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In this chapter, we extend the growth transformation (GT)-based approach to the discriminative pa-
rameter estimation problem from the stationary probability model characterized by the exponential-
family distributions discussed in Chapter 4 to the nonstationary probability model. The nonstationarity 
discussed here is characterized by the Markov chain that underlies the hidden Markov model 
(HMM), where the emission probabilities in the HMM can be represented by any member in the 
exponential-family distributions as well as by the mixture Gaussian distribution. Specifi cally, in the 
algorithm derivation discussed in this chapter, we only use the example for the Gaussian HMM. 
It can be easily generalized to other types of continuous-density HMMs (CDHMMs) by using 
some of the derivation steps discussed in Chapter 4. To make the coverage of HMM complete, we 
fi rst discuss the discriminative parameter estimation problem in classifi er design where each class is 
characterized by a discrete HMM.

5.1 ESTIMATION FORMULAS FOR DISCRETE HMM
In this section, we derive the GT estimation formulas for the discrete HMM’s parameters — L = 
{{ai,j}, {bi(k)}} for transition probabilities and emitting probabilities. The formula “grows” the uni-
fi ed discriminative training criterion O(L). In the next section, we will present the derivation for the 
CDHMM. In both cases, O(L) is diffi cult to optimize directly but because it is a rational function 
as expressed in (3.2), we can construct the auxiliary functions of (1) F and then (2) V based on F. 
Optimizing V (L; L¢) becomes a relatively easier problem and it leads to the fi nal GT formulas for 
all types of discriminative criteria unifi ed by (3.2).

For the discrete HMM, X = X1, ¼, XR is used to denote observation sequences with discrete 
indexes. That is, at time t for token r, the observation xr,t is an index belonging to the set [1, 2, ¼, 
K ], where K is the size of the index set.

C H A P T E R  5

Discriminative Learning Algorithm 
for HMM
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5.1.1 Constructing Auxiliary Function F (L; L¢)
Starting from (4.11), we have the generic auxiliary function of 

 
F(L;L′) =å

s
p(X, s |L)

[
C(s)− O(L′)

]
+ D

 
which, for an HMM, becomes

 
F(L;L′) = å

s
å

q
p
(
X,q, s |L)[

C(s)− O(L′)
]
+ D  (5.1)

where q is the HMM state sequence, and s = s1, ¼, sR is the label (e.g., word or phone) sequence 
for all R training tokens (including correct or incorrect sentences). The same interpretation as in 
Chapter 4 can be given to the main terms in the auxiliary function F (L;L¢) above as the average 
deviation of the accuracy count.

Because p(s) depends on the language model, it is irrelevant for optimizing L. We therefore 
can have the following decomposition: p(X,q,s|L) = p(s) · p(X, q|s, L). Hence,

 

F(L;L′ ) = å
s
å

q
[C(s)− O(L′)]p(s)p(X,q |s,L) + D

= å
s
å

q
å
c

[
G(L′) + d(s)

]
p(c ,q |s,L)  (5.2)

where

 
G(L′) = d (c ,X )p(s)

[
C(s)− O(L′)

]
 (5.3)

As before, D = Ss
 d(s) is a quantity independent of the parameter set L. In (5.3), d(c, X) is 

the Kronecker delta function, in which c represents the entire data space where X is in. The sum-
mation over this data space is introduced here again for accommodating the parameter-independent 
constant D, that is, Ss Sg Sc d(s)p( c, q | s, L) = Ss

d(s) = D is a L-independent constant (an idea 

originally proposed in [17] for HMM).

5.1.2. Constructing Auxiliary Function V (L; L¢)
We now desire to construct the new auxiliary function V (L; L¢) using (5.2), in the same way as we 
did in Chapter 4. We fi rst identify

 f (c ,q, s,L) =
[
G(L′) + d(s)

]
p(c ,q|s,L)  

as before. Again, to ensure that f  ( c, q, s, L) above is positive, d(s) should be selected to be suf-
fi ciently large so that G(L¢) + d(s) > 0 (note p (c, q | s, L) in (5.2) is nonnegative). Then, using (4.4) 
again, we have
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V(L;L′) = å
q
å

s
å
c

[
G(L′) + d(s)

]
p
(
c ,q|s,L′) log

⎧⎪⎨
⎪⎩

[
G(L′) + d(s)

]︸ ︷︷ ︸
optimization - indept

p
(
c ,q |s,L)⎫⎪⎬⎪⎭

= å
q
å

s
å
c

[
G(L′) + d(s)

]
p(c ,q

∣∣s,L′ ) log
(
c ,q |s,L)

+ Const.

