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Abstract—Statistical dialogue systems are motivated by the
need for a data-driven framework that reduces the cost of
laboriously hand-crafting complex dialogue managers and that
provides robustness against the errors created by speech recog-
nisers operating in noisy environments. By including an explicit
Bayesian model of uncertainty and by optimising the policy via
a reward-driven process, partially observable Markov decision
processes (POMDPs) provide such a framework. However, ex-
act model representation and optimisation is computationally
intractable. Hence, the practical application of POMDP-based
systems requires efficient algorithms and carefully constructed
approximations. This review article provides an overview of the
current state of the art in the development of POMDP-based
spoken dialogue systems.

Index Terms—Spoken dialogue systems, POMDP, reinforce-
ment learning, belief monitoring, policy optimisation.

I. INTRODUCTION

SPOKEN dialogue systems (SDS) allow users to interact
with a wide variety of information systems using speech

as the primary, and often the only, communication medium
[1], [2], [3]. Traditionally, SDS have been mostly deployed
in call centre applications where the system can reduce the
need for a human operator and thereby reduce costs. More
recently, the use of speech interfaces in mobile phones has
become common with developments such as Apple’s “Siri”
and Nuance’s “Dragon Go!” demonstrating the value of inte-
grating natural, conversational speech interactions into mobile
products, applications, and services.

The principal elements of a conventional SDS are shown
in Fig 11. At each turn t, a spoken language understanding
(SLU) component converts each spoken input into an abstract
semantic representation called a user dialogue act ut. The
system updates its internal state st and determines the next
system act via a decision rule at = π(st), also known as a
policy. The system act at is then converted back into speech
via a natural language generation (NLG) component. The state
st consists of the variables needed to track the progress of
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1Multimodal dialogue is beyond the scope of this paper, but it should be
noted that the POMDP framework can be extended to handle multimodal
input and output [4]. Depending on the application, both the input and
output may include a variety of modalities including gestures, visual displays,
haptic feedback, etc. Of course, this could result in larger state spaces, and
synchronisation issues would need to be addressed.

the dialogue and the attribute values (often called slots) that
determine the user’s requirements. In conventional systems,
the policy is usually defined by a flow chart with nodes
representing states and actions, and arcs representing user
inputs[5], [6].

Despite steady progress over the last few decades in speech
recognition technology, the process of converting conversa-
tional speech into words still incurs word error rates in the
range 15% to 30% in many real world operating environ-
ments such as in public spaces and in motor cars [7], [8].
Systems which interpret and respond to spoken commands
must therefore implement dialogue strategies that account
for the unreliability of the input and provide error checking
and recovery mechanisms. As a consequence, conventional
deterministic flowchart-based systems are expensive to build
and often fragile in operation.
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Fig. 1. Components of a finite state-based spoken dialogue system. At each
turn the input speech is converted to an abstract representation of the user’s
intent ut, the dialogue state st is updated and a deterministic decision rule
called a policy maps the state into an action at in response.

During the last few years, a new approach to dialogue man-
agement has emerged based on the mathematical framework
of partially observable Markov decision processes (POMDPs2)
[9], [10], [11]. This approach assumes that dialogue evolves
as a Markov process, i.e., starting in some initial state s0,
each subsequent state is modelled by a transition probability:
p(st|st−1, at−1). The state st is not directly observable re-
flecting the uncertainty in the interpretation of user utterances;
instead, at each turn, the system regards the output of the SLU
as a noisy observation ot of the user input with probability
p(ot|st) (see Fig 2). The transition and observation probability
functions are represented by a suitable stochastic model, called
here the dialogue model M. The decision as to which action
to take at each turn is determined by a second stochastic

2pronounced “pom dee pees”
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model encoding the policy P . As the dialogue progresses, a
reward is assigned at each step designed to mirror the desired
characteristics of the dialogue system. The dialogue model
M and policy model P can then be optimised by maximising
the expected accumulated sum of these rewards either on-line
through interaction with users or off-line from a corpus of
dialogues collected within a similar domain.
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Fig. 2. Components of a POMDP-based spoken dialogue system. In contrast
to Fig. 1, the decoded input speech is now regarded as a noisy observation
ot of the underlying user intent ut. Since ut is hidden, the system maintains
a distribution bt over all possible dialogue states and instead of trying to
estimate the hidden dialogue state, the system response is determined directly
from bt. In addition, the dialogue model and policy are parameterised,
and given an appropriate reward function, they can be optimised using
reinforcement learning.

This POMDP-based model of dialogue combines two key
ideas: belief state tracking and reinforcement learning. These
ideas are separable and have benefits on their own. How-
ever, combining them results in a complete and well-founded
mathematical framework that offers opportunities for further
synergistic gains. The potential advantages of this approach
compared to conventional methods can be summarised as
follows:

1) the belief state provides an explicit representation of un-
certainty leading to systems that are much more robust to
speech recognition errors [11]. The posterior probability
of the belief state after each user input is updated via
Bayesian inference in a process called belief monitoring.
The design of the belief state allows user behaviour to be
captured via the model priors and the inference process
is able to exploit the full distribution of recognition
hypotheses such as confusion networks and N -best lists.
Thus, evidence is integrated across turns such that a single
error has significantly reduced impact, and in contrast to
conventional systems, user persistence is rewarded. If the
user repeats something often enough, the system’s belief
in what they said will increase in time as long as the
correct hypothesis appears repeatedly in the N -best list.

2) by maintaining a belief distribution over all states, the
system is effectively pursuing all possible dialogue paths
in parallel, choosing its next action not based on the most
likely state but on the probability distribution across all
states. When the user signals a problem, the probability
of the current most likely state is reduced and the focus
simply switches to another state. Thus, there is no re-
quirement for back-tracking or specific error correction
dialogues. This allows powerful dialogue policies to be

embedded in a simple homogenous mapping from belief
state to action.

3) the explicit representation of state and policy-derived
action allows dialogue design criteria to be incorporated
by associating rewards with state-action pairs. The sum
of these rewards constitutes an objective measure of
dialogue performance and enables reinforcement learning
to be used to maximise performance both off-line using
dialogue corpora and on-line through interaction with
real users. This leads to optimal decision policies, avoids
the cost of expensive manual tuning and refinement
procedures, and enables more complex planning to be
implemented than would be feasible using only manual
hand-crafted designs.

Converting these potential benefits of the POMDP approach
into practice is, however, far from trivial and there are many
issues to resolve. The state-action space of a real-world
SDS is extremely large and its efficient representation and
manipulation requires complex algorithms and software. Real-
time Bayesian inference is equally challenging and exact
policy learning for POMDPs is intractable, hence efficient
approximation techniques must be used. Finally, the most
straightforward way to optimise a POMDP-based SDS is
through direct interaction with users. However, real users
willing to help train a system are often not available in
sufficient numbers, hence, user simulators are required that
can replicate user behaviour with sufficient accuracy to enable
model parameters to be optimised to an acceptable level
of performance (a discussion of user simulation is given in
section V).

Despite these difficulties considerable progress has been
made over the last five years in solving these problems and the
purpose of this paper is to review that progress and provide
a coherent up-to-date view of the state of the art in POMDP-
based dialogue systems.

The paper is organised as follows. Firstly, section II outlines
the basic mathematics underlying POMDP-based dialogue
systems in order to provide the necessary background for
the subsequent sections and to establish a consistent notation.
Section III then explains the options available for approximat-
ing the belief state and presents algorithms for efficient belief
monitoring. Section IV reviews policy representation, the use
of reward functions and policy optimisation via reinforcement
learning. Section V completes the review of core technology
with an overview of current approaches to user simulation.
Having established the basic framework, sections VI and VII
review a number of recent developments in optimisation of
dialogue model parameters and fast adaptation. To give some
indication of the potential for real-world deployment, sec-
tion VIII briefly describes some existing prototype systems and
applications that incorporate POMDP-based dialogue manage-
ment, with some example evaluations given in section IX.
Finally, for completeness, section X provides a historical
perspective and section XI concludes.
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II. PARTIALLY OBSERVABLE MARKOV DECISION
PROCESSES

Formally, a partially observable Markov decision process is
defined as a tuple (S,A,T,R,O,Z, γ, b0) where S is a set of
states with s ∈ S; A is a set of actions with a ∈ A; T defines a
transition probability P (st|st−1, at−1); R defines the expected
(immediate, real-valued) reward r(st, at) ∈ <; O is a set of
observations with o ∈ O; Z defines an observation probability
P (ot|st, at−1); γ is a geometric discount factor 0 ≤ γ ≤ 1;
and b0 is an initial belief state, defined below.

