
YARRA: An Extension to C for Data Integrity and Partial Safety
(MSR-TR-2010-158)

Cole Schlesinger
Princeton University

cschlesi@cs.princeton.edu

Karthik Pattabiraman
University of British Columbia

karthikp@ece.ubc.ca

Nikhil Swamy
Microsoft Research

nswamy@microsoft.com

David Walker
Princeton University

dpw@cs.princeton.edu

Ben Zorn
Microsoft Research

zorn@microsoft.com

Abstract
Modern applications contain libraries and components written by
different people at different times in different languages, often
including unsafe languages like C or C++. As a result, one bug,
such as a buffer overflow, in any component, can compromise the
security and reliability of every other component. To help mitigate
these problems, we introduce YARRA, a conservative extension to
C with mechanisms for enforcing data integrity and partial safety,
even when code is linked against unknown C libraries or binaries.
YARRA programmers specify their data integrity requirements by
declaring critical data types and ascribing these critical types to
important data structures. YARRA guarantees that such critical data
is only written through pointers with the given static type. Any
attempt to write to critical data through a pointer with an invalid
type (perhaps because of a buffer overrun) is detected dynamically.

We formalize YARRA’s semantics and prove the soundness of
a program logic designed for use with the language. A key con-
tribution is to show that YARRA’s semantics are strong enough to
support sound local reasoning and the use of a frame rule, even
across calls to unknown, unverified code. We also demonstrate that
YARRA’s semantics can be implemented in several different ways,
with different performance and pragmatic tradeoffs. In one imple-
mentation, we perform a source-to-source program transformation
to ensure correct execution. In a second implementation, we do not
rely upon having access to the entire source code, but instead use
conventional hardware permissions to protect critical data. We eval-
uate our implementations using SPEC benchmarks to understand
their performance. Additionally, we apply YARRA to four common
applications with known non-control data vulnerabilities. We are
able to use YARRA to defend against these attacks while sustaining
a negligible impact on their end-to-end performance.

1. Introduction
Despite the widespread use of type-safe languages, most impor-
tant applications contain components written in unsafe languages
such as C and C++. Indeed, even the implementations of safe pro-
gramming languages generally rely on libraries written in unsafe
languages. In such multi-component systems, just one bug, such as
a buffer overflow, in any unsafe component, can compromise the
security and reliability of every other component.

Over the years, there has been a great deal of research aimed
at making these unsafe systems more secure and reliable. In par-
ticular, much attention has been paid to preventing control-based
attacks on unsafe programs. In this class of attack, the attacker at-

tempts to use a program error, such as a buffer overflow or use-
after-free, to overwrite control-data such as return addresses and
function pointers to modify the control-flow of the program. For-
tunately, commercially implemented mitigation techniques, includ-
ing protecting the return address on the stack [6], turning off code
execution in the heap [7], randomizing the layout of code and data
in memory [26], and enforcing control-flow integrity [1], have re-
duced the effectiveness of control-flow attacks. Unfortunately, at-
tackers are now looking to try new methods of attack.

In 2005, Chen et al. [5] illustrated that a variety of non-control
data attacks can be launched against servers that implement HTTP,
FTP, SSH, and other important applications. These attacks do not
modify the control-flow of programs, but instead corrupt user iden-
tity data, configuration data, user input data or decision-making
data to achieve the attacker’s ends. Since 2005, due to the mitiga-
tions against control-based attacks, the prevalence of non-control
data attacks has increased [22].

To help protect C programs against non-control data attacks,
and, more generally, to improve the security and reliability of un-
safe systems, we introduce YARRA, a new, conservative, lightweight
extension to C. In YARRA, programmers introduce special type
declarations and ascribe the special types to their critical data
structures—those data structures upon which system reliability or
security most depends. We call the special types critical data types.

Critical data types help programmers specify an intended data
integrity policy. Programmers further specify their data integrity
intentions by choosing, in any given program expression, to use a
pointer with a critical type or not to use a pointer with a critical
type. When accessing data through a pointer with a (static) critical
type, a programmer declares that he or she expects the underlying
memory to have that same critical type dynamically. When writing
through a pointer that, statically, does not have a critical type, the
programmer declares that he or she does not expect to be modifying
memory with the (dynamic) critical type.

The concepts and properties mentioned above are intuitive and
easy to use. They help defend against unintended modification of
critical data, which is at the heart of all non-control data attacks,
and moreover, is a general source of unreliability in C programs.
More generally still, we argue that these properties are fundamen-
tal pillars upon which almost any local, modular reasoning about
imperative programs depends. Of course, since these properties do
not generally hold in C due to casting, buffer overruns, use-after-
free and other unsafe operations, it is up to the YARRA implemen-
tation to enforce them.

1

Hence, this paper makes several contributions, including (1)
the design of a new language extension, (2) the formalization of
its semantics and reasoning principles, (3) the implementation of
a compiler and runtime system, and (4) a demonstration of its
effectiveness on a collection of applications. We discuss each of
these contributions below.
Language design. YARRA is a lightweight, conservative extension
to C with a number of properties that make it complementary to
existing safety and security mechanisms. First, it allows program-
mers to use simple types to specify data integrity policies. Type
declarations may be added to an existing code base, literally one
at a time, incrementally hardening a program against non-control
data attacks. Second, YARRA is designed to interoperate with li-
braries for which the source code is unavailable. Perhaps the source
is owned by a third party, the library is written in a different lan-
guage or the code is only available as a binary. In all of these cases,
YARRA still provides protections for critical data, even if the library
code is unsafe and contains buffer overruns. In other words, YARRA
delivers a unique kind of partial safety to its users. In contrast, sys-
tems such as Cyclone [10], CCured [18], Softbound [16] and others
that rely upon conventional array-bounds checking generally do not
provide any guarantees whatsoever when there are buffer overruns
in unchecked libraries. Despite this limitation, array-bounds check-
ing remains a very useful technique, and we believe that YARRA
provides protections that are both orthogonal and complementary.
Formal semantics. We provide an operational semantics and a
sound program logic for a core model of YARRA. The program
logic defines the formal or informal reasoning principles that pro-
grammers may use when analyzing their YARRA programs. A
unique aspect of our program logic is its type-based frame rule that
facilitates local reasoning about a security sensitive (or other) mod-
ule. Specifically, we show (1) how to characterize any unprocessed,
possibly ”unsafe,” external library call using a Hoare triple, (2) how
to associate strong logical invariants with critical data types, like
one would do in a conventional safe, strongly typed language, and
(3) how to preserve such strong invariants across calls to external
libraries using our frame rule.
Implementation of a compiler and runtime system. The seman-
tics of YARRA may be implemented in more than one way. Differ-
ent implementations have different performance tradeoffs in terms
of time and space and different requirements in terms of access
to source code for transformation. We currently have two imple-
mentations based on different techniques. The first technique, in-
spired by previous work on Write Integrity Testing (WIT) [2], in-
struments source code with dynamic checks that cannot be proven
unnecessary at compile time. These checks implement a form of in-
verse array bounds checking.1 In other words, rather than checking
that a write is within the bounds of a particular object, the checks
guarantee that it is not within the bounds of other, critical objects.
While tantalizingly close to array bounds checking, the implemen-
tation and engineering tradeoffs involved are different. The second
technique uses standard hardware protections provided by the vir-
tual memory system. This technique, inspired by previous work on
Samurai [20], makes copies of critical objects on separate pages.
Prior to invoking untrusted library code, the implementation turns
off hardware write permissions on the designated pages, thereby
preventing unsafe libraries from corrupting critical data.
Applications of YARRA. We illustrate the effectiveness of YARRA
on a collection of different applications drawn primarily from two
domains: (1) applications with security-sensitive data that may be
vulnerable to non-control data attacks, and (2) memory managers
that maintain both client-inaccessible, internal data structures and

1 This implementation inspired the name YARRA (the inverse of ARRAY).

client-accessible ordinary data. The latter is a stand-in for any
general-purpose module with internal state that, for reliability (as
opposed to security) purposes, would like to protect that state. We
show that YARRA can effectively protect security critical data from
known exploits with an overhead in execution time of 7–67% in the
hardened module alone, and negligible overhead relative to the end-
to-end performance of the application as a whole. The programmer
integration effort was on the order of a few hundred modified lines
of code in applications tens of thousands of lines long.
Limitations: While YARRA may be used to harden C programs
against non-control data attacks, there are many vulnerabilities that
YARRA does not defend against. In particular:

• YARRA does not protect against control-flow attacks, guard
against stack smashing or provide any kind of control-flow
integrity. Techniques such as the /GS flag, control-flow in-
tegrity [1] and/or DEP hardware protections should be used
with YARRA if such attacks are considered a hazard.
• While YARRA protects against buggy libraries, it provides no

protection against explicitly malicious library code. Our imple-
mentation does not currently prevent the untrusted library from
making system calls that turn off hardware protection bits (or
performing other arbitrarily malicious actions).

Further, neither YARRA implementation currently operates in
multi-threaded contexts.

2. YARRA By Example
Background. A non-control data attack occurs when security-
critical data allocated on the heap is unexpectedly modified. The
display below shows an example of code vulnerable to such an
attack. This example is drawn from Akritidis et al. [2] and was
inspired by a true nullhttpd attack.

Code vulnerable to a non-control data attack
1 static char cgiCmd[1024];
2 static char cgiDir[1024];
3 void ProcessCGIRequest(char∗ msg, int sz) {
4 int flag, i=0;
5 while (i < sz) {
6 cgiCmd[i] = msg[i]; //buffer overrun here could overwrite cgiDir
7 i++;
8 }
9 flag = CheckRequest(cgiCmd); //input sanitization

10 if (flag) {
11 Log("..."); //buggy library could invalidate sanitization
12 ExecuteRequest(cgiDir, cgiCmd);
13 }}

In this example, a request (msg) is copied into a new buffer
called cgiCmd. Next, a routine called CheckRequest checks that the
command does not contain ”..”, which would allow an attacker to
navigate out of the designated directory and execute any program,
anywhere in the system. Finally, Log logs the request for future au-
dits and ExecuteRequest concatenates the command to the designated
directory path and executes it. Unfortunately, the routine is vulner-
able when sz is larger than 1024. In this case, the copying operation
overflows from cgiCmd into cgiDir, allowing an attacker to effectively
execute any command in any directory on the user system. An addi-
tional concern is a potential time-of-check to time-of-use discrep-
ancy in the code, that can be exploited, if, for example, the call to
Log has a buffer overflow that allows cgiCmd to be overwritten after
CheckRequest has been executed. Both of these vulnerabilites lead
to non-control data attacks because they do not change the control
flow of the C program. Hence, they will not be detected by mecha-
nisms that check for control flow integrity.
There are two perspectives on this kind of attack:

2

• The conventional array-bounds perspective: The fault lies with
the write operations at line 7 and within the implementation of
Log, since they misimplement indexing operations.
• The data integrity perspective: The fault lies in the definition

and implementation of the cgiDir and cgiCmd data structures,
since they fail to protect themselves from external agents.

These two different perspectives lead to different solutions with
different engineering considerations. The conventional perspective,
taken by systems such as SoftBound [16], leads one to maintain
bounds on all data structures and to rewrite the code for every data
access. Consequently, it cannot be applied when library source code
is unavailable, e.g., if a function like Log were to make library calls.
In such a situation, all bets are off—a single missed bounds check
may corrupt any data structure, anywhere in the program. In con-
trast, the data integrity perspective leads one to maintain bounds
only for the high integrity (critical) data structures and indexing op-
erations must be proven not within the bounds of these structures.
This alternative perspective leads to a different set of implementa-
tion possibilities. For example, one may use conventional hardware
protections to prevent writes to critical data, while still allowing
safe linking with unmodified, possibly buggy libraries. We adopt
the latter perspective in YARRA and show how it can be used to
harden code against non-control data attacks.

2.1 Hardening nullhttpd with YARRA

The main new abstraction that YARRA provides is the critical data
type. Critical data types have the rather unremarkable property that
access to such data may only occur through a pointer with a cor-
responding (static) type. Working with critical data types demands
a certain discipline. First, programmers must declare a critical type
X . Having done so, programmers can designate (or bless) portions
of memory as containing X objects and, as a result, they obtain
X-typed references. X-typed memory should only be accessed us-
ingX-typed references. In return, YARRA ensures that the portions
of memory that hold X-typed objects will never be corrupted by
writes via untyped pointers, or by the effects of library code. When
finished with an X object, a programmer can unbless a reference,
undoing the protections on the referenced memory.
Programming with critical data types. The listing below shows
how our example fragment from nullhttpd may be rewritten
using YARRA’s critical data types to foil both non-control data
attacks. On line 1, we introduce a new critical data type, cchar, using
a declaration much like C’s typical declaration for structures. The
type cchar is a new YARRA structure containing a single character
field named cc. The type dchar (line 2) is another critical type, also
with a single character field dc. At line 3, we declare that every
element of cgiCmd is a cchar, meaning it can only be written by
cchar pointers. Likewise, with cgiDir and dchar, at line 4. Finally, we
modify line 8, to access the cc field of the YARRA structure, thereby
indicating our clear intention to write to protected data.