= å
q
å

s
p(X,q, s

∣∣L′ )
(
C(s) − O(L′)

)
log p

(
X,q |s,L)

+å
q
å

s
å
c

d(s)p
(
c ,q

∣∣s,L′ ) log p
(
c ,q |s,L)

+ Const.  (5.4)

5.1.3 Simplifying Auxiliary Function V (L; L¢)
After ignoring optimization-independent constant in (5.4), we divide V (L; L¢) by p(X|L¢) to con-
vert the joint probability p(X, q, s | L¢) to the posterior probability p(q, s | X, L¢) = p(s | X, L¢)p(q | X, 
L¢). The equivalent auxiliary function then becomes

 

U(L;L′) =å
q
å

s
p
(
s
∣∣X,L′ )p

(
q
∣∣X, s,L′ )(

C(s)− O(L′)
)
log p

(
X,q |s,L)

+å
q
å

s
å
c

d′(s)p
(
c ,q

∣∣s,L′ ) log p
(
c ,q |s,L)

 (5.5)

where

 
d′(s) = d(s)/p

(
X

∣∣L′ ) (5.6)

Because X depends only on the HMM state sequence q, we have p(X , q | s, L) = p(q | s, L) × 
p(X | q, L). Therefore, U (L; L¢) can be further decomposed to four terms below:

 

U(L;L′) =

term - I︷ ︸︸ ︷
å

q
å

s
p
(
s
∣∣X,L′ )p

(
q |X, s,L′)(

C(s)− O(L′)
)

log p
(
X |q,L

)
+å

q
å

s
å
c

d′(s)p
(
c ,q

∣∣s,L′ ) log p
(
c |q,L

)
︸ ︷︷ ︸

term - II

+

term - III︷ ︸︸ ︷
å

q
å

s
p
(
s
∣∣X,L′ )p

(
q|X, s,L′)(

C(s)− O(L′)
)

log p
(
q |s,L)

+å
q
å

s
å
c

d′(s)p
(
c ,q

∣∣s,L′ ) log p
(
q |s,L)

︸ ︷︷ ︸
term - IV

 (5.7)

xiaohe
Comment on Text
a)use p(q|X,s,\Lambda')
i.e., 's' is missing
b) put the whole term in one row.
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Note the two new terms above compared with the corresponding auxiliary function (4.14) 
in Chapter 4. Here, X = X1, ¼, XR is a large aggregate of all training data with R independent 
sentence tokens. For each token Xr = xr,1, ¼, xr,Tr, the observation vector xr,t is independent of each 
other and it depends only on the HMM state at time t. Hence, log p(X |q, L) can be decomposed, 
enabling simplifi cation of both term-I and term-II in (5.7). To simplify term-III and term-IV in 
(5.7), we decompose log p(q |s, L) based on the property of the fi rst-order HMM — the state at 
time t depends only on state at time t - 1. We now elaborate on the simplifi cation of all four terms 
in (5.7).

For term-I, we fi rst defi ne

 
gi,r, sr(t) � å

q,qr, t=i
p
(
q |X , s,L′) = p

(
qr, t = i |X , s,L′

)
= p

(
qr, t = i |Xr , sr,L′

)
 (5.8)

The last equality comes from the fact that the sentence tokens in the training set are in-
dependent of each other. gi,r,sr(t) is the occupation probability of state i at time t, given the label 
sequence sr and observation sequence Xr, and an effi cient forward–backward algorithm exists 
to compute it [43]. Using the defi nition of (5.8) and assuming that the HMM state index is 
from 1 to I, we have 

 

term - I = å
s

p
(
s |X ,L′)(

C(s)− O(L′)
)
å

q
p
(
q |X , s,L′) R

å
r=1

Tr

å
t=1

log p
(

xr, t

∣∣∣qr, t,L
)