The POMDP operates as follows. At each time-step, the
world is in some unobserved state st. Since st is not known
exactly, a distribution over possible states called a belief state
bt is maintained where bt(st) indicates the probability of being
in a particular state st. Based on bt, the machine selects an
action at, receives a reward rt, and transitions to (unobserved)
state st+1, where st+1 depends only on st and at. The machine
then receives an observation ot+1, which is dependent on st+1

and at. This process is represented graphically as an influence
diagram in Fig 3.

st

ot at
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ot+1 at+1
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Fig. 3. A partially observable Markov decision process, shown as an influence
diagram. In this paper, clear circles are hidden random variables; shaded
circles are observed random variables; squares are system actions; diamonds
are real-valued rewards; and arrows show causality.

Given an existing belief state bt, the last system action at,
and a new observation ot+1, the new updated belief state bt+1

is given by [12]:

bt+1(st+1) = ηP (ot+1|st+1, at)
∑
st

P (st+1|st, at)bt(st) (1)

where η = P (ot+1|bt, at) is a normalization constant and
where b0 is the initial belief state distribution before the first
system action has been taken.3

The system action is determined by a policy π, which can
be represented in a variety of ways. It is most commonly
either a deterministic mapping from belief states to actions
π(b) ∈ A or stochastically via a distribution over actions
π(a|b) ∈ [0, 1] where π(a|b) is the probability of taking action
a in belief state b, and

∑
a π(a|b) = 1 ∀ b. For convenience,

3The notation for belief states can be confusing: bt represents a probability
distribution over the hidden state space S at time t; bt(s) denotes the
probability of a specific state s given belief state bt; bt+1(s) represents the
probability of state s given a new updated belief state bt+1, which in general
will be different from bt(s).

both types of policy will use the same symbol π, with the
presence of the action in the notation determining whether the
policy is deterministic or stochastic. Note, however, that other
definitions are possible such as finite state controllers [13],
or mappings from finite-length sequences of observations to
actions (c.f. predictive state representations [14]).

The discounted sum of rewards expected by starting in
belief state bt and following policy π is given by the value
function V π(bt) = E

[
rt + γrt+1 + γ2rt+2 + . . .

]
, which can

be expressed recursively for a deterministic policy as

V π(bt) = r(bt, π(bt))

+ γ
∑
ot+1

P (ot+1|bt, π(bt))V π(bt+1) (2)

and by

V π(bt) =
∑
at

π(at|bt)

r(bt, at)
+ γ

∑
ot+1

P (ot+1|bt, at)V π(bt+1)

 (3)

for a stochastic policy. A related quantity is the Q-function
Qπ(b, a), which provides the expected discounted sum of
rewards if a specific action a is taken given belief state b, and
then policy π is followed. Clearly for a deterministic policy,
V π(b) = Qπ(b, π(b)) and for a stochastic policy

V π(b) =
∑
a

π(a|b)Qπ(b, a). (4)

An optimal policy π∗ is one that maximizes V π to yield V ∗

V ∗(bt)=max
at

r(bt, at) + γ
∑
ot+1

P (ot+1|bt, at)V ∗(bt+1)

(5)

which is the Bellman optimality equation for POMDPs [15].
In the POMDP literature, finding a policy π that satisfies (5)
is often called “solving” or “optimizing” the POMDP. For
simple tasks, both exact [12] and approximate [16], [17], [18],
[19], [20] solution methods have been developed. However,
standard POMDP methods do not scale to the complexity
needed to represent a real-world dialogue system. Even in a
moderately-sized system, the number of states, actions, and
observations can each easily be more than 1010. Even enumer-
ating P (st+1|st, at) is intractable, and as a result computing
(1) directly and applying direct solution methods to (5) is
very difficult. Instead, approximations have been developed
that exploit domain-specific properties of the spoken dialogue
task in order to provide compact representations for both the
model and the policy; and to allow tractable algorithms for
performing belief monitoring and policy optimisation. These
are described in the following sections.

III. BELIEF STATE REPRESENTATION AND MONITORING

This section reviews the possible approaches to representing
the dialogue model M shown in Fig. 2. In a practical task-
oriented SDS, the state must encode three distinct types of
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information: the user’s goal gt, the intent of the most recent
user utterance ut and the dialogue history ht [21], [11]. The
goal encompasses the information that must be gleaned from
the user in order to fulfil the task, the most recent user
utterance represents what was actually said in contrast to what
was recognised, and the history tracks pertinent information
relating to previous turns. This suggests that the state should
be factored into three components

st = (gt, ut, ht). (6)

The resulting influence diagram is shown in Fig. 4 in which
some reasonable independence assumptions have been intro-
duced. Factoring the state in this way is helpful because it
reduces the dimensions of the state transition matrix and it
reduces the number of conditional dependencies.
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rt+1

ht+1

gt+1
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Fig. 4. Influence diagram representation of a factored state SDS-POMDP.
The hidden dialogue state st is factored into a user goal gt, the user’s last
input ut and key elements of the dialogue history ht. This allows conditional
independence assumptions to be introduced both within the state and from
one time-slice to the next. No arc is required from actions to observations
since the recognised speech ot is conditionally independent given the user’s
actual utterance ut.

Plugging the factorisation in (6) into the belief update
equation (1) and simplifying according to the independence
assumptions shown in Fig 4 gives the basic belief update
equation for a statistical SDS:

bt+1(gt+1, ut+1, ht+1) = ηP (ot+1|ut+1) (a)
· P (ut+1|gt+1, at) (b)

·
∑
gt

P (gt+1|gt, at) (c)

·
∑
ht

P (ht+1|gt+1, ut+1, ht, at) (d)

· bt(gt, ht) (7)

The terms on the right hand side in (7) reflect each of the
factors determining the belief state and the underlying models
which are therefore needed to represent these factors in a
practical system:
(a) the observation model represents the probability of an

observation o given the user’s actual utterance u. This
encapsulates the effects of speech understanding errors.

(b) the user model represents the likelihood that the user
would utter u given the previous system output and the
new system state. This encapsulates user behaviour.

(c) the goal transition model represents the likelihood that the
user goal has changed.

(d) the history model represents the system’s memory of the
dialogue to date.

There are of course possible variations to this factorisation.
For example, user affect may also be factorised out [22] but
most current approaches fit broadly within this model.

While the factorisation in (6) does significantly reduce
the POMDP model complexity, it is still too complex to
support tractable real-world systems. Further approximation
is therefore necessary for which two main approaches have
emerged:

1) the N -best approach including pruning and recombina-
tion strategies [23], [24], [25], [26], and

2) the factored Bayesian Network approach [27], [22], [28].
These two approaches are discussed below.

A. N -best approaches

In N -best approaches, the belief state is approximated by
a list of the most likely states (or groups of states) with their
probabilities. This means that dialogue states corresponding
to the most likely interpretations of the user’s intent are well
modelled, with other states given low probability mass. One
example of this approach is the Hidden Information State
model (HIS) [23], which groups similar user goals into equiva-
lence classes called partitions on the assumption that all of the
goals in the same partition are equally probable. The partitions
are tree-structured to take account of the dependencies defined
in the domain ontology and they are built using slot-value
pairs from the N -best list of recognition hypotheses and the
last system output. The combination of a partition, a user
act from the N -best list and the associated dialogue history
forms a hypothesis. A probability distribution over the most
likely hypotheses is maintained during the dialogue and this
constitutes the belief space. Belief monitoring then requires
only the hypothesis beliefs to be updated and since there are
relatively few hypotheses, this can easily be done in real time.
The update equation for the HIS model follows directly from
(7) with the further simplification that the user goal is normally
assumed to be constant [23]

bt+1(pt+1, ut+1, ht+1) = ηP (ot+1|ut+1)P (ut+1|pt+1, at)∑
ht

P (ht+1|pt+1, ut+1, ht, at)

P (pt+1|pt)b(ht) (8)

where pt is a partition and the term P (pt+1|pt) represents
the probability that a partition pt will be split into two sub-
partitions pt → {pt+1, pt−pt+1}. A similar approach is taken
in [24], except that both slot values and their complements are
used to build a frame. This is particularly useful in negotiation-
type dialogues, where the users can change their mind and ask
for an alternative. It also enables a form of first-order logic
to be expressed and understood by the system. However, the
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domain ontology is not used when building frames losing the
benefits of modelling conditional dependence. In [26], it is
shown that complements can also be incorporated into the HIS
approach giving the advantage of modelling both conditional
dependence and first order logic.