YARRA’s promise to programmers is that writes via non-critical
pointers to memory locations holding critical objects will always
be detected. Because the types cchar and dchar are unknown to the
Log function and any library it may call, the functions use only non-
critical pointers, and hence YARRA guarantees that both cgiDir and
cgiCmd are uncorrupted at the call to ExecuteRequest. Further, at line
8, if there is a buffer overrun from cgiCmd into cgiDir, YARRA detects
the error because a pointer with static type cchar∗ attempts to write
to memory with (dynamic) YARRA type dchar. This illustrates the
importance of using different YARRA types for logically distinct
data structures. If one were to use the same type (say, cdchar)
for both cgiCmd and cgiDir then YARRA would not prevent buffer
overrun at line 8. In other words, structures that share the same

type are not protected from each other; they are only protected from
structures with other types.

Using critical data types in nullhttpd
1 yarra struct {char cc;} cchar;
2 yarra struct {char dc;} dchar;
3 static cchar cgiCmd[1024];
4 static dchar cgiDir[1024];
5 void ProcessCGIRequest(char∗ msg, int sz) {
6 int flag, i=0;
7 while (i < sz) {
8 cgiCmd[i].cc = msg[i]; //Yarra: cgiDir cannot be modified
9 i++;

10 }
11 flag = CheckRequest(cgiCmd);
12 if (flag) {
13 Log("..."); //Yarra: corruption of cgiDir, cgiCmd detected
14 ExecuteRequest(cgiDir, cgiCmd);
15 }}

Implementing YARRA protections. There are many ways to imple-
ment the protections YARRA offers—our current implementation
offers two modes. In its source protection mode (inspired by WIT),
our compiler uses the statically declared type of pointers to instru-
ment memory accesses with suitable checks. For example, writes
using non-critical pointers to locations are checked at run time to
ensure they actually contain non-critical data. If they contain crit-
ical data, the program will abort. In its targeted library protection
mode (inspired by Samurai), more suitable for situations in which
code cannot be instrumented with checks (e.g., when linking with
third-party binaries), we maintain backing stores for critical objects
on separate pages. Prior to invoking potentially buggy library code,
we turn off hardware write permissions on these pages to preserve
their integrity. Writes from untyped pointers to critical objects pro-
ceed without failure, but, these writes only modify one copy of the
object, leaving the version in the backing store unchanged. In con-
trast, writes to critical objects using well-typed references update
both copies of the object. When a critical object is read using a
well-typed pointer, checks inserted by our compiler ensure that the
versions of the object in the main heap and the backing store are
identical, thus detecting potential corruptions.
Reasoning about YARRA programs. Regardless of the implemen-
tation chosen, with both cgiCmd and cgiDir protected by YARRA,
our semantics provides the programmer with powerful, sound, lo-
cal reasoning principles. Any invariant over the objects cgiCmd and
cgiDir is preserved across the call to the Log function, since Log is un-
able to modify critical memory locations. Additionally, an invariant
on cgiDir (e.g., that cgiDir does not start with “..”) is preserved across
line 8, since YARRA ensures that the write to cgiCmd never modifies
a dchar object. We formalize this principle in Section 3 in terms of
a type-based frame rule and prove it sound.

2.2 Critical data and dynamic allocation
Our first example illustrated a simple use case for YARRA in which
a set of memory locations have a single YARRA type for their entire
lifetime. However, in order to handle dynamically allocated data
structures, or memory that is reused for different purposes, we need
a way to cast memory from one critical type to another.

In YARRA, memory pointed to by p is dynamically cast to a
critical type T using the operation bless〈T〉(p) and cast back using
unbless〈T〉(p). It is an error to attempt to bless memory protected at
type T’ to another type T, unless T’ is a declared substructure of
T2. Likewise, it is an error to attempt to unbless memory from type
T when that memory location had not previously been blessed at

2 An illegal cast of this sort might invalidate the protections supplied by T’.

3

1 yarra struct {int tag;} metaT;
2 yarra struct {int junk;} unusedT;
3 union item {
4 unusedT unused;
5 int used;
6 };
7 static metaT meta[SIZE];
8 static item data[SIZE];
9 int ∗alloc() {

10 int i;
11 for (i=0; i<SIZE; i++) {
12 if (meta[i].tag == 0) {
13 meta[i].tag = 1;
14 unbless〈unusedT〉(&data[i].unused);
15 return data+i;
16 } }
17 abort("out of memory");
18 }
19 void free(int ∗datum) {
20 if (datum >= data && datum < data+SIZE) {
21 int i = datum – data;
22 if (meta[i].tag == 1) {
23 if (vacant〈unusedT〉(&data[i])) {
24 meta[i].tag = 0;
25 bless〈unusedT〉(&data[i].unused);
26 return;
27 } } }
28 abort("client error"); }

Figure 1. A simplified memory manager

T. These sorts of errors are detected at runtime by the instrumenta-
tion inserted by our compiler. YARRA also provides the operation
isIn〈T〉(p), which returns true if p dynamically has type T and false
if it does not. If p points to memory which has been blessed at type
T but which has been corrupted by a write via an untyped pointer,
YARRA causes the program to abort—this situation can be detected,
if, for example, the two copies of the T-object in question are not
synchronized. Finally, YARRA provides the command vacant〈T〉(p),
which returns true if p points to completely unprotected memory of
size sizeof(T) and false otherwise.

Figure 1 shows a simple memory allocator that uses bless and
unbless to protect its metadata, hence increasing its reliability, even
when linked against buggy clients. While the allocator shown is
extremely simple, we have used the same principles to protect
BGET [25], a standard, publicly available allocator for C.

The allocator relies on a few simple invariants (where i ranges
from 0 to SIZE-1): (1) the elements i of the meta array have critical
type metaT, preventing a buggy client program from modifying al-
locator meta data; (2) the meta array contains integers that are either
0 or 1; (3) if meta[i] is 0 then data[i] is not allocated and dynamically
has critical type unusedT, preventing a client from using it; and (4)
if meta[i] is 1 then data[i] is allocated and dynamically does not have
critical type unusedT, allowing a client to use it as needed.

Given these invariants, consider the effects of the alloc and
free routines. In alloc, the code searches for a free cell (one with
meta[i].tag == 0), assigns the meta[i] tag to 1 (allocated state), and un-
blesses the cell, returning a pointer that the client may freely use.
In, free the code first checks that its argument is in range. If it is, it
checks that the cell has previously been allocated by the allocator
and not yet freed (meta[i].tag == 1). Next, it checks that the data is
not still (erroneously) in use by another module at a protected type
by testing if data[i] is vacant (line 23). Finally, if all these checks
succeed, the metadata is set to unallocated and the data is blessed,
protecting it from use by any other module.

When thinking about the correctness of alloc and free, the first
thing to notice is that if the informal invariants mentioned above

are true at entry to either routine then they are also true upon
completion of the routine. More interesting still, the invariants
(though loosely stated) are phrased entirely in terms of protected
state — i.e., in terms of static global arrays, whose addresses may
not be changed, in terms of protected memory, such as the contents
of meta, and in terms of a locally quantified variable i — as opposed
to in terms of normal, vulnerable, heap-allocated data structures.
Because these invariants depend exclusively on protected state,
no client module may corrupt them and hence, according to the
traditional hypothetical frame rule, if initialization (not shown)
makes them valid at the outset, it is sound for each routine to
depend upon their continued validity throughout the program.

3. Semantics of YARRA

This section defines YCORE, a sequential, imperative language
intended to serve as a core model for YARRA. Our main technical
contribution is a logic for YCORE programs that supports local
reasoning via a frame rule, even in the presence of unverified third-
party code that can have arbitrary effects on the heap. We prove
our logic sound against a dynamic semantics for YCORE that maps
directly to the library protection mode of our implementation.
Modeling critical types using partial maps and backing stores.
Abstractly, the YCORE run-time system consists of a set of inde-
pendent, isolated heaplets, one for each critical type X , and the
conventional heap (H). The heaplet for X corresponds roughly
to the backing store for X-typed objects. We model the critical
heaplets formally as partial maps from memory addresses to X-
typed objects. The conventional heap H is a total map from mem-
ory addresses to integers. Declaring a new type X corresponds to
allocating a new map, also named X (i.e., reserving space in the
backing store for X-typed objects); blessing an object as X cor-
responds to adding a value to the X map (i.e., making a copy of
it in the backing store); unblessing removes an element from the
map (i.e., reclaiming space in the backing store). Checked reads and
writes access the fields of an object by consulting these maps, while
untrusted reads and writes performed by library code merely access
the untyped heap, without any impact on the maps for object types.
While it is convenient to think of critical heaplets in terms of back-
ing stores, these stores need not actually be materialized at runtime.
Indeed, the source protection mode of our compiler implements the
semantics of backing stores indirectly via code instrumentation.

3.1 Syntax
Figure 2 shows the syntax of YCORE, starting with our meta vari-
able conventions. Values in YCORE are either integer constants i,
or are structured tuples (v1, v2) corresponding to the values of pro-
tected object types. Expressions e are purely arithmetic, and the
statement language s includes the usual commands for branching,
looping, sequencing, and assertions. The assertion logic of YCORE
makes use of first-order formulas Φ over a term language including
arithmetic expressions, tuples, maps and sets, together with (exten-
sional) equality, set membership, and integer inequality.

In addition to the basic commands, YCORE includes scoped,
local variable declarations, (local x in s)—local variables always
hold integer values, so no type is needed on the declaration of x.
The form (newtype X = τ in s) allows us to define a name X
for a new critical type, where the representation of X is τ , and
X can be used in s. The statements for blessing and unblessing
are slightly more general than what was used in Section 2. Here,
bless and unbless operate on a range of locations starting at ebase and
including e objects each to either be protected or unprotected at the
type X (where e is expected to evaluate to a non-negative integer).
The dynamic typecase statement is useful for modeling the vacant
command of Section 2.2, as well as other constructs—it can be used

4

integer constants i, j, `
local variables x, y, z
map type names X,Y, Z,H,Un
values v ::= i | (v1, v2)
expr. e ::= i | x | e op e′
stmt. s ::= skip | if e then s1 else s2 |while e s |s1; s2

assertion | assert Φ
local var. decl. | local x in s
local type decl. | newtype X = τ in s
bless e objs. starting at ebase | y := blessX [e] ebase

unbless e objs. starting at ebase | y := unblessX [e] ebase

dynamic typecase | if e is in X then s1 else s2

checked read | y := X(e).p
unchecked read | lib y := e
checked write | X(e1).p := e2

unchecked write | lib e1 := e2

dynamic failure | abort
field path p ::= · | 0p | 1p
types τ ::= int | (τ1, τ2) | X
map type τ̂ ::= int → τ
map value v̂ ::= λ`.ê
map body ê ::= ⊥ | v | v̂ v | if a ∈ a′ then ê else ê′

mod. set ∆ ::= · | ∆, X | ∆, x
static env. Γ ::= · | Γ, X:τ̂ | Γ, x
logic term a ::= e | v | ê | v̂ | X | a.p | dom a | {x | Φ}
formula Φ,Ψ ::= Φ ∧Ψ | Φ ∨Ψ | ¬Φ | ∀x.Φ | ∀X:τ̂ .Φ

| a = a′ | a ∈ a′ | a < a′ | True | False
substitution σ ::= · | σ, [a/X] | σ, [a/x]

Figure 2. Syntax of YCORE

to check whether a location e holds a critical object of type X . We
include two forms of read and write instructions. A checked read
attempts to read a structured value v of type X at the location e
and projects a field from v using the path p, storing the result in the
local variable y. In contrast, an unchecked read instruction reads the
contents of an arbitrary memory location from the heap into a local
variable. Similarly, a checked write attempts to write to a structured
type using a field assignment; unchecked writes modify a single
location in the heap. We use the unchecked forms to model the
actions of arbitrary, untrusted code, e.g., third party libraries. Such
libraries are assumed to contain an arbitrary sequence of unchecked
reads and writes, in combination with branching, looping etc., but,
importantly, never contain bless, unbless, typecase or checked read
and write commands.

We model two kinds of failure modes in YCORE. Certain dy-
namic failures are permitted by the logic, e.g., failures caused by
the effects of untrusted libraries which are detected by the runtime
system. These failures cause a program to loop indefinitely issu-
ing the abort command—we expressly choose to allow such “safe”
failures to occur at run time since they are unavoidably triggered by
the behavior of unverified library code. Other failures, e.g., trying
to bless a piece of memory that has already been blessed at an-
other type, or an assertion failure, cause the program to get stuck.
YCORE’s logic is designed to prevent the latter form of failure.