= å
s

p
(
s
∣∣X,L′ )(

C(s)− O(L′)
) R

å
r=1

Tr

å
t=1

I

å
i =1

å
q,qr, t=i

p
(
q |X , s,L′)log p

(
xr, t

∣∣∣qr, t = i, L
)

= å
s

p
(
s |X ,L′)(

C(s)− O(L′)
) R

å
r=1

Tr

å
t=1

I

å
i =1

gi,r,sr(t)log p
(

xr, t

∣∣∣qr, t = i,L
)

 (5.9)

The simplifi cation process for the second term in (5.7) is as follows. Using the notations q~ = q1,1, . . . , 
qr,t - 1, qr,t + 1, . . . , qR,TR

, c~ = c1,1, . . . , cr,t - 1, cr,t + 1, . . . , cR,TR
, we have
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term - II=å
s

d′(s) å
q1,1,..., qR, TR

å
c1,1,..., cR, TR

p
(
c1,1,...,cR, TR , q1,1,..., qR,TR

∣∣s,L′
) R

å
r=1

Tr

å
t=1

log p
(
cr, t

∣∣∣qr, t,L
)

= å
s

d′(s)
R

å
r=1

Tr

å
t =1
å
qr, t

å
cr, t

p
(
cr, t,qr, t

∣∣s,L′
)
å̃

q
å̃
c

p(c̃ , q̃|cr, t,qr, t, s,L′)

︸ ︷︷ ︸
=1

log p
(
cr, t

∣∣∣qr, t,L
)

= å
s

d′(s)
R

å
r=1

Tr

å
t=1
å
qr, t

å
cr, t

p
(
cr, t,qr, t

∣∣s,L′
)

log p
(
cr, t

∣∣∣qr, t,L
)

=
R

å
r=1

Tr

å
t=1

I

å
i=1
å
cr, t
å

s
d ′(s)p(qr, t = i|s,L′)p(cr, t|qr, t = i,L′)log p(cr, t|qr, t = i,L)

=
R

å
r=1

Tr

å
t=1

I

å
i=1

d(r, t, i)å
cr, t

p
(
cr, t

∣∣∣qr, t = i;L′
)

log p
(
cr, t

∣∣∣qr, t = i;L
)

 
(5.10)

where

 
d(r, t, i) =å

s
d′(s)p

(
qr, t = i

∣∣s,L′
)

 (5.11)

To simplify term-III in (5.7), we fi rst defi ne

 

xi, j, r, sr(t)� å
q :qr, t−1=i,qr, t=j

p
(
q
∣∣X, s,L′

)
= p

(
qr, t−1 = i,qr, t = j

∣∣X, s,L′
)

= p
(
qr, t−1= i,qr, t = j

∣∣Xr, sr,L′
)

 (5.12)

which is the posterior probability of staying at state i at time t - 1 and staying at state j at time t, 
given the label sequence sr and observation sequence Xr. An effi cient forward–backward algorithm 
exists to compute this posterior probability in a standard way [43]. Then, we decompose p(q | s, L) 
as follows:

 
p(q|s,L) =

R

Õ
r=1

p
(

qr, 1, ..., qr,Tr
|sr,L

)
=

R

Õ
r=1

Tr

Õ
t=1

aqr, t−1,qr, t

 

This leads to the following simplifi cations:

xiaohe
Comment on Text
use italic 'j' (multiple places)
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term - III = å
s

p
(
s
∣∣X,L′ )(

C(s)− O(L′)
)
å

q
p
(
q |X, s,L′) R

å
r=1

Tr

å
t=1

log aqr, t−1,qr, t

= å
s

p
(
s
∣∣X,L′ )(

C(s)− O(L′)
) R

å
r=1

Tr

å
t=1

I

å
i =1

I

å
j=1

å
q,qr, t−1=i,qr, t=j

p
(
q
∣∣X, s,L′ )log ai, j

= å
s

p
(
s
∣∣X,L′ )(

C(s)− O(L′)
) R

å
r=1

Tr

å
t=1

I

å
i =1

I

å
j=1

xi, j, r, sr(t)log ai, j

 
(5.13)

and

 