The N -best approach can also be viewed as running N
conventional dialogue systems in parallel such that each par-
allel thread tracks a different interpretation of what the user
said. In this case, a list of hypothesised dialogue states is
maintained; associated probabilities can be assigned using a
mixture distribution [29], a discriminative classifier [30], or
with a heuristic scoring function [31]. Although it lacks the
compactness of the HIS representation, this approach provides
a simple upgrade path for conventional deterministic dialogue
systems.

Both the partition-based and the frame-based approaches
have the inherent problem that the number of partitions
(frames) grows exponentially with dialogue length. Hence, in
practical implementations, some form of pruning is required.
In [25], partitions are organised into a tree and then low proba-
bility partitions are recombined with their parent, thus limiting
the number of partitions. This has the problem however that
high probability slots can be pruned if they are distributed
over many partitions. A more effective solution is proposed
in [26], where at every dialogue turn a marginal probability
distribution is calculated for each slot. Then, low probability
slot-value pairs are pruned by recombining all the partitions
that have that slot-value pair with the partitions that have the
complement of that slot-value pair. In this way, the method
supports dialogues of arbitrary length.

B. Factored approaches

The alternative to maintaining an N -best list of user goals is
to factor the user goal into concepts that can be spoken about
by the system. This is illustrated in Fig. 5, which shows an ex-
ample from a tourist information system in which entities have
a type such as {hotel, restaurant, bar}, the kind of food served
and an area such as {north, south, centre, ...} [28]. The food
and area slots are dependent only on the type, even though
in practice, there are many more restaurants in the centre of
town. This illustrates the differing trade-offs between the N -
best approach, which can model all dependencies but with an
incomplete distribution, and the slot-level factoring approach,
which can handle only a limited number of dependencies but
can model the complete distribution.

Once the Bayesian network for the slot-level factoring has
been compiled, standard belief propagation algorithms can be
used to update the beliefs [32]. In the case of concepts that
are conditionally independent, the belief propagation algorithm
will give exact updates of the marginal distributions for each
of the concepts, as used in [22]. Limited dependencies can also
be modelled, although this requires approximate methods such
as loopy belief propagation. The Bayesian update of dialogue
state (BUDS) model is one example that is based on this
approach [27], particle filters can also be used [33].

It is interesting to note that N -best approximations can also
be used within a factored model. Instead of the factored model

updating beliefs for all the possible values of a node in the
network, only an N -best list of values is updated. Partitions
of the states in a node are also possible [34]. This combines
many of the benefits of the two approaches.

utype

o

a

gfood

gtype

htype

ufood

hfood

garea

uarea

harea

u

Time step t

Fig. 5. Influence diagram for a single time slice of a BUDS POMDP in
which the state is further factored into concept or slot level components. In
this simplified example taken from the tourist information domain, three slot
level values are required: the type of venue, the kind of food served and the
area in which the venue is located. Note that food and area are conditionally
independent given the type of venue and last action. (Although not shown
explicitly to avoid cluttering the diagram, all slot-level nodes are dependent
on the last system action.)

IV. POLICY REPRESENTATION AND REINFORCEMENT
LEARNING

This section presents the representation and estimation of
the policy model P shown in Fig. 2, which provides a mapping
between the belief state b and the appropriate system action a.
The objective is to find an optimal policy π∗ that maximizes
the expected sum of discounted rewards at the end of the
dialogue.

The belief space of a POMDP spans an (|S|−1)-dimensional
simplex where |S| is the cardinality of the underlying hidden
state space. Points in belief space that are close to each
other will share the same action, and hence, a non-parametric
policy must encode firstly a partitioning of belief space such
that all points within any partition map to the same action,
and secondly it must encode the optimal action to take for
each partition. Whilst exact representations of a POMDP
dialogue policy are possible, for example by compressing
belief space [35] or dynamically re-assigning states [36], exact
representations are all intractable for real world problems
such as spoken dialogue systems where both the state and
action spaces will typically be very large. Thus, a compact
representation of the policy is essential.

Fortunately, there are some mitigating constraints that can
be exploited. Firstly, only a relatively small part of belief
space will actually be visited during any normal dialogue, and
secondly, the range of plausible actions at any specific point
in belief space will often be restricted. This introduces the
notion of a compressed feature space called summary space
in which both states and actions are simplified in order to
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allow tractable policy representation and optimisation [37],
[38]. Summary space can therefore be regarded as a subspace
of the full master space whereby belief tracking is performed
in master space, and decision-taking and policy optimisation
take place in summary space. The run-time operation of a
master-summary space POMDP is therefore as follows. After
belief updating, the belief state b in master space is mapped
to a vector of features b̂ and a corresponding set of candidate
actions {â}. The policy is then used to select the best action
to take b̂→ â from the set of candidate actions and a second
heuristic is used to map â back into a full action a in master
space.

Summary-space mapping requires two components: a mech-
anism to select candidate actions in master space and functions
to extract features from the belief state and candidate actions.
The simplest method for selecting candidate actions is to
include all types of dialog acts (e.g., greet, ask, confirm,
inform, etc.) applicable to any concept or slot (e.g., venue-
type, food-type, star-rating, etc.), populating slot values by
highest belief [28], [37]. This approach has the benefit of
being entirely automatic; however, it still admits some spurious
candidate actions, such as taking a greeting action in the
middle of a dialog, or attempting to confirm a value before
the system has asked about it. An alternative method for
selecting candidate actions is to construct a hand-crafted
partial program [39], [40] or a Markov logic network [41].
These approaches have the benefit of allowing arbitrary human
knowledge about dialogue flow to be incorporated, and to
explicitly set business rules, for example, requiring that certain
actions be taken before others such as successfully collecting
a password before allowing funds to be transferred. It has
also been shown that constraining the set of candidate actions
results in faster convergence to an optimal policy, since many
spurious actions are pruned away [40]. However, rules require
human effort to encode, and there is a risk that optimal
candidate actions may be inadvertently excluded. Intermediate
methods are possible too, such as allowing every dialogue act
to be a candidate action, but constraining the slots that the act
operates on using hand-crafted heuristics [42].

The second component required for summary-space map-
ping are functions to extract features from the belief state
and each candidate action. For actions, typically one binary
feature is created for each dialog act, or for each valid
dialog act/slot pair, such as confirm(food). This generally
results in a 20-30 dimensional vector of action features, where
each dimension represents a unique (summary) action. State
features are typically heterogeneous, consisting of real-valued
quantities, binary values, categorical values, etc. Typical state
features include: the belief in the top N user goals or partitions;
the top marginal belief in each slot; properties of the top user
goal or partition, such as the number of matching database
entries; an indication of which system actions are available;
properties of the dialogue history, such as whether the top user
goal/partition has been confirmed; the most likely previous
user action; or combinations of these features [37], [40], [28],
[42], [43]. A typical system has 5 to 25 features in total
which are usually hand-selected, although some work has been
done to automate feature selection [43], [44]. State features

need not be limited to information in the belief state: features
may also draw on information being tracked outside the belief
state, such as information in databases, information from past
dialogues, usage context, etc.

Given a specific summary space, a policy may be repre-
sented as an explicit deterministic mapping: π(b̂)→ â or as a
conditional probability distribution π(b̂, â) = p(â|b̂) where the
required action is selected by sampling the distribution. Note
that the policy is now a function of the summary belief state
and actions, instead of the original belief state and actions.
One can think of this either as a new function that gives an
approximation to the value in the original space, or as a policy
over a new Markov decision process, where the states and
actions are now the summary states and actions. The same is
true of the Q function, and both these functions will now be
used in this context.

In the case of deterministic mappings, the dominant ap-
proach is to find an optimal Q-function (see section II) Q∗

that maximises maxâ{Q(b̂, â)} for all b̂, then

π∗(b̂) = argmax
â
{Q∗(b̂, â)}. (9)

The Q-function itself can either be parametric or non-
parametric in which case the belief state is quantised into
a codebook {b̂i} and Q∗(b̂i, â) can be computed for each
discrete codebook entry b̂i.

To illustrate some of these options, five different methods of
policy optimisation are now presented: planning under uncer-
tainty, value iteration, Monte-Carlo optimisation, least-squares
policy iteration, and natural actor-critic. These methods have
been selected because all have been applied to end-to-end
working dialogue systems. Some further optimisation methods
will be covered later in section VII on fast adaptation. While
representative, these five methods are not exhaustive – for
example, Q-Learning [45], [46], [47], [48] and SARSA [49],
[50], [51] are also popular techniques.