The type language of YCORE includes int , pairs, and critical
type namesX . We model both C’s integers as well as pointers using
the int type. Structures in C, which contain an arbitrary number of
named fields, are modeled using pairs. We omit unions.

Type names X in YCORE also double as the names of map
values λ`.ê, lambda-terms that map integer locations to values and
that model the backing store for X objects. The body of a map
expression is built from values v, an application form, a conditional
form, and ⊥. We use the latter to model partial maps.

1 yarra struct {int f0; int f1} X;
2 yarra struct {X g0; int g1} Y;
3 main() {
4 void∗ z=malloc(sizeof(Y));
5 X∗ x = bless<X>(1, z);
6 Y∗ y = bless<Y>(1, z);
7 y.g0.f0 = 17;
8 void ∗ = unbless<Y>(1, y);
9 void ∗ = unbless<X>(1, x); }

newtype X = (int, int) in
newtype Y = (X, int) in
local x, y, z in
z := `;
x := blessX [1] z;
y := blessY [1] z;
Y (y).00 := 17;

:= unblessY [1] y;
:= unblessX [1] x

Figure 3. Relating the syntax of YARRA to YCORE

X[a← a′] = λ`.if ` ∈ {a} then a′ else (X `)
rangeΓ X = τ when Γ(X) = int → τ

|int |Γ = 1
|Y |Γ = |rangeE Y |Γ
|(τ1, τ2)|Γ = |τ1|Γ + |τ2|Γ
offsetΓ int · = 0
offsetΓ (τ1, τ2) 0p = offsetΓ τ1 p
offsetΓ (τ1, τ2) 1p = |τ1|Γ + offsetΓ τ2 p
offsetΓ Y p = offsetΓ (rangeΓ Y) p

readFromΓ Y (`:int) = (Y `)
readFromΓ Y (`:Z) = readFromΓ Y (`:(rangeΓ Z))
readFromΓ Y (`:(τ1, τ2)) = (v1, v2)

where v1 = readFromΓ Y (`:τ1)
and v2 = readFromΓ Y ((`+ |τ1|Γ):τ2)

Figure 4. Auxiliary functions

Figure 3 illustrates how the concrete syntax of YARRA maps
to YCORE. Struct declarations correspond to declarations of tuple
types. We do not include procedures in YCORE—the statement s
can be thought of as the body of main. We also do not provide
primitive operations for dynamic memory allocation in YCORE—
so the malloc call at line 4 has no direct analog in YCORE.
However, we model the heap as a total map over integer locations
and we can program malloc in YCORE.3 In this example, which
will be reused later to illustrate the static semantics, we replace
the call to malloc with an abstract address `. Calls to bless
and unbless in YARRA map directly to YCORE. Writes and field
projections via object references in YARRA also map directly, as
shown on line 7. YCORE uses binary paths to the fields of tuples,
instead of field names. More importantly, while writes to objects
via typed references in YARRA are evident from the declared types
(for example, the type Y* of y), in YCORE, the write instruction
itself is tagged with the type of the object that is the destination of
the write. Typed read instructions are similar. For convenience, our
example hoists the local variable declarations.

3.2 Static semantics
The static semantics of YCORE is presented as a classical Floyd-
Hoare logic. Before explaining the details of the logic, however,
we must comment on several bits of notation. First, the judgement
depends upon a context Γ, that contains the mapping of type names
X to their map types τ̂ and the set of local variables x that are
in scope. Well-formedness conditions on Γ ensure that it always
contains bindings for two distinguished map variables: H a total
map from integer locations to integer values, which represents
the conventional heap; and Un, a partial map whose domain is
precisely the set of unprotected locations. Second, the semantics
depends upon several auxiliary functions shown in Figure 4. Most
of these functions are straightforward, although two comments

3 This is not an unusual choice in systems governed by classical logics. See,
for example, work on Havoc [13].

5

Γ; ∆ ` {Φ} s {Ψ}
Γ; ∆ \ FV(Φ′) ` {Φ} s {Ψ}
Γ; ∆ ` {Φ′ ∧ Φ} s {Φ′ ∧Ψ}

T-Frame
Γ ` τ ok X 6∈ dom Γ τ̂ = int → τ Γ, X:τ̂ ; ∆, X ` {Φ} s {Ψ}

Γ; ∆ ` {∀X:τ̂ .X = λ`.⊥ ⇒ Φ} newtype X = τ in s {Ψ}
T-NewX

Γ ` e1, e2, y ok L =
⋃

0≤i<e1
{e2 + |X|Γ ∗ i} rangeΓ X = τ y,X,Un, τ ∈ ∆

σ1 = copyΓ L from H to X Φ, σ2 = chkAndRemΓ τ L σ3 = updUnΓ L τ ⊥
Γ; ∆ ` {Φ ∧ (σ1 ◦ σ2 ◦ σ3 ◦ [e2/y])(Ψ)} y := blessX [e1] e2 {Ψ}

T-Bless Γ ` Φ ok
Γ; ∆ ` {Φ ∧Ψ} assert Φ {Ψ}

T-Assert

Γ ` e1, e2, y ok L =
⋃

0≤i<e1
{e2 + |X|Γ ∗ i} rangeΓ (X) = τ y,X,Un, τ ∈ ∆

σ1 = copyΓ L from H to τ Φ, σ2 = chkAndRemΓ X L σ3 = updUnΓ L τ 1

Γ; ∆ ` {Φ ∧ (σ1 ◦ σ2 ◦ σ3 ◦ [e2/y])(Ψ)} y := unblessX [e1] e2 {Ψ}
T-UnBless

Γ; ∆ ` {True} abort {Ψ}
T-Abort

Γ ` e ok vh = readFromΓ H (e:X) vx = XΓ(e) Γ; ∆ ` {Φ1} s1 {Ψ} Γ; ∆ ` {Φ2} s2 {Ψ}
Γ; ∆ ` {((e ∈ domΓ X ∧ (X = Un ∨ vh = vx))⇒ Φ1) ∧ (e 6∈ domΓ X ⇒ Φ2)} if e is in X then s1 else s2 {Ψ}

T-IsX

Γ ` e, y ok y ∈ ∆ X 6= Un
vh = readFromΓ H (e:X) vx = XΓ(e) σ = [(H1(e+ offsetΓ X p))/y]

Γ; ∆ ` {e ∈ domΓ X ∧ (vh = vx ⇒ σ(Ψ))} y := X(e).p {Ψ}
T-Rd

Γ ` e, y ok σ = [(H e)/y]

Γ; y ` {σ(Ψ)} lib y := e {Ψ}
T-LibRd

Γ ` e1, e2 ok X,H ∈ ∆ X 6= Un vh = readFromΓ H (e1:X) vx = XΓ(e1)
H1 = H[(e1 + offsetΓ X p)← e2] σ1 = copyΓ e1 from H1 to X σ = σ1 ◦ [H1/H]

Γ; ∆ ` {e1 ∈ domΓ X ∧ (vh = vx ⇒ σ(Ψ))}X(e1).p := e2 {Ψ}
T-Wr

Γ ` e1, e2 ok
H1 = H[e1 ← e2] σ = [H1/H]

Γ;H ` {σ(Ψ)} lib e1 := e2 {Ψ}
T-LibWr

copy-from-to : (Env ∗ Locs ∗Map ∗ Type)→ Subst
copyΓ L from Y to int = ·
copyΓ L from Y to X = [(λ`.if ` ∈ L then (readFromΓ Y (`:X)) else X `)/X]
copyΓ L from Y to (τ1, τ2) = let σ1 = copyΓ L from Y to τ1 in

let σ2 = copyΓ {`+ |τ1|Γ | ` ∈ L} from Y to τ2 in
σ1 ◦ σ2

chkAndRem : (Env ∗ Type ∗ Locs)→ (Prop ∗ Subst)
chkAndRemΓ int L = (L ⊆ dom Un, ·)
chkAndRemΓ X L = let Φ = ∀x.x ∈ L⇒ x ∈ domΓ (X) in

(Φ, [(λ`.if ` ∈ L then ⊥ else X `)/X])
chkAndRemΓ (τ1, τ2) L = let Φ1, σ1 = chkAndRemΓ τ1 L in

let Φ2, σ2 = chkAndRemΓ τ1 {`+ |τ1|Γ | ` ∈ L} in
(Φ1 ∧ Φ2, σ1 ◦ σ2)

Membership of types in the modifies set, ∆
int ∈ ∆ = True
X ∈ ∆ = ∃∆1,∆2.∆ = ∆1, X,∆2

(τ1, τ2) ∈ ∆ = τ1 ∈ ∆ ∧ τ2 ∈ ∆

updUn : (Env ∗ Locs ∗ Type ∗MapBody)→ Subst
updUnΓ L int ê = [λ`.if ` ∈ L then ê else Un `/Un]
updUnΓ L X ê = ·
updUnΓ L (τ1, τ2) ê = let σ1 = updUnΓ L τ1 ê in

let L1 = {`+ |τ1|Γ | ` ∈ L} in
updUnΓ L1 τ2 ê

Figure 5. A Floyd-Hoare logic for YCORE (Omitting rules for standard constructs)

are worthwhile. First, note that offsetΓ τ p is a partial function,
e.g., offsetΓ ((int , int), int) 0 is undefined. This ensures that only
word-length int-valued fields in a nested tuple type can be directly
addressed. Second, readFromΓ Y (`:τ) is used to read a structured
value of type τ from the location ` in the map Y . While this
function is well-defined for arbitrary maps Y , we use it primarily
to read structured values out of the flat heap map H .

With these definitions in hand, the reader may turn to Fig-
ure 5, which presents the main semantic rules for YCORE. For
space reasons, this figure omits several rules including rules for
branching, loops, sequencing, skip, local variables, and the rule
of consequence. Our auxiliary submission materials include these
omissions. The central judgment presented in the Figure, Γ; ∆ `
{Φ} s {Ψ} states, informally, that when executed in an environ-
ment E modeled by the context Γ, and when E satisfies the pre-
condition Φ, the program s, if it terminates, produces some envi-
ronment E′ that satisfies the post-condition Ψ, while modifying at
most the variables in the set ∆. The following paragraphs explain
the key rules.
The frame rule. The key feature of our logic is that it admits the
frame rule, (T-Frame), which states that a formula Φ′, whose free
variables do not overlap with the set of free variables modified by a
statement s, is preserved across execution of s. Crucially, because
the state of critical data with type X is represented with a variable
X that is distinct from variable H , the frame rule can soundly
be used to preserve invariants of that critical data, when X is
unmodified, despite arbitrary modifications to H in s.

Declaring new types. (T-NewX) shows how new types are intro-
duced. The premises of the rule check that the type τ is well-formed
(e.g., does not mention names that are not in scope) and that X is a
fresh name. The body s is checked in a context where X is bound
to the type of a map, and X is recorded as one of the variables that
may be modified by s. Since all new type maps are initially empty,
the pre-condition of s may be proven under the assumption that
X = λ`.⊥.
Blessing and unblessing. The rules (T-Bless) and (T-UnBless)
are closely related—in fact, they are symmetric. The command
y := blessX [e1] e2 blesses a sequence of e1 objects beginning at e2

to the type X , i.e., it casts e2 to the base of an e1-numbered array
of X objects and stores a reference to the base location in the local
variable y. The unbless command does the opposite, removing the
protection on an array of objects. We illustrate the behavior of these
operations using the YCORE program in Figure 3.

This program declares two object types X and Y , where the
type Y has the type X nested within its first component. When
blessing an object Y , YARRA requires all sub-objects of Y to
already be blessed. Since every Y object contains an X object
as a prefix, the we must bless the contained X object first. The
program above does just this, by first blessing the memory location
` as containing a single X object, and then blesses the location `
again as a Y object.

Abstractly, we model this behavior by allocating two maps
corresponding to the types X and Y . At the first bless command,
(T-Bless) computes the set L of locations in the array to be blessed.

6

In our example, this is just the singleton set {`}. Using the function
copyΓ L fromH toX , we readX-typed tuple values from the heap
H at each location inL into the backing store forX , the mapX . At
the first bless command in our example, this corresponds to reading
vx = (H `,H (`+1)) and adding it to theX map at location `. At
the second bless command, we copy the value vy = (vx, H (`+2))
(a Y -typed value) into the map Y at location `.

Additionally, when blessing locations we enforce two other
invariants key to the soundness of our frame rule. First, when
blessing a location ` to be a type τ , we must check that the fields
of the type τ are appropriately blessed or unblessed—we call this
the field consistency condition. For this purpose, in addition to
the maps for each type, our semantics also keeps track of a map
Un : int → int for locations that are not blessed at any protected
type. Second, we ensure that in addition to the heap H , every
memory location is in at most one map—we call this the disjoint
domains condition.

