labeled as {wn′+1, . . . , wn}.

with Ginger’s linear commitment primitive [52, 53] (which
strengthens a primitive of Ishai et al. [33]). The soundness
error of the argument system is upper-bounded by κρ + 9 ·
µ · |F|−1/3, where µ is the number of PCP queries; see the
analysis in [53, Apdx A.2]. The network costs are (a) a full
query sent from V to P , and (b) a random seed from which
V and P derive the PCP queries pseudorandomly (see [53,
Apdx A.3]). The other costs are treated in Section A.3.

A.2 Correctness

A verifier V is given access to a proof oracle π, which is
supposed to establish the satisfiability of C(X=x, Y=y). The
following two claims establish the protocol’s correctness.
Proofs of these claims are included in [51].

Lemma A.2 (Completeness). If C(X=x, Y=y) is satisfiable,
if π = (πz,πh) is constructed as above, and if V proceeds
according to Figure 10, then Pr{V accepts} = 1.

Lemma A.3 (Soundness). There exists a constant κ < 1
such that if C(X=x, Y=y) is not satisfiable and if V proceeds
according to Figure 10, then Pr{V accepts} < κ for all pur-
ported proof oracles π̃.

The proof of Lemma A.3 establishes that κ > max{(1−3δ+
6δ2)ρlin , 6δ + 2 · |C|/|F|} suffices, for 0 < δ < δ∗, where δ∗

is the lesser root of 6δ2 − 3δ + 2/9 = 0.
As in [53, Apdx A.2], we choose δ to minimize break-even

batch sizes. We neglect the ratio 2 · |C|/|F|, since |C| roughly
captures the size of the computation and |F| is astronomical
(e.g., |F| = 2192). We choose δ = 0.0294 and ρlin = 20,
and hence κ = 0.177 suffices. We then take ρ = 8 for an
upper-bound on soundness error of κρ < 9.6× 10−7.

A.3 Costs in more detail

Earlier in the paper (Figure 3 and Section 4), we stated the
costs of Zaatar. This section fleshes out some of those claims.

We repeat the observation of Gennaro et al. [27] that the
polynomials {Ai(t)}, {Bi(t)}, and {Ci(t)} can be represented
efficiently, in terms of their evaluations at the {σj}. That
is, Ai(t) can be written as a list {(j, ai,j) | ai,j 6= 0, j ∈
{1, . . . , |C|}}, and similarly for Bi(t) and Ci(t). For conve-
nience, we let σ0 = 0 and ai,0 = bi,0 = ci,0 = 0.

The prover. To construct the πh component of its proof
vector (§A.1), the prover must compute the coefficients of
Hw(t), where D(t) · Hw(t) = Pw(t). Section 4 states that the
cost to do so is 3 · f · |C| · log2 |C|. We now detail the process.
It is three steps (well-explained in [42, Chapter 1.7]).

Step 1 is writing Pw(t) in the form A(t) · B(t) − C(t), for
degree-|C| polynomials {A(t), B(t), C(t)}, to obtain the co-
efficients of {A(t), B(t), C(t)}. The prover constructs the set
{(σj,

∑
i wi · ai,j) | j ∈ {0, . . . , |C|}, which is the evaluations

of A(t). The prover then uses multipoint interpolation [35,
Chapter 4.6.4] to compute the coefficients of A(t), in time
≈ f · |C| · log2 |C|. The prover does likewise for B(t) and
C(t). Step 2 is computing the coefficients of Pw(t) in time
≈ f ·|C|·log |C|, using multiplication based on the fast Fourier
transform (FFT) [21]. Step 3 is computing the coefficients of
Pw(t)/D(t) = Hw(t) in time ≈ f · |C| · log |C|, using FFT-
based polynomial division.

The verifier. We will be focused on Figure 10. We stated
V’s query setup costs as (§4):

c + (fdiv + 5f) · |C|+ f · K + f · 3K2.

We now explain these costs. Selecting τ costs c. Gen-
erating qd = (1, τ , . . . , τ |C|) costs f · |C|. Most of the
remaining costs are generating (A0(τ), A1(τ), . . . , An(τ)),
(B1(τ), . . . , Bn(τ)), and (C1(τ), . . . , Cn(τ)).

Gennaro et al. [27] observe that a Lagrange basis is
useful for this purpose; we give the details here. We can
write each polynomial Ai(t) as follows (and analogously for
Bi(t), Ci(t)):

Ai(t) =

|C|∑
j=0

ai,j · `j(t), where `j(t) =
∏

0≤k≤|C|
k 6=j

t − σk

σj − σk
.

We can use Barycentric Lagrange interpolation [14] to write:

Ai(t) = `(t) ·
|C|∑
j=0

ai,j ·
vj

t − σj
, where

`(t) = (t − σ0)(t − σ1) · · · (t − σ|C|), and

vj = 1/
∏

0≤k≤|C|
k 6=j

(σj − σk).