A. Planning under uncertainty

One approach to policy optimisation is to view action
selection in summary space as planning under uncertainty. In
this approach, b̂ is viewed not as a vector of arbitrary features,
but rather as a distribution over a hidden state variable in
summary space ŝ. This hidden summary state might express,
for example, whether the top hypothesis in master space is
correct or not. In addition, it is assumed observations o (in
master space) can be mapped to a compact observation in
summary space ô.

With these definitions in place, dialogues can be collected
with a random policy, and three models of summary space dy-
namics can be estimated – P (ŝ′|ŝ, â), P (ô′|ŝ, â), and R(ŝ, â).
These models define a classical POMDP in summary space
and admit standard methods for planning under uncertainty,
including different versions of point-based value iteration [16],
[18], SARSOP [52], heuristic search value iteration [17], [19],
and short look-aheads [53], [22]. These methods have been
applied to dialogue systems in a variety of domains, mainly
in simulation [37], [54], [53], [22], [55], [56], [57], [58], [59],
[60] and also in an end-to-end spoken dialogue system [61].
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Optimization by planning under uncertainty is attractive in
that optimization methods are principled, and in some cases
provide well-defined optimality bounds [17], [19]. Another
strength is that a policy can be computed from any corpus
that contains sufficient exploration of possible dialog paths.
However, it suffers from several problems. First, the summary
state ŝ and observation ô may be difficult to define, and
incorporation of extrinsic features in b̂ may require careful
engineering of the models P (ŝ′|ŝ, â) and P (ô′|ŝ, â). Also,
while great strides have been made in scaling optimization
methods for planning under uncertainty, supporting large state
or observation spaces in summary space can be problematic.
For these reasons, techniques have been developed which
avoid defining states and observations in summary space.
These are described in the next four sections.

B. Value Iteration

Instead of defining states and observations in summary
space, in value iteration belief states b̂ are viewed as arbitrary
feature vectors, and dynamics are estimated directly in this
feature space. Starting again with dialogues collected with
actions taken randomly, feature vectors are quantised into
grid points {b̂i}, and then the transition function P (b̂j |b̂i, â)
and reward function R(b̂i, â) are estimated [40], [62]. Finally,
standard value iteration can be applied [63]

Q(b̂i, â) = r(b̂i, â) + γ
∑
j

P (b̂j |b̂i, â)max
â′

Q(b̂j , â
′) (10)

where Eq. 10 is applied repeatedly until convergence. The
clusters b̂i can either be distinct hard clusters, or soft clusters
where observed b̂ are shared by nearby b̂i. In this case, the
contributions of b̂i that are further away from b̂ can be down-
weighted [40], [62].

Value iteration’s main attraction is that it is simple to
apply, and it allows a policy to be estimated from any
corpus that contains sufficient exploration of possible dialogue
paths. However, it suffers from several problems. Firstly, it
requires an estimate of transition dynamics for the entire space
P (b̂j |b̂i, â), when in practice it is only important to estimate
the portions of space traversed by the currently optimal policy.
Hence, value iteration is sample inefficient. Secondly, if the
state features are not Markovian – i.e., if they do not accurately
capture all relevant history for conditioning transitions – errors
will be introduced into the policy. To address both of these
issues, incremental on-line learning methods have also been
explored.

C. Monte Carlo optimization

In Monte Carlo optimization, the value function Q is
estimated on-line – iteratively, whilst interacting with the user
(or more likely interacting with a user simulator - see sec-
tion V). The current estimate of the policy guides future action
selection, so less exploration time is expended on regions
of the state space with low value. In addition, updates are
performed at the end of each dialogue; hence, whole-dialogue
rewards can be used to directly value the current policy, which

mitigates against the effects of any non-Markovian dynamics
in the state features.

To perform Monte Carlo optimization, the sequence of
states, actions, and rewards observed in each dialogue of length
T are recorded as tuples

(
b̂i(t), ât, rt

)
for t = 0, 1, . . . , T . The

discounted return from each belief point b̂i visited at time t is
given by

Ri(t) =
∑

t≤τ≤T

γ(τ−t)rτ . (11)

Two functions accumulate sums across all dialogues in the
corpus. First, q(i, â) is a sum of all returns R observed when
action â was taken in grid point b̂i. Second, n(i, â) is a count
of the instances of action â being taken in gridpoint b̂i. Both
q(i, â) and n(i, â) are initialized to zero for all i and â. At
the end of each dialogue, these tallies are then updated

q(i(t), â) = q(i(t), â) +Ri(t) (12)
n(i(t), â) = n(i(t), â) + 1, (13)

for t = 0, 1, . . . , T . The Q values can then be re-estimated for
all belief points i visited in the dialogue and all â as

Q(b̂i, â) =
1

n(i, â)
q(i, â). (14)

To converge to an optimal policy, the dialogue system must
take a mixture of currently optimal and exploratory actions

â =

{
RandomAction with probability ε
argmaxâQ(b̂i, â) with probability 1− ε (15)

where ε controls the exploration rate. Typically this is large
initially but reduces as learning progresses. As in the value
iteration case, the state discretization can be done by clustering
neighbouring points into distinct hard clusters [42], or soft
clusters where the contribution of a belief point b̂ to the tallies
q(i, â) and n(i, â) is reduced in proportion to its distance from
the template point b̂i [64].

One important consideration for Monte Carlo optimisation
is the number of grid points to use. If too many grid points
are used, poor performance will result due to over-fitting.
Conversely, having too few grid points leads to poor perfor-
mance due to a lack of discrimination in decision making. For
building practical systems with 5 summary state components
and 10 distinct summary actions, 750–1000 grid points have
been found to be sufficient when trained with around 100,000
simulated dialogues [42].

As compared to value iteration, on-line Monte Carlo opti-
misation is more sample efficient and suffers less when the
transitions are non-Markovian in the state features. However,
since Monte Carlo optimisation is an on-line method, it cannot
be performed using a previously collected corpus. Like value
iteration, Monte Carlo optimization requires quantizing the
feature space into grid regions. As the number of features
grows, this becomes a source of intractability, which motivates
the use of functional approximations for the Q-function,
presented next.
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D. Least-squares policy iteration

Instead of using discrete grid points in summary space, the
next two methods utilise linear models to represent a policy.
The first is least-squares policy iteration (LSPI) [65]. LSPI
assumes that the Q function can be represented as a weighted
sum of the features φ

Q(b, â) ≈ φ(b, â)>θ (16)

where θ is a (column) weight vector, φ(b, â) outputs features of
b that are important for making decisions relevant to summary
action â, and θ and φ(b, â) are both of size K. Notice that
the functional mapping from master belief space to summary
belief space is now explicit in the function φ. The Q-function
is thus approximated as a plane in feature space. This may
result in sub-optimal policies if the representation is not rich
enough.

LSPI operates on a given, fixed dialogue corpus with N +1
turns {bn, ân, rn, b′n} where b′n is the belief state following bn
in the corpus. LSPI begins with some policy π, and optimizes
it by iteratively estimating its value function Q, then using Q
to improve π. To estimate Q, we start with the identity that
defines the value function Q

Q(b, â) = r + γQ(b′, π(â)). (17)

Substituting Eq 16 into Eq 17 yields a system of N equations
in K unknowns

φ(bn, â)
>θ = rn + γφ(b′n, π(b

′
n))

>θ (18)

for n = 0..N−1. This system of equations can be solved in
a least squares sense by setting θ = Z−1y where [65]

Z =
∑
n

φ(bn, ân) (φ(bn, ân)− γφ(b′n, π(b′n)))
> (19)

y =
∑
n

φ(bn, ân)rn (20)

where Z is a K×K matrix and y is a K-dimensional vector.
π(b) is then updated by

π(b) = argmax
â

φ(b, â)>θ (21)

and re-estimation of θ and π then continues until both have
converged.

LSPI is attractive in that it avoids estimating grid points in
belief space in favour of a linear model for Q. It also has no
learning parameters to tune and it can be used both on-line and
off-line, although in the case of the latter it can be difficult to
find corpora with sufficient variability to learn policies that are
significantly different to the policy used to collect the corpus.