We use two auxiliary functions to enforce these invariants. At
the first bless command of our example, chkAndRemΓ (int , int) {`}
checks that the locations {`, (` + 1)} are currently unblessed, i.e.,
they are in the Un map. At the second bless command, we use
chkAndRemΓ (X, int) {`} to check that location ` is in the do-
main of X and location (` + 2) is unblessed. In both cases, the
check manifests itself as a pre-condition Φ for verifying the bless
command. For the second bless, to ensure the maps for X and Y
do not overlap, we additionally compute a substitution σ2 which
updates the map X by removing the location ` from its domain.
The function updUnΓ L τ ⊥ computes a substitutions that removes
locations that are newly blessed from the Un map—at the first bless
these locations are {`, `+ 1} and, at the second, {`+ 2}.

Finally, we require y,X and Un to be in the set of modified
locations ∆. Additionally, since the maps of nested types are also
modified (e.g., the map X when blessing a location as Y), we
overload notation and require τ to also be in ∆. The pre-condition
in the conclusion is a propagation of the post-condition under the
composition of all the computed substitutions. We also include the
formula Φ in the pre-condition to enforce field consistency.

The rules for unbless are entirely symmetric to those for bless,
swapping the role of a type name X for its representation τ , and
adding elements to the Un map instead of removing them. In our
example, the first unbless removes a value vy = (v′x, i) from the Y -
map at location `; adds vx to X at location `, and adds the location
`+ 2 back to the Un map. The second unbless removes v′x from X
at location ` and adds {`, `+ 1} back to the Un map.
Typecase. The typecase construct allows a programmer to test
whether a location is either the head of an X-typed object, or not
blessed at all. To test the latter condition, a programmer can write
(if e is in Un then s1 else s2), which causes s1 to be executed
only if e is an unblessed location—this is a primitive form of the
vacant function used in the memory manager of Section 2.2,
which can be expanded to a sequence of typecase commands. (T-
IsX) formalizes the semantics of typecase. The then-branch s1 can
assume that the scrutinee e is in the backing store of X and, when
X is not Un, can additionally assume that the value of X in the
backing store matches the contents of the heap H . A mismatch
between the backing store and heap signals a potential corruption
of memory by library code—this situation is detected dynamically
by the YARRA runtime and causes the program to abort. The else-
branch, in contrast, can assume that e is not in X .
Checked reads. A checked read is modeled using the instruction
y := X(e).p, where X can be any type name in scope or the heap
H , but not the Un map. Although (T-Rd) is uniform with regard to
the choice of X , it is instructive to first examine the case where X
is not H . In this case, the pre-condition includes a check to ensure
that e is in the domain of X , in effect checking that e is indeed a

reference to an object of type X , as claimed by the program text.
As in the (T-IsX) rule, the semantics allows us to assume that the
value of e in the backing store vx, and its value in the heap vh are
synchronized—a mismatch results in an abort. Note that although
we are reading a single integer-valued field from the object, (T-
Rd) allows us to assume that the entire object vh is synchronized
with vx, i.e., protections in YARRA operate at a level of granularity
corresponding to the object, allowing programmers to reason about
and preserve internal invariants among the fields of an object, rather
than each field in isolation. A checked read from the heap (when
X = H) is less interesting—both conditions in the conclusion
that guard the implication are tautologies. In other words, YARRA
provides no guarantees for programs that read from the heap using
untyped pointers.
Un-checked reads. The command lib y := e is a read instruction
performed in unverified third-party code. We provide no special se-
mantics for this command—libraries are free to read from arbitrary
portions of the heap.
Checked writes. The rule (T-Wr) is analogous to (T-Rd). It requires
the programmer to show that the location e1 being written to is
indeed a reference to an X-typed object. In return, it allows the
programmer to assume that the value in the heap vh matches the
value in the backing store vx. Additionally, we propagate the post-
condition Ψ to account for an update to the heap H , as well as the
backing store X .
Un-checked writes. The command lib y := e is a write instruction
performed in unverified third-party code. (T-LibWr) shows that it is
free to modify arbitrary heap locations, but never a location in one
of theX or Un maps. In effect, the rule says that writes by libraries
can corrupt the heap, but that the integrity of the backing stores are
always preserved, thereby allowing the runtime system (however
it chooses to implement the backing store) to detect (and possibly
recover from) memory corruptions due to libraries.
Libraries and the frame rule. As mentioned earlier, library code
contains unchecked reads and writes and arbitrary control-flow but
not the special YARRA commands. A careful inspection of the static
semantics reveals that these unchecked reads and writes construct
preconditions from postconditions by performing a substitution as
opposed to demanding validity of a logical condition. Hence, any
well-scoped combination of such commands s satisfies the trivial
Hoare triple {True}s{True} and modifies no type maps X aside
from H . Hence, suppose Φ contains only references to types X
and local variables x inaccessible to the library s. In such a case,
according to the frame rule, Φ is preserved across calls to s. Most
importantly, we can come to the conclusion that Φ is preserved
without having to analyze or modify the memory access patterns of
s. Therein lies the power of YARRA.

3.3 Soundness of the logic
We prove our logic sound with respect to a dynamic semantics that
maintains explicit backing stores for each object type. Our dynamic
semantics is a relation of the form (E; s) (E′; s′), representing
a small step of reduction of a runtime configuration (E; s) consist-
ing of a statement s, and a runtime environment E, which contains
map values for the heap H , the Un map, and for each of several
types X and local variables x that are in scope for s. Our sound-
ness results come in the form of progress and preservation results
that guarantee that YCORE programs that verify according the logic
never get stuck (although they may abort).

Theorem 1 (Soundness). For all environments Γ, ∆ (such that
` Γ; ∆ ok); formulas Φ,Ψ (such that Γ ` Ψ ok); stores E
(such that ` E : Γ and E |= Φ); and programs s such that
Γ; ∆ ` {Φ} s {Ψ}. If s 6= skip, then there exists E′, s′,Γ′′,Φ′,∆′

7

such that 1) (E, s) (E′; s′); 2) ` E′ : Γ,Γ′′; 3) Γ,Γ′′; ∆′ `
{Φ′} s′ {Ψ}; and 4) E′ |= Φ′.

4. Implementation
The YARRA compiler is implemented as a plug-in to the CIL com-
piler infrastructure [17]. It implements YARRA’s protection mech-
anisms using two sets of techniques. YARRA source protections
rewrite C source code under compiler control to ensure that the
program does not incorrectly access critical data types. YARRA li-
brary protections use a backing store to ensure that libraries, whose
source we cannot rewrite, will be unable to corrupt critical data.

4.1 YARRA Source Protections
YARRA source protections rely on compiling the entire program
with the YARRA compiler. At runtime, each memory location is
assigned a YARRA type identifier (a ytype) corresponding to the
type of data it holds. The bless and unbless instructions change the
ytype associated with a set of locations. Read and write instructions
are instrumented with checks to ensure that the static types of
the pointers involved match the ytype associated with the memory
locations read from or written to.

The runtime system maintains the type information and imple-
ments the checks. The key data structure is a map that associates
each memory address a with a pair consisting of a bit and a ytype.
The bit marks whether a is the head of some critical object, and
the ytype identifies the type of the enclosing critical object. If the
location is not part of an object, its ytype is Un. The runtime system
exposes the following functions that manipulate the map.
Bless: void bless<ytype t>(void ∗p). The bless function sets the head
bit at location p and assigns t to each location in [p, p + sizeof(t)). It
requires fields of p with critical types to be blessed in advance; the
type identifiers of the nested objects are replaced by t and their head
bits are reset.
Typecase: int isIn<ytype t>(void ∗p). Typecase is implemented as
a boolean function, which returns a non-zero integer if p has
been blessed with type t—i.e., the head bit is set and locations
[p, p + sizeof(t)) have ytype t.
Unbless: void unbless<ytype t>(void ∗p). The unbless function un-
does the effects of bless. First, it calls isIn(t, p) to ensure that p has
been previously blessed. Second, it clears the head bit and ytype
from [p, p + sizeof(t)) and restores the head bits and ytype for any
fields with critical types.
Vacant: int vacant<ytype t>(void ∗p). The vacant function returns a
non-zero integer if [p, p + sizeof(t)) has ytype Un.
The YARRA compiler does the following:

• Builds run-time type representations for each critical type. Each
representation includes the ytype, its size, and offsets of fields.
• Prefaces each critical read and write of pointer p with a call to

isIn(typeOf(p), p). Execution aborts if the call fails.
• Prefaces each untyped write with a call to vacant and aborts if

it returns 0.

4.2 YARRA Library Protections
YARRA Library protections rely on (1) maintaining a backing store
that stores copies of critical data, and (2) protecting that backing
store from library access.
Maintaining the Backing Store. The backing store is realized by
adding a third field to the map described in Section 4.1. In other
words, when library protections are enabled, the range of the map is
a triple of a bit, a ytype, and a shadow byte. The shadow byte stores a
copy of the value at the address in question. The runtime functions
are similar to those in Section 4.1, with the following changes.

• Typecase. The implementation of isIn is augmented to compare
the value of shadow with the value at address in the heap. If the
address has been blessed and the comparison detects a differ-
ence, indicating a potential corruption, isIn aborts the program.
Notice that since the implementation of critical reads and writes
use isIn, they only succeed when the shadow copy is in synch
with the ordinary copy.

• Bless. bless is augmented to copy values of newly blessed
addresses to the backing store.

Also, critically-typed writes are instrumented at runtime with a call
to a new runtime function, yShadowWrite(void ∗p, size t size), which
copies the values in the heap starting at p into the backing store.
Protecting the Backing Store. The backing store uses a special
critical memory manager, implemented using the BGET memory
manager [25], for memory allocations. The memory pool given
to BGET is tracked, and the YARRA runtime system exposes
yUnlock(void) and yLock(void) functions for setting and unsetting
write permissions on those pages respectively. Boundary crossings
from protected to unprotected functions are instrumented with calls
to yLock(), and each function in the runtime API calls yUnlock if the
backing store has been locked, effectively unlocking on demand.
Implementation Options. We implement two versions of the ad-
dress map: a standard hash table and a two-level lookup table—the
latter is similar to that used by Valgrind [19]. Although the space
overhead of both implementations grows linearly with the number
of blessed locations, the space overhead of the hash table is much
smaller. However, the number of reads required by each hash ta-
ble lookup is proportional to the number of hash collisions, and
hence its efficiency degrades as the number of blessed locations
increase. The hash table implementation is thus well suited for
YARRA-protected programs with few blessed locations and many
boundary crossings.

The lookup table uses a primary table with 64K entries, each
of which points to a secondary table with 64K tuples. This asso-
ciates a tuple with each byte in memory; the higher order 16 bits
determine the offset in the primary table, and the lower order bits
identify a tuple in the secondary table. Secondary tables are only al-
located when a byte within their range is blessed, making unblessed
lookups very fast and blessed lookups slightly slower. However, the
primary and all secondary tables must be protected on every bound-
ary crossing, which can be expensive, given that the primary table
alone requires 218 bytes. Thus, the two-level page table implemen-
tation is well suited to programs with many blessed locations and
fewer boundary crossings.

5. Evaluation
In this section, we evaluate our prototype implementation of
YARRA. The important take-away is that despite our naive im-
plementation, YARRA’s performance is already entirely adequate
to protect small sets of high-value data structures, and that in do-
ing so, YARRA can defend against important vulnerabilities with
negligible impact on end-to-end application performance. Alterna-
tive approaches based on array-bounds checking cannot (soundly)
implement such targeted, negligible performance protections.

5.1 YARRA Applications
We consider two different use cases for YARRA and evaluate each,
using the programs in Figure 6. The first involves having YARRA
protect module data structures so that clients may not corrupt it.
We study this use case primarily through experimentation with the
BGET memory allocator [25]. We use YARRA to protect BGET’s
metadata from clients that use the allocator in a way reminiscent
of the idealized allocator example presented in Section 2.2. The

8

Program YARRA Protections Orig. LOC / Bless /
Mod. LOC Unbless

BGET Allocator metadata. 241 / 43 16
sshd Password structure and

validation bit. 60148 / 497 23
ftpd Path/command buffers. 17993 / 262 3
ghttpd Pointer to command

buffer. 514 / 69 3
telnetd Login command string. 3962 / 63 3

Figure 6. YARRA-protected Applications

BGET clients we measure are three SPECINT2000 programs also
used in the WIT paper [2]. (The SPEC benchmarks are not included
in the figure because they were not modified, only linked against
a modified version of BGET.) Because these clients frequently
call allocation and deallocation routines which contain bless and
unbless operations, this case study exercises our implementation
vigorously. This experiment is also interesting because it shows that
YARRA can simulate the protections provided by recent work [12]
that uses a separate process to protect heap metadata

The second use case investigates YARRA’s potential for secur-
ing specific, known data vulnerabilities in server applications. The
programs we use, daemons for several common network protocols,
are taken from previous work documenting non-control data at-
tacks [5] and are shown in Figure 6. In each case, YARRA secures a
small number of high-value data items, which are known to be vul-
nerable to attacks. Figure 6 shows the nature of data protected in
each application, as well as the extent of the modifications required
to protect it, and the number of bless and unbless instructions in-
serted.