term - IV = å
s

d′(s)å
q
å
c

p
(
c ,q

∣∣s,L′ ) R

å
r=1

Tr

å
t=1

log aqr, t−1,qr, t

= å
s

d′(s)
R

å
r=1

Tr

å
t =1
å

q
å
c

p
(
c ,q

∣∣s,L′ ) log aqr, t−1,qr, t

= å
s

d′(s)
R

å
r=1

Tr

å
t =1

å
qr, t−1

å
qr, t

p
(

qr, t−1, qr, t

∣∣s,L′
)

log aqr, t−1,qr, t

= å
s

d′(s)
R

å
r=1

Tr

å
t =1

I

å
i=1

I

å
j=1

p
(

qr, t−1 = i
∣∣s,L′

)
p
(

qr, t = j
∣∣∣qr, t−1 = i, s,L′

)
log ai, j

=
R

å
r=1

Tr

å
t=1

I

å
i=1

d(r, t - 1, i)
I

å
j=1

a′i, j log ai, j

 
(5.14)

where a ¢i, j = p(qr,t = j |qr,t - 1 = i, s, L¢) is the transition probability from the previous GT iteration.
Substituting (5.19), (5.10), (5.13), and (5.14) into (5.7), and denoting the emitting prob-

ability by bi(xr,t ) = p(xr,t |qr,t = i, L) and b ¢i(xr,t ) = p(xr,t |qr,t = i, L¢), we obtain the decomposed and 
simplifi ed objective function:

 U(L;L′) = U1(L;L′) + U2(L;L′)  (5.15)

where

 

U1(L;L′) =
R

å
r=1

Tr

å
t =1

I

å
i=1
å

s

(
s
∣∣X,L′ )(

C(s)− O(L′)
)
gi, r, sr(t)log bi(xr, t)

+
R

å
r=1

Tr

å
t =1

I

å
i=1

d(r, t,i)å
cr, t

b′i(cr, t)log bi(cr, t)  (5.16)

xiaohe
Comment on Text
use italic 'j'
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U2(L;L′) =
R

å
r=1

Tr

å
t=1

I

å
i =1

I

å
j=1
å

s
p
(
s
∣∣X,L′ )(

C(s)− O(L′)
)
xi, j, r, sr(t) log ai, j

+
R

å
r=1

Tr

å
t=1

I

å
i =1

d(r, t− 1, i)
I

å
j=1

a′i, j log ai, j  (5.17)

In (5.15), U1(L; L¢) is relevant to optimizing the emitting probability bi(k), and U2(L; L¢)  is 
relevant to optimizing the transition probability ai, j .

5.1.4 GT by Optimizing Auxiliary Function U(L; L¢)
To optimize the discrete distribution bi(k) = p(xr,t = k |qr,t = i, L), k = 1, 2, …, K, where the constraint 

SK
k = 1bi(k) = 1 is imposed, we apply the Lagrange multiplier method by constructing

 

W1(L;L′) = U1(L;L′) +
I

å
i=1

li

(
K

å
k=1

bi(k)− 1

)
 

Setting  ¶W1(L; L¢)                  
¶li

       = 0 and  ¶W1(L; L¢)                  
¶bi(k)

      = 0, k = 1, ¼, K, we have the following K + 1 equations:

 
K

å
k=1

bi(k)− 1 = 0

 

 

0 = libi(k) +
R

å
r=1

Tr

å
t=1

s.t.xr, t =k

Dg(i, r, t)︷ ︸︸ ︷
å

s
p
(
s
∣∣X,L′ )(

C(s)− O(L′)
)
gi, r, sr(t) +

 

where bi(k) is multiplied on both sides. Solving for bi(k), we obtain the reestimation formula:

 

bi(k) =

R

å
r=1

Tr

å
t=1

s.t.xr, t =k

å
s

p
(
s
∣∣X,L′ )(

C(s)− O(L′)
)
gi,r,sr(t) + b ′

i (k)
R

å
r=1

Tr

å
t=1

d(r, t,i)

R

å
r=1

Tr

å
t=1
å

s
p
(
s
∣∣X,L′ )(

C(s)− O(L′)
)
gi, r, sr(t) +

R

å
r=1

Tr

å
t=1

d(r, t,i)  

(5.18)

We now defi ne

 Di =
R

å
r=1

Tr

å
t=1

d(r, t,i)  (5.19)