One drawback of LSPI is that the least-squares solution
step is cubic in K; hence, for practical applications of LSPI
the feature set must be kept quite small. To assist this,
methods have been developed that perform feature selection in
conjunction with LSPI [43] whereby, at each iteration, a fast
but approximate estimate of θ is computed on the full set of
features; then only the features with the highest weights are
used in the expensive but more accurate least-squares solution.
Experiments show this method produces policies of similar
performance but with far fewer features [43].

E. Natural actor-critic optimization

LSPI uses a linear model to estimate the value function Q.
An alternative approach is to represent the policy directly as
an explicit probability distribution over actions, parameterized
by an adjustable weight vector θ,

π(â|b, θ) =
eθ·φâ(b)∑
â′ e

θ·φâ′ (b)
, (22)

where φâ(b) determines the features of the belief state b that
are important for making decisions relevant to summary action
â. As above, φ is specified by the system designer, and φ
and θ both have dimensionality K. π is as before, with the θ
simply indexing which policy parameters to use (i.e., policy
πθ(â|b) = π(â|b, θ)).

Representing the policy in this way has two advantages.
Firstly, it avoids the need to choose grid points and the
problems that result. Secondly, since π(â|b, θ) is differentiable
with respect to θ, it allows gradient ascent to be applied for
optimisation. The expected cumulative reward for a single
dialogue as a function of θ is

R(θ) = E

[
T−1∑
t=0

r(bt, ât)|πθ

]
. (23)

By rewriting the log likelihood-ratio [66] and Monte Carlo
sampling from a batch of N dialogues, the gradient can be
estimated as

∇R(θ) = 1

N

N∑
n=1

Tn−1∑
t=0

∇θ log π(ânt |bnt , θ)Q(bnt , â
n
t ) (24)

Although (24) provides an estimate for the plain gradient, it
has been shown that the natural gradient ∇̃R(θ) = F−1θ ∇R(θ)
is more effective for optimisation of statistical models where
Fθ is the Fisher Information Matrix [67]. Furthermore, this
natural gradient w can be found without actually computing
the Fisher Matrix by using a least square method to solve the
following system of equations

Rn =

[
Tn−1∑
t=0

∇θ log π(ânt |bnt , θ)>
]
· w + C (25)

for each dialogue n = 1..N where Rn is the actual cumulative
reward earned for dialogue n and C is a constant that can be
interpreted as the expected cumulative reward of the dialogue
system starting from the initial state. The total expected reward
can then be iteratively maximised through gradient ascent via
the parameter update θ′ ← θ + δw where δ is the step size.
This is called the Natural Actor Critic (NAC) algorithm [68],
and has been applied to a number of spoken dialogue systems
[28], [69], [70], [71], [72].

NAC is particularly well-suited for on-line operation be-
cause the policy is represented as an explicit distribution over
actions. Unlike the ε-greedy exploration used in Monte-Carlo
optimisation (where random actions are chosen with a uniform
distribution), the NAC optimisation process can differentiate
between less-promising and more-promising actions and there-
fore explores the solution space more efficiently.

As with LSPI, NAC requires the solution of a system of
linear equations (25), which is again cubic in the number



PROC IEEE, VOL. X, NO. X, JANUARY 2012 9

of features, so it is important to choose a compact set of
representative features.

F. Section summary

To conclude this section, five approaches to policy repre-
sentation and optimisation have been presented, which as well
as being representative of current practice also illustrate some
of the principal design choices. In particular, planning under
uncertainty uses the belief state as a probability distribution
directly, whereas value iteration and Monte Carlo optimisation
require belief space to be quantised, and LSPI and NAC use
functional approximations based on weighted linear models
of belief state features. Monte Carlo methods and NAC (and
SARSA) must be run on-policy; planning under uncertainty,
value iteration, and LSPI (and Q-Learning) may be run off-
policy, in batch: on-policy methods require that interactions
are obtained following the policy under optimization, whereas
off-policy methods can perform optimization with interactions
obtained by following a different policy. A distinction can also
be made between methods like planning under uncertainty
and value iteration that perform planning on a given model
of dynamics, and the other methods described (including Q-
Learning and SARSA) which concurrently learn about the
environment and plan simultaneously. NAC also differs in that
it utilises a stochastic policy from which actual actions can
be drawn by sampling the policy distribution. This allows a
dialogue system to explore alternative actions more effectively
by avoiding searching regions of the belief-action space that
are very unlikely to ever be visited. Unfortunately, this gain is
offset by the generally slow learning characteristics of gradient
ascent and in practice the NAC algorithm requires around 105

dialogues to optimise a policy [28]. Since the availability of
large diverse corpora and/or large numbers of real users willing
to interact with a partially trained dialogue system is normally
limited, significant attention has been paid to developing user
simulators for training statistical dialogue systems and this will
be dealt with next.

V. USER SIMULATORS

Learning directly from corpora is problematic since the state
space that prevailed during the collection of the data may differ
from that used in policy optimisation and also it precludes the
use of on-line interactive learning algorithms. An alternative
is to build a model of the user that can interact directly with
a dialogue system and which can itself be trained on corpora.
Such a user simulator can then be used for a wide variety of
development, training and evaluation purposes [73].

User simulators normally operate at the abstract level of
dialogue acts. Given a sequence of user acts and system
responses, the aim is to model the distribution of plausible
user responses

p(ut|at, ut−1, at−1, ut−2, . . .) (26)

from which an actual user response can be sampled. As
indicated in Fig. 2, in a real system the dialogue manager
only has access to a noisy observation ot = [ũ1t , . . . , ũ

N
t ]

where ũnt is a confused version of ut with confidence score

p(ũnt |ut). Thus, an error model is needed as well as a user
model. The model for p(ut| . . .) should match the statistics
of user responses in available corpora and the error model
should match the characteristics of the speech recognition and
understanding system [74], [75], [76], [77].

A. User simulation models

One of the earliest approaches to user simulation used N -
grams to model (26) directly [78], [79], [80]. The problem
with this approach is that large N is needed to capture context
and ensure that the user conveys consistent behaviour with the
result that the model is inevitably undertrained. A response to
this problem was to design simulators that were essentially
deterministic and goal-directed but which had trainable ran-
dom variables wherever there is genuine user choice [81], [82],
[83], [84], [85], [86], [87]. These systems can work well but in
practice a large amount of hand-crafting is required to achieve
acceptable performance.

More recent approaches to user simulation have focused on
the use of dynamic Bayesian networks and hidden Markov
models paralleling the user model in the POMDP itself [88],
[89], [90], [91]. They can also incorporate explicit goals by
using a Bayesian network to maintain the goal state of the
user [92]. Bayesian network approaches have the advantage
that they can model a rich set of conditional dependencies
and can be trained on data, although once again data sparsity
is a major problem. An alternative promising technique, which
avoids the sparsity issues inherent in joint-probability models
uses conditional random fields [93]. These have the advantage
that they can model very long sequences as features much
more efficiently.

Ultimately, the most obvious approach to user simulation
will be to train a POMDP-based dialogue system to behave
like a user. The simulator could then talk to the system, with
the simulator and system each refining their individual policies
to maximise reward. The principal barrier to doing this is the
lack of an appropriately detailed reward function for the user-
side of the dialogue. A solution to this might be to utilise
inverse reinforcement learning to infer users’ reward functions
from real human-human dialogues [94], [95].

B. Error simulation models

User simulation was first introduced to train Markov De-
cision Process (MDP) based dialogue systems where only
the single best output from the recogniser is used. In this
case, the error model was required primarily to simulate ASR
errors [96], [97], [98], [99], [100]. In contrast, POMDP-based
systems use the full distribution of recognised hypotheses at
every turn. Hence, as noted at the start of this section, the error
model for a POMDP system must generate not just a single
confusion but a set of confusions, each with a probability
consistent with the behaviour of the actual recogniser. The
information content of this distribution makes a significant
difference to performance [101]. Hence, it is important to
model it accurately.

To conclude this section, user simulation and error mod-
elling are important practical tools for building complex
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statistical dialogue systems for which training directly from
real users would be impractical. Pragmatically, the approach
works reasonably well but the results are highly sensitive to
the simulator [102], [103]. POMDP policy optimisation is
extremely good at exploiting inconsistent behaviour in a user
simulator in order to increase its reward. Thus, it is very easy
to obtain very high performance when training and testing on
the same simulator, but then to find actual performance in field
trials is poor. One way of mitigating against this is to train and
test on different simulators [102], [104].