As the table indicates, it was not difficult to introduce YARRA
protections in these applications. Few locations required bless-
ing and unblessing, and the vast majority of modified lines were
changed by automated search and replace of variable names. Each
application required less than a day’s effort to protect with YARRA.

5.2 Performance Overhead

Protecting internal state. We can run YARRA in two modes. In
whole program protection mode, we use the source protections
defined in section 4 on the entire application. In targeted protection
mode, we use source protections on the core routines and treat the
rest of the application as a library, incurring a boundary crossing
cost, but otherwise leaving the library untouched.

Figure 7 compares the overhead of whole program protection to
that of targeted protection with the hash table and lookup table ver-
sions of the address map.4 We measure overhead relative to unpro-
tected execution; a value of 1x indicates no measurable difference.
Targeted protection is more efficient with these applications, indi-
cating that the cost of boundary crossings is less than instrumenting
every read and write in the application.

The address map implementation has a clear impact on whole
program protection. Because whole program protection relies en-
tirely on read and write instrumentation, the size of the address map
is much less important than look-up speed, and hence the LT im-
plementation is faster. However, the difference is less pronounced
with targeted protection. Although look-up speed is still important,
a larger address map increases the cost of boundary crossings, be-
cause the table needs to be protected.

Even with targeted protection, the overhead ranges from 50%
to 200%. Protecting allocator metadata is an interesting challenge,

4 Average of five timed executions on a machine running CentOS 5.4 on
four dual-core 2.8 GHz AMD Opteron 8220s; 8Gb RAM.

0x	

2x	

4x	

6x	

gzip	
 mcf	
 parser	
 O
ve
rh
ea
d	

Re

la
+
ve
	
 to

	

U
np

ro
te
ct
ed

	
 E
xe
cu
+
on

	

Targeted	
 (H)	
 Targeted	
 (LT)	
 Whole	
 (H)	
 Whole	
 (LT)	

Figure 7. CPU overhead for securing allocator metadata using
YARRA’s targeted and whole program protection modes with both
hash table (H) and look-up table (LT) implementations of the ad-
dress map. A value of 1x indicates no measurable overhead.

because ownership of memory is interleaved at a fine granularity
and changes dynamically. We found that the number of reads and
writes instrumented, calls to bless/unbless, and boundary crossings
all scaled linearly with the number of objects allocated (not shown).
Protecting vulnerable data. We applied YARRA targeted protec-
tions to known data vulnerabilities in four server applications and
evaluated the performance impact. The interactive nature of the ap-
plications prompted us to measure the performance impact on exe-
cution within the protected module, from the server’s perspective,
as well as from the client’s perspective.

Figure 8 shows the performance overhead within the hardened
module measured relative to unprotected execution. 5 This over-
head includes both the cost of initializing the YARRA run-time sys-
tem and that of boundary crossings. A value of 1x indicates no mea-
surable overhead. We found that the number of reads and writes per
boundary crossing was relatively low for these applications, which
highlights the performance impact of the address map implemen-
tation – the small size of the hash table more than made up for the
slower table accesses.

Using the hash table address map, we saw the performance over-
head in the protected module range from 7% to 67%. The protected
module of telnetd included setting up a socket connection, which
dominated our measurement, and hence the measured overhead of
telnetd was negligible.

Figure 8 also shows the performance overhead from the client’s
perspective. We found no measurable difference between connect-
ing to a vulnerable server and a hardened server. The clients and
servers were run on the same machine to minimize connection la-
tency, and each client performed a routine task that touched for-
merly vulnerable data.
Optimizations. Read/write instrumentations and boundary cross-
ings are both bottlenecks in our current implementation. Because
our implementation is not as highly optimized as other, similar
bounds-checking implementations (e.g. [16, 21]), we anticipate that
this overhead can be lowered significantly.

Further, we can use cheaper alternatives to page protection
for protecting the address map data-structure. For example, heap
randomization techniques can be used to hide data structure copies
as opposed to paying the cost of turning on hard protections at
boundary crossings [3]. Alternatively, the address map structure
may be hidden in a separate process, using a technique similar to
the one proposed by Berger et al. [9]. These techniques would make

5 Average of five timed executions on a virtual machine running Ubuntu
9.10 on a 2.13Ghz Intel Core 2 Duo; 722Mb RAM.

9

0x	

1x	

2x	

3x	

4x	

5x	

6x	

openssh	
 0pd	
 gh3pd	
 telnetd*	
 O
ve
rh
ea
d	

Re

la
+
ve
	
 to

	

U
np

ro
te
ct
ed

	
 E
xe
cu
+
on

	

End	
 to	
 End	
 Server	
 (H)	
 Server	
 (LT)	

Figure 8. CPU overhead for hardening data vulnerabilities using
YARRA’s targeted protection mode, measured from the client (”End
to End”) and server perspectives. There was no measurable over-
head from the client’s perspective with either the hash table (H) or
look-up table (LT) address maps. A value of 1x indicates no mea-
surable overhead.

boundary crossings take constant time (instead of being linear with
the size of the map), albeit at the cost of look-up speed.

6. Related work
Array Bounds Checking. Early array bounds-checking techniques
(e.g., Jones and Lin [11]) had substantial performance overheads,
and more recent work (e.g., [16] as a recent example) attempts to
reduce that overhead. Approaches to memory safety through ar-
ray bounds checking fail to provide complete safety unless every
memory reference is checked, including references from modules
that have not been compiled with checking enabled. YARRA differs
from this prior work in its emphasis on protecting the contents of
arrays from all references made to other objects, including refer-
ences made in arbitrary external libraries.

As mentioned, YARRA’s explicit declaration of types has simi-
larities to ideas in WIT [2]. Unlike WIT, YARRA allows the user
to specify object equivalence classes explicity and precisely, and
guarantees that all program references, including those performed
in external components, do not violate the integrity of such objects.

None of the prior work on array bounds checking attempts
to define the semantics of programs in which only some array
bounds are checked. Dhurjati et al. [8] show that using a pool-
allocation transformation, they are able to eliminate bounds checks
altogether and ensure semantic correctness of array references even
in the presence of incorrect frees. However, like other array bounds
checking research, they assume that all code in an application has
been transformed to ensure safety.
Separating and Isolating Memory. Software fault isolation [24]
attempts to isolate the potential negative effects of external com-
ponents by preventing memory operations and other unwanted in-
teractons, such as system calls, that might be harmful. Castro et
al. describe BGI (Byte-Granularity Isolation) [4], which provides
software enforced protection domains between kernel extensions.
Like YARRA, they provide an API that allows users to explicitly
identify what extensions can access what memory. Unlike YARRA,
BGI assumes that all untrusted extensions are compiled with BGI
and will fail in the presence of untrusted extensions. In addition,
unlike YARRA, BGI has no formal semantics.

Samurai [20] also takes the approach of explicitly protecting
part of the entire memory state. Samurai focuses on making appli-
cations more fault tolerant in the presence of targeted runtime er-
rors. Unlike Samurai, YARRA provides a precise definition of what
critical memory means, incorporates those semantics in language

features, and demonstrates that such features are useful to ensure
correctness and security properties.
Formal Reasoning. The most closely related theories eminate from
a line of research started in the 70s with the Euclid programming
language [15]. Euclid was built in order to facilitate verification and
one of the techniques for doing so involved logically, as opposed to
physically, splitting the heap into a set of different heaplets called
collections. These collections resemble the typed heaplets in this
paper except that there was no means for moving an object from
one heap to another as we do with bless and unbless operations. In
the mid-nineties, Utting [23] reexamined Euclid’s model and added
a transfer coercion that, logically speaking, moved objects between
heaplets, though physically, no action was taken. Recently, similar
ideas have been rediscovered by Lahiri et al. [14]. They modern-
ized and extended Euclid’s Hoare Logic and illustrated the inter-
action between collections, now called linear maps, and the frame
rule. The key difference between YARRA and this previous work is
that YARRA’s separate heaplets are designed to be used in the con-
text of an unsafe language with unverified libraries. Consequently,
the bless and unbless operations (i.e., transfers) have operational
significance: they put up and tear down physical protections.

7. Conclusions
This paper has presented YARRA, a new, lightweight extension to
C. Using a combination of techniques, including lightweight type-
based specifications and efficient runtime monitoring, YARRA al-
lows programmers to protect the integrity of critical data struc-
tures in their programs, even in the presence of untrusted third-
party libraries. A key contribution of our work is that we have been
able to define a formal model for YARRA that can represent these
untrusted, possibly buggy libraries and yet, through our powerful
type-based frame rule, still allow programmers to reason soundly
and modularly about core components of their programs. In addi-
tion, in practice, we have shown YARRA to be effective in protect-
ing important server applications from known vulnerabilities. We
were able to harden applications tens of thousands of lines long
by modifying at most a few hundred lines of code of each appli-
cation. Moreover, the end-to-end performance overhead was neg-
ligible in the security-centric examples we studied. Consequently,
YARRA represents a viable new technology that complements ex-
isting safety mechanisms for C programs.

10

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow

integrity: Principles, implementations, and applications. In CCS,
2005.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing
memory error exploits with WIT. In IEEE S&P, 2008.

[3] E. D. Berger and B. G. Zorn. Diehard: Probabilistic memory safety
for unsafe languages. In PLDI, 2006.

[4] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis,
A. Donnelly, P. Barham, and R. Black. Fast byte-granularity software
fault isolation. In SOSP, 2009.

[5] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-control-
data attacks are realistic threats. In Usenix Security (SSYM), 2005.

[6] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang. Stackguard: automatic
adaptive detection and prevention of buffer-overflow attacks. In
Usenix Security (SSYM), 1998.

[7] DEP: Data execution prevention. http://support.microsoft.com/kb/875352.

[8] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory safety
without runtime checks or garbage collection. SIGPLAN Not.,
38(7):69–80, 2003.

[9] T. L. Emery D. Berger, Ting Yang and G. Novark. Grace: Safe
multithreaded programming for C/C++. In OOPSLA, 2009.

[10] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang.
Cyclone: A safe dialect of C. In USENIX (ATC), 2002.

[11] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible bounds
checking for arrays and pointers in C programs. In AADEBUG, 1997.

[12] M. Kharbutli, X. Jiang, Y. Solihin, G. Venkataramani, and
M. Prvulovic. Comprehensively and efficiently protecting the heap.
In ASPLOS, 2006.

[13] S. Lahiri and S. Qadeer. Back to the future: revisiting precise program
verification using SMT solvers. In POPL, 2008.

[14] S. Lahiri, S. Qadeer, and D. Walker. Linear maps. In PLPV, 2011.

[15] B. W. Lampson, J. J. Horning, R. L. London, J. G. Mitchell, and G. J.
Popek. Report on the programming language Euclid. SIGPLAN Not.,
12(2), 1977.

[16] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic.
SoftBound: Highly compatible and complete spatial memory safety
for C. In PLDI, 2009.

[17] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. Cil:
Intermediate language and tools for analysis and transformation
of c programs. In CC, 2002.

[18] G. C. Necula, S. McPeak, and W. Weimer. Ccured: type-safe
retrofitting of legacy code. In POPL, 2002.

[19] N. Nethercote and J. Seward. How to shadow every byte of memory
used by a program. In VEE, 2007.

[20] K. Pattabiraman, V. Grover, and B. G. Zorn. Samurai: protecting
critical data in unsafe languages. SIGOPS Oper. Syst. Rev., 2008.

[21] O. Ruwase and M. Lam. A practical dynamic buffer overflow detector.
In NDSS, 2004.

[22] A. Sotirov. Modern exploitation and memory protection bypasses.
http://www.usenix.org/events/sec09/tech/slides/sotirov.pdf, 2009.

[23] M. Utting. Reasoning about aliasing. In Fourth Australasian
Refinement Workshop, pages 195–211, 1995.

[24] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. In SOSP, pages 203–216, 1993.

[25] J. Walker. The BGET memory allocator. http://www.fourmilab.ch/bget/,
1996.

[26] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime
randomization for security. In SRDS, 2003.

11

A. Full semantics and soundness of YCORE

The full semantics of YCORE is presented in a series of figures starting on page 16. A proof of YCORE’s soundness follows.

Lemma 2 (Substitution (intrepretation of formulas)).
1. For all E,E′, x, i,Φ,Γ1,Γ2 such that ` (E, x 7→ i, E′) : Γ1, x,Γ2; and Γ1, x,Γ2 ` Φ ok:
E, x 7→ i, E′ |= Φ ⇐⇒ E,E′ |= Φ[i/x].

2. For all E,E′, X, v̂, τ̂ ,Φ,Γ1,Γ2 such that ` (E,X 7→ (v̂:τ̂), E′) : Γ1, X:τ̂ ,Γ2; and Γ1, X:τ̂ ,Γ2 ` Φ ok:
E,X 7→ (v̂:τ̂), E′ |= Φ ⇐⇒ E,E′ |= Φ[v̂/X].