+
R

å
r=1

Tr

å
t=1

d(r, t,i)b ′
i (k), k = 1, . . . , K
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 Dg(i, r, t) =å
s

p
(
s
∣∣X,L′ )(

C(s)− O(L′)
)
gi, r, sr(t)  (5.20)

and can rewrite (5.18) as

 
bi(k) =

R

å
r=1

Tr

å
t=1

s.t.xr, t =k

Dg (i, r, t) + b ′
i (k)Di

R

å
r=1

Tr

å
t=1

Dg (i, r, t) + Di

  
(5.21)

To optimize transition probabilities ai, j , with constraint  SI
j = 1

ai,  j = 1, we apply Lagrange 
multiplier method by constructing

 W2(L;L′) = U2(L;L′) +
I

å
i=1

li

(
I

å
j=1

ai, j − 1

)
 (5.22)

Setting ¶W2(L; L¢)                  
¶li

        = 0 and  ¶W2(L; L¢)                  
¶ai, j

      = 0  and, j = 1, ¼, I, we have the following I + 1 
equations:

 

I

å
j=1

ai, j − 1 = 0
 

 
0 = liai, j +

R

å
r=1

Tr

å
t=1

Dx (i, j, r, t)︷ ︸︸ ︷
å

s
p
(
s
∣∣X,L′ )(

C(s)− O(L′)
)
xi, j, r, sr(t) +

R

å
r=1

Tr

å
t=1

d(r, t− 1, i)a′i, j , j = 1, . . . , I
 

Note that SI
j = 1

xi, j,r,sr(t) = gi,r,sr(t). Solving for ai, j , we obtain the reestimation formula with a stan-

dard procedure (used for deriving the expectation–maximization estimate of transition probabilities 
[10]):

 ai, j =

R

å
r=1

Tr

å
t=1
å

s
p
(
s
∣∣X,L′ )(

C(s)− O(L′)
)
xi, j, r, sr(t) + a′i, j

R

å
r=1

Tr

å
t=1

d(r, t− 1, i)

R

å
r=1

Tr

å
t=1
å

s
p
(
s
∣∣X,L′ )(

C(s)− O(L′)
)
gi, r, sr(t) +

R

å
r=1

Tr

å
t=1

d(r, t− 1, i)
 (5.23)

Now we defi ne
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 D̃i =
R

å
r=1

Tr

å
t=1

d(r, t− 1, i)  (5.24)

 Dx (i, j, r, t) =å
s

p
(
s
∣∣X,L′ )(

C(s)− O(L′)
)
xi, j, r, sr(t)  (5.25)

and together with (5.20), we rewrite (5.23) as

 
ai, j =

R

å
r=1

Tr

å
t=1

Dx (i, j, r, t) + a′i, j D̃i

R

å
r=1

Tr

å
t=1

Dg(i, r, t) +D̃i  

(5.26)

The parameter reestimation formulas (5.18) and (5.26) for discrete HMMs are unifi ed across 
maximum mutual information (MMI), minimum classifi cation error (MCE), and minimum phone 
error/minimum word error (MPE/MWE). What distinguishes among MMI, MCE, and MPE/
MWE is the different weighing term Dg (i, r, t) in (5.20) and Dx (i,  j, r, t) in (5.25) due to the differ-
ent C(s) contained in the unifi ed objective function. Details for computing Dg (i, r, t) for MMI, and 
MCE, and MPE/MWE can be found in Chapter 6.

5.2 ESTIMATION FORMULAS FOR CDHMM
For CDHMMs, X = X1, ¼, XR, are continuous random variables. The previous objective functions 
for discrete HMMs still hold, except that c is a continuous variable and hence the summation over 
domain c is changed to integration over c. Thus, we have the objective function:

 V(L;L′) =å
s
å

q

∫
c

f (c ,q, s,L′) log f (c ,q, s,L)dc  (5.27)

where the integrand f  (c, q, s, L) is defi ned by

 

F(L;L′) =å
s
å

q

∫
c

f (c ,q, s,L)dc  (5.28)

Correspondingly, we have
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F(L;L′) = å
s
å

q
[C(s)− O(L′)]p(s)p

(
X,q |s,L)