VI. DIALOGUE MODEL PARAMETER OPTIMISATION

Referring back to Fig. 2, a complete POMDP-based dia-
logue system is characterised by two sets of parameters: the
dialogue modelM with parameters τ , which incorporates the
user, observation and transition probability distributions; and
the policy model P with parameters θ. Most current POMDP
development focusses on policy optimisation and the θ param-
eters, whereas the dialogue model and the τ parameters are
frequently hand-crafted. While hand-crafting the dialog model
may seem unsatisfactory, in many cases the dialogue designer
will have a strong prior on where the parameters should be. For
example, in many applications it may be reasonable to assume
that the user goal is constant throughout the dialogue. In this
case the probability function p(st|st−1, at−1) becomes a delta
function. Similarly, one might reasonably assume that the true
user action cannot be a contradiction of the user goal, and
the distribution over all actions that are not contradictions is
uniform. Hence a user action like “I want a Chinese restaurant”
might have zero probability for goals where the food concept
is not Chinese but uniform probability otherwise.

In some situations, it is also possible to annotate dialogue
corpora to provide complete knowledge of the states of the
system. Simple frequency counts can then be used to provide
maximum likelihood estimates of key parameters [105]. In
[106], maximum likelihood is used to estimate a bigram model
of the type of user action while using a handcrafted model
to give zero probability to user goals that contradict a given
action. In this way simple maximum likelihood can be used
to tune relatively complex models.

However, user behaviour and the noise distributions of the
speech understanding components are complex and annotat-
ing dialogue corpora of sufficient quantity and accuracy is
impractical. Hence, key state variables such as the user’s
goal must be treated as hidden, and model parameters must
be estimated using inference techniques. Recent research is
starting to address this problem of learning the dialogue model
parameters τ directly from dialogue corpora using a variety of
approaches.

A. Expectation maximisation

If the hidden state cannot be annotated then one must turn
to an approximate inference algorithm. Since the POMDP has
an input-output hidden Markov model structure, the expecta-
tion maximisation algorithm (EM) is a sensible first choice.
EM operates by using a fixed set of parameters to estimate
marginal distributions of the hidden parameters in its first step.

It then uses these marginals to re-estimate the parameters of
the model and repeats.

EM has been used to learn the user model for a small
spoken dialogue system with 7 states [107]. However, this
approach does not scale well when the number of states is
significantly increased. The main problem is that marginals
must be computed for every possible state, which becomes
impractical for many applications. [108] has shown how
expectation maximisation (EM) can be used to build models
of the user behaviour, although the method requires the user’s
goal in the dialogue to remain constant. This is an unsuitable
assumption for many real-world dialogues. Nevertheless, ap-
proaches based on EM have the major benefit that they do not
require annotations of the dialogue state.

B. Expectation propagation

Another algorithm that has been applied to learning the
parameters of a spoken dialogue system is expectation prop-
agation [109], [110]. This algorithm operates directly on a
factored Bayesian network and simply extends the loopy belief
propagation algorithm to handle continuous state spaces. This
allows the parameters to be updated during the propagation
step and means that all the conditional independence assump-
tions are used in simplifying the update. This approach has
been used to learn the goal evolution parameters of a relatively
large tourist information system [111]. The main advantage
of this approach is that it requires no annotations of either
the true semantics or the dialogue state. This means that
parameters can be improved with each dialogue without any
extra supervision.

C. Reinforcement learning

All of the above approaches are motivated by the objective
of designing a dialogue model that captures the essential
elements of the user’s behaviour. An alternative would be to
view the dialogue model as just another set of parameters that
influence the total reward earned by the system. Hence, the
task of the parameter optimisation changes from an inference
problem to a reinforcement learning task. Although this means
that the parameters are no longer probabilities in the usual
sense, the final aim of the system is to maximise its perfor-
mance and this approach directly optimises this metric.

One algorithm that has been proposed for this purpose
is an extension of the natural actor critic (NAC) algorithm
discussed in section IV called by analogy “natural belief critic
(NBC)” [112]. This algorithm replaces the parameters of the
policy that would usually be learned, with the parameters of
the user model, denoted τ . This is not entirely straightforward
because the reward is not differentiable with respect to τ .
However, if the τ parameters are fitted with Dirichlet priors,
then the priors are differentiable. Hence, the priors can be
optimised using natural gradient ascent, and the required τ
parameters can then be obtained by sampling the optimised
priors. The NBC algorithm can be further extended to optimise
both the policy and the user model parameters at the same
time. Experiments have shown that policies optimised by
this joint “natural actor and belief critic (NABC)” algorithm
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outperform policies trained solely with the natural actor critic
algorithm [70].

VII. FAST TRAINING AND USER ADAPTATION

As noted in section IV, policy optimisation for a real-
world spoken dialogue system takes an order of O(105)
training dialogues. This is too large for the policy to be
trained in direct interaction with human users and hence, as
discussed in section V, policy optimisation currently relies
on interaction with user simulators. These simulators require
a high level of sophistication and are not trivial to build.
Moreover, the policies trained with simulated users are biased
towards the particular behaviour that these models incorporate.
It is desirable therefore to speed up policy optimisation so that
policies can be trained with or adapted to real users.

A second issue with standard policy optimisation techniques
is that they do not provide a measure of certainty in the
estimates. As dialogue systems become more complex it will
be important to convey to the user the system’s confidence
level. When the system is uncertain, then it needs to signal
to the user that it is uncertain. More pragmatically, knowing
the level of uncertainty in the various regions of belief-action
space will assist learning algorithms to explore parts of the
space it is uncertain about instead of exploring randomly.

A final issue concerns the inherent approximation intro-
duced by parameterising the policy. As described in IV, typi-
cally a set of feature functions are chosen and then parameters
are optimised with respect to the chosen features. To be
effective, the feature functions must be carefully hand-crafted
and even then the result will be suboptimal.

One method that has been recently applied to spoken
dialogue systems to address these issues is Gaussian process-
based reinforcement learning, which allows a policy model
P to be defined and optimised in a non-parametric manner4.
A Gaussian process (GP) is a generative model of Bayesian
inference that can be used for function regression [113]. A GP
is specified by a mean and a kernel function, which defines
prior function correlations and is crucial for obtaining good
estimates with just a few observations.

As with the Value Iteration and Monte Carlo methods
described in section IV, the GP approach represents the policy
via the Q-function (see (9)). However, unlike those methods,
it does not require discretisation of belief space. Furthermore,
given a suitable kernel, it can operate both in summary belief
space and in the full master belief space.5

Current research on using GP for dialogue systems is
focussed on the GP-Sarsa algorithm [114], which models the
Q-function as a zero mean Gaussian process

Q(b, a) ∼ GP (0, k((b, a), (b, a))) (27)

where k((b, a), (b, a)) is a kernel representing the correlations
in belief-action space (b, a).

The posterior of the Gaussian process provides not only the
mean estimate of the Q-function but also the variance, which

4Here non-parametric does not mean parameter-free but rather that the
choice of parameters does not restrict the solution.

5Hence in this section, master and summary space are not distinguished.

gives an estimate of the uncertainty in the approximation. In
online algorithms, this estimate of the uncertainly can be used
for more efficient exploration, either via an active learning
model or by defining a stochastic policy model, both of which
have been shown to speed up the process of learning [115].

The GP-Sarsa algorithm can be used to estimate the Q-
function for real-world problems [116], [115]. It has been
shown to optimise dialogue policies faster then a standard
reinforcement learning algorithm [117] and it has been used to
successfully train a dialogue policy in direct interaction with
human users [118].

GP-Sarsa is an on-line on-policy algorithm in that it learns
by interaction, taking actions according to the same policy
that it is optimising. While on-policy methods guarantee that
the overall reward acquired during the optimisation process
is maximised, off-policy methods guarantee that a particular
policy behaviour is followed during the process of optimisa-
tion. Off-policy sample-efficient methods have been explored
in the context of parametric optimisation using the framework
of Kalman temporal differences [119]. On-line off-policy
learning typically uses a form of Q-learning that exploits the
Bellman equation

Q(b, a)=E

(
rt+1+γmax

a′∈A
Q(bt+1, a

′)|bt=b, at=a
)

(28)

whose maximisation requires a non-linear parametrisation of
the Q-function. The KTD-Q algorithm is a sample efficient
algorithm that assumes a non-linear parametrisation of the Q-
function and optimises the parameters using Kalman filter-
ing [120]. Similar to GP-Sarsa, this algorithm also provides
a measure of the uncertainty of the approximation that can
be used for more efficient policy optimisation [120]. This
algorithm has been successfully applied to dialogue policy
optimisation and shown to perform significantly faster than
standard off-policy methods such as LSPI [121], [44].