Proof. By induction on the structure of the denotation for formula entailment.

Lemma 3 (Monotonicity of equality).
For all E,Γ,Φ, x, τ, a1, a2 such that ` E : Γ; and Γ, x:τ ` Φ ok; and Γ ` a1 : τ ; and Γ ` a2 : τ ; and E ` a1 = a2:
E |= Φ[a1/x] ⇒ E |= Φ[a2/x]

Proof. By induction on the structure of the denotation for formula entailment.

Lemma 4 (Weakening and guarded contraction (intrepretation of formulas)).
1. For all E1, E2, x, i,Γ1,Γ2,Φ, such that ` E1, x 7→ i, E2 : Γ1, x,Γ2; and ` E1, E2 : Γ1,Γ2; and Γ1,Γ2 ` Φ ok:
E1, E2 |= Φ ⇐⇒ E1, x 7→ i, E2 |= Φ.

2. For all E1, E2, X, v̂, τ̂ ,Γ1,Γ2,Φ, such that ` E1, X 7→ (v̂:τ̂), E2 : Γ1, X:τ̂ ,Γ2; and ` E1, E2 : Γ1,Γ2; and Γ1,Γ2 ` Φ ok:
E1, E2 |= Φ ⇐⇒ E1, X 7→ (v̂:τ̂), E2 |= Φ.

Proof. By induction on the structure of the denotation for formula entailment.

Corollary 5 (Moving substitutions).
For all E,X, v̂,Γ,Φ, a such that ` E : Γ; and ` E[X ← v̂] : Γ; and Γ ` Φ ok; and Γ ` a = v̂ ok; and E |= a = v̂:
E[X ← v̂] |= Φ ⇐⇒ E |= Φ[a/X].

Proof. Corollary of Lemmas 2, 3, and 4.

Lemma 6 (Well-typed auxiliary functions).
1. For all E,Γ, τ, `, E′: ` E : Γ ∧ Γ ` τ ok ∧ copyE ` from H to τ = E′ ⇒ ` E′ : Γ
2. For all E,Γ, τ, `, E′: ` E : Γ ∧ Γ ` τ ok ∧ chkAndRemE τ ` = E′ ⇒ ` E′ : Γ
3. For all E,Γ, x, `: ` E : Γ ∧ Γ ` x ok ⇒ ` E[x 7→ `] : Γ
4. For all E,Γ, τ, aL, e: ` E : Γ ∧ Γ ` τ ok ∧ Γ ` aL : int set ∧ Γ ` e : int ∧ updUnE aL τ e = E′ ⇒ ` E′ : Γ

Proof. By inspection.

Lemma 7 (Relating static and dynamic: readFrom). For all E,Γ, X, τ̂X , τ, ` such that ` E : Γ; and Γ ` X : τ̂X ; and Γ ` τ ok:
E |= readFromE X (`:τ) = readFromΓ X (`:τ)

Proof. By induction on the shape of τ , observing that ∀E, Y, `′.E ` YE(`′) = YΓ(`′).

Lemma 8 (Relating static and dynamic: copyInto).
For all E,Γ, X, τ̂ , τ, aL such that ` E : Γ; and Γ ` τ ok; and Γ ` X : τ̂ ; and Γ ` aL : int set:

1. ∀X1, . . . , Xn, v̂1, . . . , v̂n. if copyE aL fromX to τ = E[X1 ← v̂1] . . . [Xn ← v̂n] then ∃a1, . . . , an such that copyΓ aL fromX to τ =
[a1/X1], . . . , [an/Xn] and ∀1 ≤ i ≤ n.E |= ai = v̂i ∧ (Xi = X ∨Xi ∈ τ).

2. ∀X1, . . . , Xn, a1, . . . , an. if copyΓ aL from X to τ = [a1/X1], . . . , [an/Xn] then ∃v̂1, . . . , v̂n such that copyE aL from X to τ =
E[X1 ← v̂1] . . . [Xn ← v̂n] and ∀1 ≤ i ≤ n.E |= ai = v̂i.

Proof. By induction on the structure of τ , appealing to Lemma 7.

Lemma 9 (Relating static and dynamic: chkAndRem).
For all E,Γ, τ, aL, such that ` E : Γ; and Γ ` τ ok; and Γ ` aL : int set:

1. ∀X1, . . . , Xn, v̂1, . . . , v̂n. if chkAndRemE τ aL = E[X1 ← v̂1] . . . [Xn ← v̂n] then ∃Φ, a1, . . . , an. such that chkAndRemΓ τ aL =
Φ, [a1/X1] . . . [an/Xn] and E |= Φ and ∀1 ≤ i ≤ n.E |= ai = v̂i ∧Xi ∈ τ .

2. ∀X1, . . . , Xn, a1, . . . , an,Φ. if chkAndRemΓ τ aL = Φ, [a1/X1] . . . [an/Xn] andE |= Φ then either (chkAndRemE τ aL = notSync)
or ∃v̂1, . . . , v̂n. such that (chkAndRemE τ aL = E[X1 ← v̂1] . . . [Xn ← v̂n] and ∀i.E |= ai = v̂i.

Proof. By induction on the structure of τ .

Lemma 10 (Relating static and dynamic: updUn).
For all E,Γ, τ, aL, e, such that ` E : Γ; and Γ ` τ ok; and Γ ` e : int:

1. For all v̂ such that updUnE aL τ i = E[Un← v̂] there exists a such that updUnΓ aL τ = [a/Un] and E |= a = v̂.
2. For all a such that updUnΓ aL τ = [a/Un] there exists v̂ such that updUnE aL τ i = E[Un← v̂] and E ` a = v̂.

12

Proof. By induction on the structure of τ .

Lemma 11 (Framing (interpretation of formulas)).
For all E1, E2,Γ1,Γ2,Φ such that ` E1 : Γ1; and ` E2 : Γ1,Γ2; and Γ1 ` Φ ok;
and ∀x,X ∈ FV (Φ).E1(x) = E2(x) ∧ E1(X) = E2(X):
E1 |= Φ ⇐⇒ E2 |= Φ.

Proof. By induction over the structure of the denotation of formulas.

Theorem 12 (Preservation). For all programs s, s′, environments Γ, ∆, formulas Φ,Ψ, and stores E,E′;
if all of the following hold true:

(H1) ` Γ; ∆ ok, i.e., the verification environment is well-formed
(H2) ` E : Γ, i.e., the store E is well-formed according to Γ
(H3) Γ ` Ψ ok, i.e., the post-condition is well-formed in Γ
(H4) Γ; ∆ ` {Φ} s {Ψ}, i.e., the program s is verifiable with pre-condition Φ
(H5) E |= Φ, i.e., the pre-condition is satisfiable in the store E
(H6) (E; s) (E′; s′), i.e., the program takes a single step

Then, all of the following are valid:

(G0) For all x,X , x 6∈ ∆⇒ E(x) = E′(x) and X 6∈ ∆⇒ E(X) = E′(X).
(G1) There exists Γ′, such that ` E′ : Γ′, i.e., E′ is well-formed according to Γ′.
(G2) There exists Γ′′ such that Γ′ = Γ,Γ′′; i.e., Γ′ is an extension of Γ.
(G3) There exists Φ′ such that E′ |= Φ′.
(G4) Γ′; ∆′ ` {Φ′} s′ {Ψ}, where ∆′ = ∆ ∪ (dom Γ′).

Proof. By induction on the structure of the verification derivation, hypothesis (H4).

Case T-Frame:

(H4) is
Γ; ∆ \ FV (Φ1) ` {Φ2} s {Ψ}
Γ; ∆ ` {Φ1 ∧ Φ2} s {Φ′ ∧Ψ}

and from (H5) we have E |= Φ1 ∧ Φ2 and hence (H5.1) E |= Φ1 and (H5.2) E |= Φ2.

From the induction hypothesis applied to the first premise of (H4), we obtain
(G0’) E′(X) = E(X) for all X ∈ FV (Φ) (likewise for x ∈ FV (Φ))
(G1’) and (G2’) ` E′ : Γ′ and Γ′ = Γ,Γ′′

(G3’) E′ |= Φ′2 and (G4’) Γ′; ∆′ ` {Φ′2} s′ {Ψ}
For the goals, we obtain (G0), (G1), and (G2) immediately from (G0’), (G1’) and (G2’).
For (G3), we show that E′ |= Φ1 ∧ Φ′2 from (G3’) and from Lemma 11 applied to (G0’) and (H5.1).
For (G4), we derive Γ′; ∆′ ` {Φ1 ∧ Φ′2} s′ {Ψ} using (T-Frame) with (G4’) in the premise, noting that dom Γ′ ∩ FV (Φ1) = ∅.

Case T-Loc:

(H4) is
x 6∈ dom Γ Γ, x; ∆, x ` {Φ} s {Ψ}

Γ; ∆ ` {∀x.Φ} local x in s {Ψ}
and, from (H5), we have E |= ∀x.Φ.

By inversion on the reduction relation, we have (H6) (E; local x in s) (E′; s), with E′ = E, x 7→ i for arbitrary i.
For (G0), is immediate by noting that E′ is an extension of E.
For (G1) and (G2): we have ` E′ : Γ, x, by an extension of (H2), appealing to α-conversion for x 6∈ dom E.
For (G3), we show E, x 7→ i |= Φ, we use Lemma 2 and show E |= Φ[i/x] since from (H5), we have E |= Φ[j/x], for any j.
Finally, for (G4), we invert (H4) and use its second premise.

Case T-NewX:

(H4) is
Γ ` τ ok X 6∈ dom Γ τ̂ = int → τ Γ, X:τ̂ ; ∆, X ` {Φ} s {Ψ}

Γ; ∆ ` {∀X:τ̂ .X = λ`.⊥ ⇒ Φ} newtype X = τ in s {Ψ}

By inversion on the reduction relation, we have (E; newtype X = τ in s) (E,X 7→ (λ`.⊥:int → τ); s)
The goals follow as in case (T-Loc), while observing that the X is specifically the empty map, to satisfy the implication guard.

Case T-Bless:

(H4) is

Γ ` e1, e2, y ok L =
⋃

0≤i<e1
{e2 + |X|Γ ∗ i} rangeΓ X = τ y,X,Un, τ ∈ ∆

σ1 = copyΓ L from H to X Φ, σ2 = chkAndRemΓ τ L σ3 = updUnΓ L τ ⊥
Γ; ∆ ` {Φ ∧ (σ1 ◦ σ2 ◦ σ3 ◦ [e2/y])(Ψ)} y := blessX [e1] e2 {Ψ}

Inversion of (H6) gives one of two possible applications of (E-Bless), resulting in two sub-cases as below:

Sub-case (E-Bless-Abort): Goals are trivial, using an application of (T-Abort)

13

Sub-case (E-Bless):

(H6) is

[[e1]]E = n [[e2]]E = ` L =
⋃

0≤i<n{`+ |X|E ∗ i} τ = rangeE X

E1 = chkAndRemE τ L E2 = copyE1
L from H to X E′ = updUnE2

L τ ⊥
(E; y := blessX [e1] e2) (E′[y 7→ `]; skip)

For goal (G0), we appeal to Lemmas 8, 9, and 10 to conclude that E′ = E[Un← v̂1][X ← v̂2][X3 ← v̂3] . . . [Xn ← v̂n],
where X3, . . . Xn ∈ τ .

From the premises of (H6), we have X,Un, y, τ ∈ ∆, sufficient to establish (G0),
since E′[y 7→ `] differs from E only on the said locations.

For goals (G1) and (G2): we pick Γ′ = Γ, and from Lemma 6, we get ` E′ : Γ.
For (G3) and (G4), we pick Φ′ = Ψ and apply (T-Skip) to get Γ; ∆ ` {Ψ} skip {Ψ}
It remains to be shown that E′ |= Ψ.
From (H5), we know E |= Φ ∧ σ(Ψ) and hence E |= σ(Ψ)
From Lemmas 8, 9, and 10 we get that σ = [a1/Un][a2/X][a3/X1] . . . [an/Xn][e2/y] with ∀i.E |= ai = v̂i
From repeated application of Corollary 5, we get E′ |= Ψ, as required.

Case T-UnBless: Analogous to T-Bless.

Case T-Write:

We have (H4)

Γ ` e1, e2 ok X,H ∈ ∆ X 6= Un vh = readFromΓ H (e1:X) vx = XΓ(e1)
H1 = H[(e1 + offsetΓ X p)← e2] σ1 = copyΓ e1 from H1 to X σ = σ1 ◦ [H1/H]

Γ; ∆ ` {e1 ∈ domΓ X ∧ (vh = vx ⇒ σ(Ψ))}X(e1).p := e2 {Ψ}

Inverting (H6) we get one of two sub-cases:
Sub-case E-Write-Abort: Trivial.
Sub-case E-Write:

We have (H6)

p 6= · [[e1]]E = ` [[e2]]E = v ` ∈ domE X inSyncE ` X
`′ = `+ offsetE X p E1 = E[H ← (`′ 7→ v)] E′ = copyE1

{`} from H to X

(E;X(e1).p := e2) (E′; skip)

For (G0), we use Lemma 8 to observe that E′ = E[H ← v̂1][X ← v̂2], and note that both X,H ∈ ∆.
For (G1) and (G2), we show that ` E′ : Γ, using Lemma 6.
For (G4), we derive Γ; ∆ ` {Ψ} skip {Ψ} using T-Skip.
For (G3), we need to show E′ |= Ψ.