+ D

= å
s
å

q

∫
c

[
G(L′) + d(s)

]
p
(
c ,q |s,L)

dc  
(5.29)

where

 
f (c ,q, s,L) =

[
G(L′) + d(s)

]
p(c ,q|s,L)  (5.30)

and

 
G(L′) = d (c ,X )p(s)

[
C(s)− O(L′)

]
 (5.31)

with d( c, X ) in (5.31) being the Dirac delta function. After a similar derivation to that in the pre-
ceding section, it can be shown that the transition probability estimation formula (5.26) stays the 
same as for the discrete HMM. But for the emitting probability, (5.16) is changed to

 

U1(L;L′) =
R

å
r=1

Tr

å
t=1

I

å
i=1
å

s
p
(
s
∣∣X,L′ )(

C(s)− O(L′)
)
gi, r, sr(t) log bi(xr, t)

+
R

å
r=1

Tr

å
t=1

I

å
i=1

d(r, t,i)
∫
cr, t

b ′
i (cr, t) log bi(cr, t)dcr, t

 

(5.32)

As the most common member of the CDHMM, we use a Gaussian HMM to derive its pa-
rameters’ GT formulas (the results for CDHMMs with exponential-family emitting probabilities 
can be derived similarly). For the Gaussian HMM, bi(xr,t) in (5.32) is a Gaussian distribution:

 bi(xr, t) ∝ 1
|Si|1/2 exp

[
−1

2
(xr, t − mi)TS−1

i (xr, t − mi)
]
. 

where {mi, Si}, i = 1, 2, . . . , I are the Gaussian mean vectors and covariance matrices.
 To solve for mi and Si, based on (5.32), for the Gaussian at HMM’s state i, we set

 

¶U1(L;L′)
¶mi

= 0; and
¶U1(L;L′)

¶Si
= 0.
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This gives:

 

0 =
R

å
r=1

Tr

å
t=1

Dg(i, r, t)︷ ︸︸ ︷
å

s
p
(
s
∣∣X,L′ )(

C(s)− O(L′)
)
gi, r, sr(t)S−1

i (xr, t − mi)

+
R

å
r=1

Tr

å
t=1

d(r, t,i)S−1
i

∫
cr, t

b ′
i (cr, t)(cr, t − mi)dcr, t

 (5.33)

 

0 =
R

å
r=1

Tr

å
t=1

Dg(i, r, t)︷ ︸︸ ︷
å

s
p
(
s
∣∣X,L′ )(

C(s)− O(L′)
)
gi, r, sr(t)

[
S−1

i − S−1
i (xr, t − mi)(xr, t − mi)TS−1

i

]

+
R

å
r=1

Tr

å
t=1

d(r, t, i)
∫
cr, t

b ′
i (cr, t)

[
S−1

i − S−1
i (cr, t − mi)(cr, t − mi)TS−1

i

]
dcr, t

 
(5.34)

For the Gaussian distribution b ¢i( cr,t ) = p( cr,t |qr,t = i; L¢), we have

 

∫
cr, t

b ′
i (cr, t)dcr, t = 1 ,

 

 

∫
cr, t

cr, t · b ′
i (cr, t)dcr, t = m ′

i ,

 

 

∫
cr, t

(cr, t − m ′
i )(cr, t − m ′

i )
T · b ′

i (cr, t)dcr, t = S′i .

 

Hence, the integrals in (5.33) and (5.34) give closed-form results. Next, we multiply both sides of 
(5.33) by Si at the left end, and multiply both sides of (5.34) by Si at both left and right ends, re-
spectively. Finally, solving mi and Si gives the GT formulas of

 mi =

R

å
r=1

Tr

å
t=1

Dg(i, r, t)xt + Dim ′
i

R

å
r=1

Tr

å
t=1

Dg(i, r, t) + Di

 (5.35)
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 Si =

R

å
r=1

Tr

å
t=1

[
Dg(i, r, t)(xt − mi)(xt − mi)T

]
+ DiS′i + Di(mi − m ′

i )(mi − m ′
i )

T

R

å
r=1

Tr

å
t=1

Dg(i, r, t) + Di

 (5.36)

where Dg (i, r, t) is defi ned in (5.20) and Di defi ned in (5.19).