VIII. SYSTEMS AND APPLICATIONS

The preceding sections of this review provide an outline of
the core components of a statistical dialogue system. It will
be apparent that these systems are complex and the techniques
are being continually refined. Whilst commercial deployment
is probably still some way off, several working systems have
been built in a number of application areas. This section
provides some specific examples of dialogue systems and
applications that have been implemented within the POMDP
framework.

Most of the systems implemented to date have been in-
formation inquiry applications. These include: voice dialling
[122], tourist information [42], [28], appointment scheduling
[123], and car navigation [24]. Command-and-control applica-
tions have also been demonstrated, such as control of devices
and services in the home via a multi-modal interface [124].
Another class of application is the troubleshooting domain,
which is an interesting example of planning for uncertainty
where the observation space of the POMDP can be extended
to include non-speech variables such as the state of a modem
and the actions can include the invocation of test signals in
addition to verbal responses [125].
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POMDP-systems have also been demonstrated in the “Let’s
Go” challenge run by Carnegie Mellon University, which in-
volves providing live out-of-hours bus information to residents
in the Pittsburgh area [34], [126]. This application must deal
with casual callers using a variety of mobile phones, often
in noisy environments. When success rates were plotted as a
function of word error rate, the POMDP-based systems con-
sistently outperformed the conventional baseline system [8].

IX. EVALUATION AND PERFORMANCE

Whilst methods for evaluation of most data-driven tasks
in speech and natural language processing are well-
established [127], evaluating a spoken dialogue system re-
quires interaction with users and is therefore difficult [128].
Moreover, a spoken dialogue system consists of distinct mod-
ules and although there are well-defined evaluation metrics
for most of them individually, joint evaluation of the complete
system is challenging. Ultimately the goal is usually to provide
user satisfaction, but this is hard to measure and is anyway
really only appropriate for real users with real needs. Testing
a system by giving paid subjects artificial goals will inevitably
create biases and even then it is difficult to recruit sufficient
subjects to achieve statistical significance for each contrast
condition tested. Given these problems, evaluation of SDS
typically falls into one of 3 testing regimes: testing with some
form of simulated user, testing with paid subjects and testing
within a live deployed system.

There are no standardised measures for dialogue man-
ager evaluation. However, the PARADISE framework [129]
suggests the general approach of predicting user satisfaction
ratings using a corpus of dialogues annotated with user sat-
isfaction ratings and a set of objective measures. It defines
the dialogue manager performance as a weighted function of
the dialogue success and dialogue-based cost measures such
as the dialogue length or the number of times the system
produced a confirmation. The weights can be inferred from
the annotated corpus using regression, and this regression
can then be used as the reward function in reinforcement
learning [130], [131]. Whilst this enables a large number of
objective measures to be considered, in practice the dialogue
success rate and the dialogue length are typically the most
important predictors. Hence, most statistical dialogue systems
are trained to maximise success whilst minimising the length
of the dialogue.

The simplest and most efficient test regime is to use a
simulated user. This enables wide coverage of the space
of possible dialogues, with a variety of scenarios and the
ability to vary the effective recognition error rates over a
wide range [132], [133], [134]. An obvious disadvantage, of
course, is the potential discrepancy between the behaviour of
a simulated user and the behaviour of real users. Nevertheless,
user simulation has been a very common way to evaluate
different POMDP approaches [125], [28].

As an illustration, Fig. 6 reproduces the results from [28].
Three different dialogue managers were evaluated with a
simulated user at varying noise levels. These were a hand-
crafted deterministic dialogue manager that takes only the

most likely input from the simulated user (HDC), the BUDS
dialogue manager (Section III-B) with a hand-coded policy
(BUDS-HDC) and the BUDS dialogue manager with a policy
trained using NAC (BUDS-TRA) (Section IV-E). The systems
operate in a tourist information domain, where the users
may ask about hotels, restaurants, bars and amenities in a
fictitious town. The reward function is defined as 20 for a
successful dialogue minus the dialogue length6. The confusion
rate is defined as the probability of a semantic concept from a
hypothesis passed to the dialogue manager being incorrect. A
dialogue is successful if a suitable venue was offered and all
further pieces of information were given. The results in Fig. 6
highlight some important features of the different managers.
Firstly, at low error rates all managers perform equally well,
but at higher error rates the BUDS systems are clearly more
robust to noise. By using belief tracking, the BUDS dialogue
manager is better able to handle conflicting evidence from
different dialogue turns. Secondly, the BUDS manager with
the trained policy gives further improvement compared to the
BUDS system with a handcrafted policy, indicating that policy
optimisation via reinforcement learning is effective.
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Fig. 6. Comparison between the BUDS POMDP-based dialogue manager
with a hand-crafted policy (BUDS-HDC) and a trained policy (BUDS-TRA),
and a conventional hand-crafted deterministic dialogue manager (HDC) as a
function of simulated confusion rate. Each point gives the mean reward for
5000 simulated dialogues. Error bars show one standard error on each side
of the mean. Taken from [28].

The second commonly used evaluation regime is to recruit
human subjects to test the systems, with the aim of providing
more realistic dialogues. Until recently, this has typically been
done in a laboratory setting, where paid subjects are given
predefined tasks, instructed to talk to the system in a particular
way and then asked to rate the dialogues. For example, systems
using the POMDP approach have been evaluated in this way
and improvements have been demonstrated relative to hand-
coded or MDP baselines [49], [135], [28]. Setting aside the
issue of how representative paid subjects are of real users,
a major problem with this approach is the difficulty and
expense of recruiting sufficient subjects. The recent emergence
of crowd-sourcing and the ability to transport audio with

6This is equivalent to giving a reward of -1 in all non-terminal states and
+20 in all terminal states which denote success.
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minimal latency over the internet, has greatly mitigated this
problem. For example, in [136] the Amazon Mechanical Turk
service was used to recruit subjects and provide them with
predefined tasks and basic instructions. Subjects then called
the dialogue system via a toll-free telephone number and
provided feedback after each dialogue. This now provides
an effective way of collecting a large number of human-
computer dialogues in order to achieve statistically significant
results [137]. However, the use of crowd-sourcing does not
address the issue of how representative paid subjects are of
real users. Indeed, without the ability to monitor subjects in
a laboratory setting, the problems of motivation and attention
are exacerbated. Furthermore, there is evidence to suggest that
crowd-sourced subjects do not rate their dialogue experience
accurately [118].

The final evaluation regime is to test systems in the field
with real users. This normally requires partnership with a
commercial provider or the setting up of a service that the
public are naturally motivated to use. Neither of these is
easy to arrange and as a response to this problem Carnegie
Melon University (CMU) have set up an evaluation framework
called the Spoken Dialogue System Challenge. This utilises
a live service for providing bus information for Pittsburgh,
Pennsylvania where users are able to call the system and
ask for bus information. This service has been provided for
some years using human agents during office hours, and by
providing a fully automated out-of-hours service, a genuine
user demand has been created which by default is serviced
by a baseline spoken dialogue system designed by CMU but
which can be substituted by other systems for testing. As an
example, in the 2010 challenge a number of systems were
tested, first by a cohort of students to ensure that the systems
were sufficiently robust to put before the public and then they
were tested in the live service. Two of those tested were based
on the POMDP framework.

The summary results are shown in Fig. 7 from [8], where the
logistic regression of dialogue success was computed against
word error rate (WER) for each of the systems. It can be
seen that the hand-coded baseline system ”sys1” is slightly
better at low error rates which was to be expected given the
long period of development and refinement of that system.
However despite the very short development times of the other
two POMDP-based systems, both were more robust on high
noise levels than the hand-coded baseline system.