From (H5) we have E |= (readFromΓ H (e1:X) = XΓ(e1))⇒ σ(Ψ).
From the premises of (H6) we have inSyncE ` X , from which we obtain X = Un or E |= XE(`) = readFromE H (e1:X).
From the premises of (H4) we have X 6= Un.
Thus, we have E |= σ(Ψ), and we use Corollary 5 to get E′ |= Ψ, as required.

Case T-Read: Similar to (T-Write).

Case T-IsX:

We have (H4)
Γ ` e ok vh = readFromΓ H (e:X) vx = XΓ(e) Γ; ∆ ` {Φ1} s1 {Ψ} Γ; ∆ ` {Φ2} s2 {Ψ}

Γ; ∆ ` {((e ∈ domΓ X ∧ (X = Un ∨ vh = vx))⇒ Φ1) ∧ (e 6∈ domΓ X ⇒ Φ2)} if e is in X then s1 else s2 {Ψ}

Inverting (H6) we get one of three sub-cases.
Sub-case E-IsX-Abort: Trivial.

Sub-case E-IsX-Then:

(H6) is
[[e]]E = ` ` ∈ domE X inSyncE ` X

(E; if e is in X then s1 else s2) (E; s1)

Goals (G0), (G1) and (G2) are trivial, since the store is unchanged.
For (G3) we show E |= Φ1, since we have E |= (X = Un ∨ vh = vx))⇒ Φ1 from (H5).
From the premises of (H6) we have inSyncE ` X , from which we obtain X = Un or E |= XE(`) = readFromE H (e1:X).
This suffices to show E |= Φ1.
For (G4), we use the premise of (H4) to show Γ; ∆ ` {Φ1} s1 {Ψ}.

Sub-case E-IsX-Else:

(H6) is
[[e]]E = ` ` 6∈ domE X

(E; if e is in X then s1 else s2) (E; s2)

14

Goals (G0), (G1) and (G2) are trivial, since the store is unchanged.
For (G3) we show E |= Φ2, since we have E |= (e 6∈ domΓ X ⇒ Φ2) from (H5).
From the premises of (H6) we have ` 6∈ domE X , which suffices.
For (G4), we use the premise of (H4) to show Γ; ∆ ` {Φ2} s2 {Ψ}.

Case T-LibWrite:

We have (H4)
Γ ` e1, e2 ok H1 = H[e1 ← e2] σ = [H1/H]

Γ;H ` {σ(Ψ)} lib e1 := e2 {Ψ}

Inverting (H6), we get
[[e1]]E = ` [[e2]]E = v E′ = E[H ← (` 7→ v)]

(E; lib e1 := e2) (E′; skip)

For (G0), we have H ∈ ∆ and E′ = E[H ← . . .].

For (G1) and (G2) we have ` E′ : Γ, from ` v : int .

For (G3), we show E′ |= Ψ, from E ` σ(Ψ) and Corollary 5.
For (G4), we we use (T-Skip) for Γ′; ∆ ` {Ψ} skip {Ψ}.

Case T-LibRead: Similar to T-LibWrite.

Case T-Cons, T-Assert, T-If, T-While, T-Seq, T-Skip, T-Abort: All standard.

Theorem 13 (Progress). For all programs s, environments Γ, ∆, formulas Φ,Ψ, and stores E;
if all of the following hold true:

(H1) ` Γ; ∆ ok, i.e., the verification environment is well-formed
(H2) ` E : Γ, i.e., the store E is well-formed according to Γ
(H3) Γ ` Ψ ok, i.e., the post-condition is well-formed in Γ
(H4) Γ; ∆ ` {Φ} s {Ψ}, i.e., the program s is verifiable with pre-condition Φ
(H5) E |= Φ, i.e., the pre-condition is satisfiable in the store E
(H6) s 6= skip.

Then, there exists E′, s′ such that all of the following are valid:

(G1) (E; s) (E′; s′); i.e., the program can take a single step.
(G2) If ∀X, l.l ∈ dom X ⇒ inSyncE X l then s′ 6= abort.

Proof. Straightforward induction over the structure of the verification judgment (H4).

15

meta-variables
local variables x, y, z
integer constants i, j, `
object type names/heaplet variables X,Y, Z, and distinguished names H for the heap and the Un-color
predicate variables P,Q,R

expressions e ::= i | x | e op e′
statements s ::= assert Φ assert formula Φ

| newtype X = τ in s new object declaration (scoped)
| y := blessX [e1] e2 bless (optional array size)
| y := unblessX [e1] e2 unbless (optional array size)
| if e is in X then s1 else s2 test membership in a heaplet ...
| local x in s local ...
| X(e1).p := e2

| lib e1 := e2

| y := X(e1).p
| lib y := e1

| if e1 then s1 else s2

| while e s | s1; s2 | skip
| abort

path p ::= · | 0p | 1p field projection path
types τ ::= int | X | (τ1, τ2)
values v ::= i | (v1, v2)
map types τ̂ ::= int → τ
map values v̂ ::= λ`.ê
map body ê ::= ⊥ | v | v̂ v | if a ∈ a′ then ê else ê′

logic terms a ::= e | v | X | v̂ | a.p | ê | dom a | {x | Φ}
formulas Φ,Ψ ::= a = a′ | a ∈ a′ | a < a′ | Φ ∧Ψ | Φ ∨Ψ | ¬Φ | ∀x.Φ | ∃x.Φ
substitutions σ ::= σ, [a/X] | σ, [a/x] | ·
runtime env. E ::= H 7→ (v̂:τ̂),Un 7→ (v̂:τ̂) | E,X 7→ (v̂:τ̂) | E, x 7→ i
static env. Γ ::= H:τ̂ ,Un:τ̂ | Γ, X:τ̂ | Γ, x
environment E ::= E | Γ

Figure 9. Syntax

Many of these functions are overloaded to operate on both static environments Γ and runtime stores E. We use E ::= Γ | E.

XE(`) = v when E(X) = (v̂:τ) and v̂ ` v
XΓ(`) = X `
domE X = {` | XE(`) 6= ⊥}
domΓ X = dom X
rangeE X = τ when E(X) = (v̂:int → τ)
rangeΓ X = τ when Γ(X) = int → τ
|int |E = 1
|Y |E = |rangeE Y |E
|(τ1, τ2)|E = |τ1|E + |τ2|E
offsetE τ · = 0
offsetE (τ1, τ2) 0p = offsetE τ1 p
offsetE (τ1, τ2) 1p = |τ1|E + offsetE τ2 p
offsetE Y p = offsetE (rangeE Y) p
readFromE Y (`:int) = YE(`)
readFromE Y (`:Z) = readFromE Y (`:(rangeE Z))
readFromE Y (`:(τ1, τ2)) = (readFromE Y (`:τ1), readFromE Y ((`+ |τ1|E):τ2))
notBlessedE ` = ` ∈ domE Un

Figure 10. Auxiliary functions used in both static and dynamic semantics

16

X[a← a′] = λ`.if ` ∈ {a} then a′ else (X`)
{a} = {x | x = a}⋃

a1≤i<a2
{x | Φ} = {x | ∃i.(a1 ≤ i < a2 ∧ Φ)}

copy-from-to : (Env ∗ Locs ∗Map ∗ Type)→ Subst
copyΓ L from Y to int = ·
copyΓ L from Y to X = [(λ`.if ` ∈ L then (readFromΓ Y (`:X)) else X `)/X]
copyΓ L from Y to (τ1, τ2) = let σ1 = copyΓ L from Y to τ1 in

let σ2 = copyΓ {`+ |τ1|Γ | ` ∈ L} from Y to τ2 in
σ1 ◦ σ2

chkAndRem : (Env ∗ Type ∗ Locs)→ (Prop ∗ Subst)
chkAndRemΓ int L = (L ⊆ dom Un, ·)
chkAndRemΓ X L = let Φ = ∀x.x ∈ L⇒ x ∈ domΓ (X) in

(Φ, [(λ`.if ` ∈ L then ⊥ else X `)/X])
chkAndRemΓ (τ1, τ2) L = let Φ1, σ1 = chkAndRemΓ τ1 L in

let Φ2, σ2 = chkAndRemΓ τ1 {`+ |τ1|Γ | ` ∈ L} in
(Φ1 ∧ Φ2, σ1 ◦ σ2)

Membership of types in ∆ and of map variables in types
int ∈ ∆ = True
X ∈ ∆ = ∃∆1,∆2.∆ = ∆1, X,∆2

(τ1, τ2) ∈ ∆ = τ1 ∈ ∆ ∧ τ2 ∈ ∆
X ∈ int = False
X ∈ X = True
X ∈ (τ1, τ2) = X ∈ τ1 ∨X ∈ τ2

updUn : (Env ∗ Locs ∗ Type ∗MapBody)→ Subst
updUnΓ L int ê = [λ`.if ` ∈ L then ê else Un `/Un]
updUnΓ L X ê = ·
updUnΓ L (τ1, τ2) ê = let σ1 = updUnΓ L τ1 ê in

let L1 = {`+ |τ1|Γ | ` ∈ L} in
updUnΓ L1 τ2 ê

Figure 11. Auxiliary functions used in static semantics only (Reproduced from Figure 5)

E[X ← v̂] = E1, X 7→ (v̂:τ̂), E2 when E = E1, X 7→ (v̂:τ̂), E2

blessedE L X = ∀` ∈ L.` ∈ domE X

inSync : (Env ∗ Loc ∗Map) → Prop
inSyncE ` Un = True
inSyncE ` X = XE(`) = readFromE H (`:X) when X 6= Un
inSyncE L X = ∀` ∈ L.XE(`) = readFromE H (`:X) when X 6= Un

copy-from-to : (Env ∗ Locs ∗Map ∗ Type) → Env
copyE L from Y to int = E
copyE L from Y to X = E[X ← (λ`.if ` ∈ L then readFromE Y (`:X) else X(`))]
copyE L from Y to (τ1, τ2) = let E1 = copyE L from Y to τ1 in

let L1 = {`+ |τ1|E1
| ` ∈ L} in

copyE1
L1 from Y to τ2

chkAndRem : (Env ∗ Type ∗ Locs) ⇀ (Env ∪ notSync) (partial function)
chkAndRemE X L = notSync when blessedE L X ∧ ¬inSyncE L X
chkAndRemE X L = E[X ← λ`.if ` ∈ L then ⊥ else (X`)] when blessedE L X ∧ inSyncE L X
chkAndRemE int L = E when L ⊆ domE Un
chkAndRemE (τ1, τ2) L = let E1 = chkAndRemE τ1 L in

let L1 = {`+ |τ1|E1
| ` ∈ L} in

chkAndRemE1
τ2 L1

updUn : (Env ∗ Locs ∗ Type ∗MapBody) → (Env)
updUnE L int ê = E[Un← λ`.if ` ∈ L then ê else Un `]
updUnE L X ê = E
updUnE L (τ1, τ2) ê = let E1 = updUnE L τ1 ê in

let L1 = {`+ |τ1|E1 | ` ∈ L} in
updUnE1

L1 τ2 ê

Figure 12. Auxiliary functions used in dynamic semantics only

17

(E; s) (E′; s′) where E ::= H 7→ (v̂:τ̂),Un 7→ (v̂:τ̂) | E,X 7→ (v̂:τ̂) | E, x 7→ i

τ̂ = int → τ
(E; newtype X = τ in s) (E,X 7→ (λ`.⊥:τ̂); s)

E-NewType
(E; local x in s) (E, x 7→ i; s)

E-NewLoc

[[e1]]E = n [[e2]]E = ` L =
⋃

0≤i<n{`+ |X|E ∗ i} τ = rangeE X

E1 = chkAndRemE τ L E2 = copyE1
L from H to X E′ = updUnE2

L τ ⊥
(E; y := blessX [e1] e2) (E′[y 7→ `]; skip)

E-Bless

[[e1]]E = n [[e2]]E = ` L =
⋃

0≤i<n{`+ |X|E ∗ i} τ = rangeE X

E1 = chkAndRemE X L E2 = copyE1
L from H to τ E′ = updUnE2

L τ 1

(E; y := unblessX [e1] e2) (E′[y 7→ `]; skip)
E-UnBless

[[e1]]E = n [[e2]]E = ` L = {`, . . . , (`+ |X|E ∗ (n− 1))}
τ = rangeE X chkAndRemE τ L = notSync