We now explain the remaining costs. Computing `(τ) takes
|C| multiplications; then, computing D(τ) takes one division
and one multiplication, as D(τ) = (1/τ) · `(τ). Computing
{vj} can be done efficiently via a careful choice of the {σj}
(the protocol permits any distinct, non-zero values here): if
we arrange for σ1, . . . ,σ|C| to follow an arithmetic progres-
sion (a convenient choice is 1, 2, . . . , |C|), then computing
1/vj+1 from 1/vj requires only two operations. Since one
can compute 1/v0 using |C| multiplications, the total time
to compute the {vj} is (fdiv + 3f) · |C| operations.

Finally, given {vj} and `(τ) and using the representation
above, one can compute {Ai(τ)}, {Bi(τ)}, and {Ci(τ)} with
a number of multiplications equal to the total number of non-
zero {ai,j, bi,j, ci,j}. This number is computation-dependent
(see §A.1), but we can bound it in our framework. Recall
that our compiler obtains Zaatar constraints by transforming
Ginger constraints (§4). The Zaatar constraints, when writ-
ten in quadratic form, induce no more than K +3K2 non-zero
{ai,j, bi,j, ci,j}, where K and K2 are as defined in Section 4.

In Section 4, we stated that the verifier requires three op-
erations per input and output. This cost comes from comput-
ing the following quantities in the divisibility correction test:∑n

n′+1 wi · Ai(τ),
∑n

n′+1 wi · Bi(τ), and
∑n

n′+1 wi · Ci(τ).

Acknowledgments

Careful reading and constructive suggestions by the anony-
mous reviewers and our shepherd, Christan Cachin, im-
proved the paper. We thank Sanjeev Arora and Yuval Ishai
for helpful conversations. The Texas Advanced Computing
Center (TACC) at UT supplied computing resources. The re-
search was supported in part by AFOSR grant FA9550-10-
1-0073 and by NSF grants 1055057 and 1040083.

References
[1] CUDA (http://developer.nvidia.com/what-cuda).
[2] The GNU MP bignum library. http://gmplib.org/.
[3] Shootout/Fannkuch. http:

//www.haskell.org/haskellwiki/Shootout/Fannkuch.
[4] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.

SETI@home: An experiment in public-resource computing. CACM,
45(11):56–61, Nov. 2002.

[5] S. Arora and B. Barak. Computational Complexity: A modern
approach. Cambridge University Press, 2009.

[6] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof
verification and the hardness of approximation problems. J. of the
ACM, 45(3):501–555, May 1998.

[7] S. Arora and S. Safra. Probabilistic checking of proofs: a new
characterization of NP. J. of the ACM, 45(1):70–122, Jan. 1998.

http://gmplib.org/
http://www.haskell.org/haskellwiki/Shootout/Fannkuch
http://www.haskell.org/haskellwiki/Shootout/Fannkuch

[8] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking
computations in polylogarithmic time. In STOC, 1991.

[9] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. Fast reductions
from RAMs to delegatable succinct constraint satisfaction problems.
In ITCS, 2013.

[10] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. On the
concrete-efficiency threshold of probabilistically-checkable proofs.
In STOC, 2013. To appear.

[11] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan.
Short PCPs verifiable in polylogarithmic time. In Conference on
Computational Complexity (CCC), 2005.

[12] E. Ben-Sasson and M. Sudan. Short PCPs with polylog query
complexity. SIAM J. on Comp., 38(2):551–607, May 2008.

[13] D. J. Bernstein. ChaCha, a variant of Salsa20.
http://cr.yp.to/chacha.html.

[14] J.-P. Berrut and L. N. Trefethen. Barycentric Lagrange interpolation.
SIAM Review, 46(3):501–517, 2004.

[15] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth.
Succinct non-interactive arguments via linear interactive proofs. In
IACR TCC, Mar. 2013.

[16] B. Braun. Compiling computations to constraints for verified
computation. UT Austin Honors thesis HR-12-10, Dec. 2012.

[17] C. Cachin. Integrity and consistency for untrusted services. In
Conference on Current Trends in Theory and Practice of Computer
Science, 2011.

[18] C. Cachin, I. Keidar, and A. Shraer. Fail-aware untrusted storage.
SIAM J. on Comp., 40(2):493–533, Apr. 2011.

[19] M. Castro and B. Liskov. Practical Byzantine fault tolerance and
proactive recovery. ACM Trans. on Comp. Sys., 20(4):398–461, Nov.
2002.

[20] K.-M. Chung, Y. Kalai, and S. Vadhan. Improved delegation of
computation using fully homomorphic encryption. In CRYPTO 2010.

[21] J. W. Cooley and J. W. Tukey. An algorithm for the machine
calculation of complex fourier series. Mathematics of Computation,
19(90):297–301, 1965.

[22] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. The MIT Press, 1990.