X. HISTORICAL PERSPECTIVE

The first reference to the use of POMDPs in spoken dialogue
systems is thought to be Roy et al in 2000 [9] and Zhang
et al in 2001 [138]. However, some of the key ideas were
being explored before then. The idea of viewing dialogue
management as an observable Markov decision process (MDP)
and optimising a policy via reinforcement learning is due to
Levin and Pieraccini [139], [140]. This work was quickly
developed by others [141], [131], [142], [143], [144], [145],
[45], [146], [147], [148], [49], [48], [50], [149], [150], [46],
[151], [152], [51]. However, the use of MDP approaches lost
momentum as it became apparent that the lack of any explicit
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Fig. 7. Logistic regression of dialogue success vs word error rate (WER)
for the three systems subjected to live testing in the 2010 Spoken Dialogue
Challenge. Sys3 and Sys4 were POMDP-based systems and Sys 1 was a
hand-coded system. Taken from [8].

model of uncertainty was limiting performance, and although
the generalisation to POMDPs was known, their use appeared
to be intractable for real-world systems. The first reference
to the need for an explicit representation of uncertainty in
dialogue is believed to be Pulman in 1996 who proposed
modelling dialogue as a conversational game [153]. Soon after
Heckerman; Horvitz and Paek; and Meng, Wai and Pieraccini
showed how Bayesian networks could be used to provide more
robust conversational structures [154], [155], [156].

XI. CONCLUSIONS

The development of statistical dialogue systems has been
motivated by the need for a data-driven framework that re-
duces the cost of laboriously hand-crafting complex dialogue
managers and which provides robustness against the errors
created by speech recognisers operating in noisy environments.
By providing an explicit Bayesian model of uncertainty and
by providing a reward-driven process for policy optimisation,
POMDPs provide such a framework.

However, as will be clear from this review, POMDP-based
dialogue systems are complex and involve approximations and
trade-offs. Good progress has been made but there is still much
to do. There are many challenges, most of which have been
touched upon in this review such as finding ways to increase
the complexity of the dialogue model whilst maintaining
tractable belief tracking; and reducing policy learning times
so that systems can be trained directly on real users rather
than using simulators. Down the road, there is also the task
of packaging this technology to make it widely accessible to
non-experts in the industrial community.
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There are other challenges too. The POMDP framework
depends critically on the notion of rewards. In principle this
is a key benefit of the approach since it provides an objective
mechanism for specifying dialogue design criteria. However,
the problem in practice is that it is very difficult to extract
reliable reward signals from users. Even the simple success/fail
criterion is difficult to compute since even if asked “Did the
system give you all that you asked for?”, many users will say
“Yes” regardless just to be polite, or “No” because they had
completely unrealistic expectations of what the system can
do for them. Reward functions based on user satisfaction as
predicted by a regression on objectively measurable features
such as in the PARADISE framework [129] may mitigate this
problem and need to be explored further[130], [131]. However,
much of the experience to date suggests that on-line learning
with real users will not be truly effective until robust biometric
technology is available that enables the emotional state of the
user to be accurately measured [118]. In the meantime, there
is no shortage of further areas to develop and explore!
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[47] H. Cuayáhuitl, S. Renals, and O. Lemon, “Learning multi-goal dia-
logue strategies using reinforcement learning with reduced state-action
spaces,” in Proceedings of Interspeech, Pittsburgh, Pennsylvania, 2006.

[48] O. Pietquin and T. Dutoit, “A probabilistic framework for dialog
simulation and optimal strategy learning,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 14, no. 2, pp. 589–599, 2006.

[49] J. Henderson, O. Lemon, and K. Georgila, “Hybrid reinforce-
ment/supervised learning for dialogue policies from Communicator
data,” in Proceedings of the IJCAI Workshop on Knowledge and
Reasoning in Practical Dialog Systems, Edinburgh, United Kingdom,
2005, pp. 68–75.

[50] M. Frampton and O. Lemon, “Learning more effective dialogue strate-
gies using limited dialogue move features,” in Proceedings of ACL,
Sydney, Australia, 2006, pp. 185–192.

[51] J. Henderson, O. Lemon, and K. Georgila, “Hybrid reinforcement /
supervised learning of dialogue policies from fixed datasets,” Compu-
tational Linguistics, vol. 34, no. 4, 2008.

[52] H. Kurniawati, D. Hsu, and W. Lee, “SARSOP: efficient point-based
POMDP planning by approximating optimally reachable belief spaces,”
in Proceedings of Robotics: Science and Systems, 2008.

[53] T. H. Bui, M. Poel, A. Nijholt, and J. Zwiers, “A tractable DDN-
POMDP approach to affective dialogue modeling for general proba-
bilistic frame-based dialogue systems,” in Proceedings of the IJCAI
Workshop on Knowledge and Reasoning in Practical Dialog Systems,
Hyderabad, India, 2007, pp. 34–37.

[54] T. H. Bui, B. W. van Schooten, and D. H. W. Hofs, “Practical dialogue
manager development using POMDPs,” in Proceedings of SIGDIAL,
Antwerp, Belgium, 2007, pp. 215–218.

[55] F. Pinault, F. Lefevre, and R. D. Mori, “Feature-based summary space
for stochastic dialogue modeling with hierarchical semantic frames,”
in Proceedings of Interspeech, Brighton, United Kingdom, 2009, pp.
284–287.

[56] A. Boularias, H. R. Chinaei, and B. Chaib-draa, “Learning the reward
model of dialogue pomdps from data,” in NIPS Workshop on Machine
Learning for Assistive Techniques, 2010.

[57] F. Pinault and F. Lefevre, “Semantic graph clustering for POMDP-
based spoken dialog systems,” in Proceedings of Interspeech, Florence,
Italy, 2011, pp. 1321–1324.

[58] ——, “Unsupervised clustering of probability distributions of semantic
frame graphs for pomdp-based spoken dialogue systems with summary
space,” in Proceedings of the IJCAI Workshop on Knowledge and
Reasoning in Practical Dialog Systems, Barcelona, Spain, 2011.

[59] H. R. Chinaei and B. Chaib-draa, “Learning dialogue pomdp models
from data,” in Canadian Conference on Artificial Intelligence, 2011,
pp. 86–91.

[60] H. R. Chinaei, B. Chaib-draa, and L. Lamontagne, “Learning ob-
servation models for dialogue pomdps,” in Canadian Conference on
Artificial Intelligence, 2012.

[61] S. Varges, G. Riccardi, S. Quarteroni, and A. Ivanov, “POMDP
concept policies and task structures for hybrid dialog management,”
in Proceedings of ICASSP, Prague, Czech Republic, 2011, pp. 5592 –
5595.

[62] J. D. Williams, “Integrating expert knowledge into POMDP optimiza-
tion for spoken dialog systems,” in Proceedings of the AAAI Workshop
on Advancements in POMDP Solvers, Chicago, Chicago, Illinois, 2008.

[63] R. Sutton and A. Barto, Reinforcement Learning: An Introduction,
ser. Adaptive Computation and Machine Learning. Cambridge,
Massachusetts: MIT Press, 1998.

[64] F. Lefevre, M. Gasic, F. Jurcicek, S. Keizer, F. Mairesse, B. Thomson,
K. Yu, and S. J. Young, “k-nearest neighbor monte-carlo control algo-

rithm for pomdp-based dialogue systems,” in Proceedings of SIGDIAL,
London, United Kingdom, 2009.

[65] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal
of Machine Learning Research, no. 4, pp. 1107–1149, 2003.

[66] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, 1992.

[67] S. Amari, “Natural gradient works efficiently in learning,” Neural
Computation, vol. 10, no. 2, pp. 251–276, 1998.

[68] J. Peters and S. Schaal, “Natural Actor-Critic,” Neurocomputing,
vol. 71, no. 7-9, pp. 1180–1190, 2008.

[69] T. Misu, “Dialogue strategy optimization to assist user’s decision for
spoken consulting dialogue systems,” in Proceedings of SLT, Berkeley,
California, 2010, pp. 354 – 359.
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[106] S. Keizer, M. Gašić, F. Mairesse, B. Thomson, K. Yu, and S. Young,
“Modelling user behaviour in the HIS-POMDP dialogue manager,” in
Proceedings of SLT, Goa, India, 2008, pp. 121–124.

[107] F. Doshi and N. Roy, “Spoken language interaction with model
uncertainty: an adaptive human-robot interaction system,” Connection
Science, vol. 20, no. 4, p. 299318, 2008.

[108] U. Syed and J. D. Williams, “Using automatically transcribed dialogs
to learn user models in a spoken dialog system,” Proceedings of
ACL:HLT, p. 121124, 2008.

[109] T. Minka, “Expectation Propagation for Approximate Bayesian In-
ference,” in Proceedings of UAI. Seattle, Washington: Morgan-
Kaufmann, 2001, pp. 362–369.
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[115] M. Gašić, “Statistical dialogue modelling,” Ph.D. dissertation, Univer-
sity of Cambridge, 2011.

[116] Y. Engel, “Algorithms and Representations for Reinforcement Learn-
ing,” PhD thesis, Hebrew University, 2005.
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