(E; y := blessX [e1] e2) (E; abort)
E-Bless-Abort

[[e1]]E = n [[e2]]E = ` L = {`, . . . , (`+ |X|E ∗ (n− 1))}
τ = rangeE X chkAndRemE X L = notSync

(E; y := unblessX [e1] e2) (E; abort)
E-UnBless-Abort

p 6= · [[e1]]E = ` [[e2]]E = v ` ∈ domE X inSyncE ` X
`′ = `+ offsetE X p E1 = E[H ← (`′ 7→ v)] E′ = copyE1

{`} from H to X

(E;X(e1).p := e2) (E′; skip)
E-Write

p 6= · [[e1]]E = ` ` ∈ domE X inSyncE ` X
`′ = `+ offsetE X p E′ = E[y 7→ HE(`′)]

(E; y := X(e1).p) (E′; skip)
E-Read

[[e1]]E = ` ` ∈ domE X ¬inSyncE ` X

(E;X(e1).p := e2) (E; abort)
E-Write-Abort

[[e1]]E = ` ` ∈ domE X ¬inSyncE ` X

(E; y := X(e1).p) (E; abort)
E-Read-Abort

[[e1]]E = ` E′ = E[y 7→ HE(`)]

(E; lib y := e1) (E′; skip)
E-LibRd

[[e1]]E = ` [[e2]]E = v E′ = E[H ← (` 7→ v)]

(E; lib e1 := e2) (E′; skip)
E-LibWrt

[[e]]E = ` ` ∈ domE X inSyncE ` X

(E; if e is in X then s1 else s2) (E; s1)
E-IsX-Then

[[e]]E = ` ` 6∈ domE X

(E; if e is in X then s1 else s2) (E; s2)
E-IsX-Else

[[e]]E = ` ` ∈ domE X ¬inSyncE ` X

(E; if e is in X then s1 else s2 (E; abort)
E-IsX-Abort

[[e]]E 6= 0

(E; if e then s1 else s2) (E; s1)

[[e]]E = 0

(E; if e then s1 else s2) (E; s2)

[[e]]E = 0

(E; while e s) (E; skip)

[[e]]E 6= 0

(E; while e s) (E; (s; while e s))

(E; s1) (E′; s′1)

(E; (s1; s2)) (E; (s′1; s2)) (E; (skip; s2)) (E; s2)

E |= Φ

(E; assert Φ) (E; skip) (E; abort) (E; abort)

Figure 13. Dynamic semantics of YCORE

18

Γ; ∆ ` {Φ} s {Ψ} where the set of locations modified by s is ∆ ::= ∆, X | ∆, x | ·

Γ; ∆ ` {Φ′} s {Ψ′} Γ |= (Φ⇒ Φ′) Γ |= (Ψ′ ⇒ Ψ)

Γ; ∆ ` {Φ} s {Ψ}
T-Cons

Γ; ∆ \ FV (Φ′) ` {Φ} s {Ψ}
Γ; ∆ ` {Φ′ ∧ Φ} s {Φ′ ∧Ψ}

T-Frame

Γ ` Φ ok
Γ; ∆ ` {Φ ∧Ψ} assert Φ {Ψ}

T-Assert
x 6∈ dom Γ Γ, x; ∆, x ` {Φ} s {Ψ}

Γ; ∆ ` {∀x.Φ} local x in s {Ψ}
T-Loc

Γ ` τ ok X 6∈ dom Γ τ̂ = int → τ Γ, X:τ̂ ; ∆, X ` {Φ} s {Ψ}
Γ; ∆ ` {∀X:τ̂ .X = λ`.⊥ ⇒ Φ} newtype X = τ in s {Ψ}

T-NewX

Γ ` e1, e2, y ok L =
⋃

0≤i<e1
{e2 + |X|Γ ∗ i} rangeΓ X = τ y,X,Un, τ ∈ ∆

σ1 = copyΓ L from H to X Φ, σ2 = chkAndRemΓ τ L σ3 = updUnΓ L τ ⊥
Γ; ∆ ` {Φ ∧ (σ1 ◦ σ2 ◦ σ3 ◦ [e2/y])(Ψ)} y := blessX [e1] e2 {Ψ}

T-Bless

Γ ` e1, e2, y ok L =
⋃

0≤i<e1
{e2 + |X|Γ ∗ i} rangeΓ (X) = τ y,X,Un, τ ∈ ∆

σ1 = copyΓ L from H to τ Φ, σ2 = chkAndRemΓ X L σ3 = updUnΓ L τ 1

Γ; ∆ ` {Φ ∧ (σ1 ◦ σ2 ◦ σ3 ◦ [e2/y])(Ψ)} y := unblessX [e1] e2 {Ψ}
T-UnBless

Γ ` e1, e2 ok X,H ∈ ∆ X 6= Un vh = readFromΓ H (e1:X) vx = XΓ(e1)
H1 = H[(e1 + offsetΓ X p)← e2] σ1 = copyΓ e1 from H1 to X σ = σ1 ◦ [H1/H]

Γ; ∆ ` {e1 ∈ domΓ X ∧ (vh = vx ⇒ σ(Ψ))}X(e1).p := e2 {Ψ}
T-Write

Γ ` e, y ok y ∈ ∆ X 6= Un
vh = readFromΓ H (e:X) vx = XΓ(e) σ = [(H1(e+ offsetΓ X p))/y]

Γ; ∆ ` {e ∈ domΓ X ∧ (vh = vx ⇒ σ(Ψ))} y := X(e).p {Ψ}
T-Read

Γ ` e ok vh = readFromΓ H (e:X) vx = XΓ(e) Γ; ∆ ` {Φ1} s1 {Ψ} Γ; ∆ ` {Φ2} s2 {Ψ}
Γ; ∆ ` {((e ∈ domΓ X ∧ (X = Un ∨ vh = vx))⇒ Φ1) ∧ (e 6∈ domΓ X ⇒ Φ2)} if e is in X then s1 else s2 {Ψ}

T-IsX

Γ ` e1, e2 ok H1 = H[e1 ← e2] σ = [H1/H]

Γ;H ` {σ(Ψ)} lib e1 := e2 {Ψ}
T-LibWrite

Γ ` e, y ok σ = [(He)/y]

Γ; y ` {σ(Ψ)} lib y := e {Ψ}
T-LibRead

Γ ` e1 ok Γ; ∆ ` {Φ1} s1 {Ψ} Γ; ∆ ` {Φ2} s2 {Ψ}
Γ; ∆ ` {(e1 = 0⇒ Φ1) ∧ (e1 6= 0⇒ Φ2)} if e1 then s1 else s2 {Ψ}

T-If

Γ ` e ok Γ ` Ψinv ok Γ; ∆ ` {Φ} s {Ψinv}
Γ; ∆ ` {Ψinv ∧ (e1 6= 0⇒ Φ) ∧ (e1 = 0 ∧Ψinv ⇒ Ψ)} while e s {Ψ}

T-While

Γ; ∆ ` {Φ1} s2 {Ψ} Γ; ∆ ` {Φ} s1 {Φ1}
Γ; ∆ ` {Φ} s1; s2 {Ψ}

T-Seq
Γ; ∆ ` {Ψ} skip {Ψ}

T-Skip
Γ; ∆ ` {True} abort {Ψ}

T-Abort

Figure 14. A Floyd-Hoare logic for YCORE

19

Γ ` a : t well-typed terms, where t ::= τ | τ̂ | int set

Γ ` i : int
x ∈ dom Γ
Γ ` x : int

Γ ` a1 : int Γ ` a2 : int

Γ ` a1 op a2 : int

Γ ` a1 : τ1 Γ ` a2 : τ2
Γ ` (a1, a2) : (τ1, τ2)

Γ ` a : (τ1, τ2)

Γ ` a.i : τi

Γ(X) = τ̂

Γ ` X : τ̂ Γ ` ⊥ : τ

Γ, ` ` ê : τ

Γ ` λ`.ê : int → τ

Γ ` a : int Γ ` a′ : int set Γ ` ê1 : τ Γ ` ê2 : τ

Γ ` if a ∈ a′ then ê1 else ê2 : τ

Γ ` v̂ : int → τ Γ ` v : int
Γ ` v̂ v : τ

Γ ` a : τ̂
Γ ` dom a : int set

Γ, x ` Φ ok
Γ ` {x | Φ} : int set

Γ ` (a.i).p : τ p 6= ·
Γ ` a.ip : τ

Γ ` ~e ok generalizing well-formedness to lists of expressions

Γ ` e1 : τ Γ ` ~e ok
Γ ` e1, ~e ok Γ ` · ok

Γ ` τ ok well-formed types

Γ ` int ok
X ∈ dom Γ
Γ ` X ok

Γ ` τ1 ok Γ ` τ2 ok
Γ ` (τ1, τ2) ok

Γ ` Φ ok well-formed formulas

Γ ` a : t Γ ` a′ : t

Γ ` a = a′ ok
Γ ` a : int Γ ` a′ : int set

Γ ` a ∈ a′ ok
Γ ` a : int Γ ` a′ : int

Γ ` a < a′ ok

Γ ` Φ ok
Γ ` ¬Φ ok

Γ ` Φ ok Γ ` Ψ ok
Γ ` Φ ∧Ψ ok

Γ ` Φ ok Γ ` Ψ ok
Γ ` Φ ∨Ψ ok

Γ, x ` Φ ok
Γ ` ∀x.Φ ok

Γ, X:τ̂ ` Φ ok
Γ ` ∀X:τ̂ .Φ ok

Γ, x ` Φ ok
Γ ` ∃x.Φ ok

Γ, X:τ̂ ` Φ ok
Γ ` ∃X:τ̂ .Φ ok

` E : Γ store typing

` E : (Γ2,Γ1)

` E : (Γ1,Γ2)
` v : int ` E : Γ
` E, (x 7→ v) : Γ, x

` v̂ : τ̂ ` E : Γ
` E, (X 7→ (v̂:τ̂)) : Γ, X:τ̂

` v̂ : int → int ` E : Γ
` E, (Un 7→ (v̂:int → int)) : Γ,Un:int → int

` v̂ : int → int |= ∀`.` ∈ dom v̂

` (H 7→ (v̂:int → int)) : (H:int → int)

` Γ ok

` · ok
Γ ok x 6∈ dom Γ

` Γ, x ok
Γ ok X 6∈ dom Γ Γ ` τ ok

` Γ, X:τ ok

` Γ; ∆ ok

` Γ ok
` Γ; · ok

` Γ; ∆ ok x ∈ dom Γ x 6∈ ∆

` Γ; ∆, x ok

Figure 15. Well-formed terms, formulas, stores, and environments

20

[[a]]E interpretation of terms

[[x]]E = E(x)
[[X]]E = E(X)
[[v]]E = v
[[v̂]]E = v̂
[[a.0]]E = v1 when [[a]]E = (v1, v2)
[[a.1]]E = v2 when [[a]]E = (v1, v2)
[[a.ip]]E = [[[[a.i]]E .p]]E when p 6= ·
[[λx.ê `]]E = [[ê[`/x]]]E
[[if a ∈ a′ then ê else ê′]]E = [[ê]]E when [[a]]E ∈ [[a′]]E
[[if a ∈ a′ then ê else ê′]]E = [[ê′]]E when [[a]]E 6∈ [[a′]]E
[[{x | Φ}]]E = {v | E |= Φ[v/x]}
[[dom a]]E = [[` | a ` 6= ⊥]]E

E |= v̂1
∼= v̂2 extensional equality on map values

∀l.E |= (v̂1l) = (v̂2l)

E |= v̂1
∼= v̂2

E |= Φ interpretation of formulas

E |= True
E |= ¬Φ ⇐⇒ E |= Φ is invalid
E |= Φ1 ∧ Φ2 ⇐⇒ E |= Φ1 and E |= Φ2

E |= Φ1 ∨ Φ2 ⇐⇒ E |= Φ1 or E |= Φ2

E |= ∀x.Φ ⇐⇒ for all integers i, E |= Φ[i/x]
E |= ∀X:τ̂ .Φ ⇐⇒ for all map values v̂:τ̂ , E |= Φ[v̂/X]
E |= ∃x.Φ ⇐⇒ for all some integer i, E |= Φ[i/x]
E |= ∃X:τ̂ .Φ ⇐⇒ for some map value v̂:τ̂ , E |= Φ[v̂/X]
E |= a1 = a2 ⇐⇒ [[a1]]E = [[a2]]E when ` E : Γ and Γ ` ai : τ
E |= a1 = a2 ⇐⇒ E |= [[a1]]E ∼= [[a2]]E when ` E : Γ and Γ ` ai : τ̂
E |= a1 ∈ a2 ⇐⇒ [[a1]]E ∈ [[a2]]E
E |= a1 < a2 ⇐⇒ [[a1]]E < [[a2]]E

Γ |= Φ Γ |= Φ ⇐⇒ for all E such that ` E : Γ, we have E |= Φ

Figure 16. Interpretation of terms and formulas

21