[23] G. Cormode, M. Mitzenmacher, and J. Thaler. Practical verified
computation with streaming interactive proofs. In ITCS, 2012.

[24] I. Dinur. The PCP theorem by gap amplification. J. of the ACM,
54(3), June 2007.

[25] T. ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Trans. on Info. Theory,
31(4):469–472, 1985.

[26] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable
computing: Outsourcing computation to untrusted workers. In
CRYPTO, 2010.

[27] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span
programs and succinct NIZKs without PCPs. Cryptology ePrint
Archive, Report 2012/215, 2012. To appear in EUROCRYPT 2013.

[28] C. Gentry. A fully homomorphic encryption scheme. PhD thesis,
Stanford University, 2009.

[29] C. Gentry, S. Halevi, and N. Smart. Homomorphic evaluation of the
AES circuit. In CRYPTO, 2012.

[30] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating
computation: Interactive proofs for muggles. In STOC, 2008.

[31] J. Groth. Short pairing-based non-interactive zero-knowledge
arguments. In ASIACRYPT, 2010.

[32] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: Practical
accountability for distributed systems. In SOSP, 2007.

[33] Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Efficient arguments
without short PCPs. In Conference on Computational Complexity
(CCC), 2007.

[34] J. Kilian. A note on efficient zero-knowledge proofs and arguments
(extended abstract). In STOC, 1992.

[35] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of
Computer Programming. Addison-Wesley, third edition, 1997.

[36] J. Li, M. N. Krohn, D. Mazières, and D. Shasha. Secure untrusted

data repository (SUNDR). In OSDI, 2004.
[37] H. Lipmaa. Progression-free sets and sublinear pairing-based

non-interactive zero-knowledge arguments. In IACR TCC, 2011.
[38] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and

M. Walfish. Depot: Cloud storage with minimal trust. ACM Trans. on
Comp. Sys., 29(4), Dec. 2011.

[39] L. Malka. VMCrypt: Modular software architecture for scalable
secure computation. In ACM CCS, 2011.

[40] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay—a secure
two-party computation system. In USENIX Security, 2004.

[41] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed
Computing, 11(4):203–213, 1998.

[42] T. Mateer. Fast Fourier Transform algorithms with applications.
PhD thesis, Clemson University, 2008.

[43] F. Monrose, P. Wycko, and A. D. Rubin. Distributed execution with
remote audit. In NDSS, 1999.

[44] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[45] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio: Nearly
practical verifiable computation. In IEEE Symposium on Security and
Privacy, 2013. To appear.

[46] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping Trust in
Modern Computers. Springer, 2011.

[47] N. Pippenger and M. J. Fischer. Relations among complexity
measures. J. of the ACM, 26(2):361–381, Apr. 1979.

[48] A.-R. Sadeghi, T. Schneider, and M. Winandy. Token-based cloud
computing: secure outsourcing of data and arbitrary computations
with lower latency. In TRUST, 2010.

[49] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla.
Pioneer: Verifying integrity and guaranteeing execution of code on
legacy platforms. In SOSP, 2005.

[50] S. Setty, A. J. Blumberg, and M. Walfish. Toward practical and
unconditional verification of remote computations. In HotOS, 2011.

[51] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and M. Walfish.
Resolving the conflict between generality and plausibility in verified
computation. Cryptology ePrint Archive, Report 2012/622, 2012.

[52] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish. Making
argument systems for outsourced computation practical (sometimes).
In NDSS, 2012.

[53] S. Setty, V. Vu, N. Panpalia, B. Braun, M. Ali, A. J. Blumberg, and
M. Walfish. Taking proof-based verified computation a few steps
closer to practicality (extended version). Cryptology ePrint Archive,
Report 2012/598, 2012.

[54] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and
M. Walfish. Taking proof-based verified computation a few steps
closer to practicality. In USENIX Security, 2012.

[55] J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister. Verifiable
computation with massively parallel interactive proofs. In USENIX
HotCloud Workshop, 2012.

[56] S. Theodoridis and K. Koutroumbas. Pattern Recognition, Third
Edition. Academic Press, Inc., 2006.

[57] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. A hybrid
architecture for interactive verifiable computation. In IEEE
Symposium on Security and Privacy, 2013. To appear.

[58] D. A. Wheeler. SLOCCount.
http://www.dwheeler.com/sloccount/.

http://cr.yp.to/chacha.html
http://www.dwheeler.com/sloccount/

	1 Introduction
	2 Framework and background
	2.1 Problem statement and approach
	2.2 Our starting point: Ginger

	3 Collapsing proof length in Zaatar
	4 Cost-benefit analysis
	5 Evaluation
	5.1 Implementation, benchmarks, and method
	5.2 End-to-end performance
	5.3 Computation encodings
	5.4 Discussion and limitations

	6 Related work
	7 Summary and conclusion
	A A linear PCP protocol based on QAPs
	A.1 The construction
	A.2 Correctness
	A.3 Costs in more detail