 
Just as for the discrete HMM presented in the preceding section, (5.35) and (5.36) are unifi ed 

parameter estimation formulas for MMI, MCE, and MPE/MWE. And Dg (i, r, t) in (5.35) and 
(5.36) as defi ned in (5.20) is in the same way as for the discrete distribution case — differing in C(s) 
for MMI, and MCE, and MPE/MWE, respectively, as will be detailed in Chapter 6.

5.3 RELATIONSHIP WITH GRADIENT-BASED METHODS
The relation between the GT method and gradient-based search method has been studied in the lit-
erature (e.g., [3, 46]). It can be shown that, with carefully selected, parameter-dependent step sizes, 
these two methods can be made identical. However, as was shown in [3] for MMI, the GT-based 
updating formula (5.35) is best viewed not as a simple gradient ascent but as an approximation to 
a quadratic Newton update; that is, it can be formulated as a gradient ascent with the step size that 
approximates inverse Hessian matrix H of the objective function. In the following, we will show the 
similar relationship for all MMI, MCE, and MPE/MWE enabled by our unifying framework.

Let us use mean vector estimation as an example. The gradient of O(L) with respect to μi can 
be shown as:

 ∇miO(L)|L=L′ = S′i
−1

R

å
r=1

Tr

å
t=1

Dg(i, r, t)(xt − m ′
i )  (5.37)

On the other hand, we can rewrite the GT formula of (5.35) into the following equivalent 
form

 

mi = m ′
i +

1
R

å
r=1

Tr

å
t=1

Dg(i, r, t) + Di

·
R

å
r=1

Tr

å
t=1

Dg(i, r, t)(xt − m ′
i )

= m ′
i +

1
R

å
r=1

Tr

å
t=1

Dg(i, r, t) + Di

å′
i ·∇miO(L)|L=L′  (5.38)
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Consider the quadratic Newton update, where the Hessian Hi for µi can be approximated by 
the following equation after dropping the dependency of µi with Dg (i,r,t).

 
Hi = ∇2

m i
O(L)|L=L′ ≈ −S′i−1

R

å
r=1

Tr

å
t=1

Dg(i, r, t)
 

Therefore, the updating formula of GT in (5.35) can be further rewritten to

 mi ≈ m ′
i −

R

å
r=1

Tr

å
t=1

Dg(i, r, t)

R

å
r=1

Tr

å
t=1

Dg(i, r, t) + Di

H−1
i

︸ ︷︷ ︸
ei

∇miO(L)|L=L′ = m ′
i + ei∇miO(L)|L=L′  (5.39)

Compared with simple gradient ascent optimization that the model parameters L is updated 
by

 L = L¢ + e × ÑO (L) |L = L¢ 

where the step size e is a single, global constant independent of the parameters. Equation (5.39) 
can be viewed either as a generalization of the simple gradient ascent where the global step size e is 
replaced by the Gaussian-dependent step size ei, or as a generalization of the quadratic Newton up-
date mi = m¢i - a × Hi

-1ÑmiO(L) |L = L¢. Thus, the GT formula of (5.35) leads to more rapid convergence 
than the simple gradient-based search.

5.4 SETTING CONSTANT D FOR GT-BASED OPTIMIZATION
Based on Jensen’s inequality, the theoretical basis for setting Di is the requirement described in (5.2). 
That is, d(s) must be suffi ciently large to ensure that for any string s and any observation sequence c, 
G(L¢) + d(s) > 0, where G(L¢) = d( c, X )p(s)[C(s) - O (L¢)] from (5.3). However, for the CDHMM, 
d( c, X ) becomes the Dirac delta function, which is unbounded at the Center point. That is, d( c, 
X ) = + ¥ when c = X. Therefore, for the string s that gives C(s) - O(L¢) < 0, G(L¢)|c = X = -¥. Under 
this condition, it is impossible to fi nd a bounded d(s) that ensures G(L¢) + d(s) > 0 and hence Jen-
sen’s inequality may not apply. (Note that the discrete HMM does not encounter such a diffi culty 
because d(c, X ) takes fi nal values of 0 or 1.)

The above diffi culty for CDHMMs can be overcome if it can be shown that there exists a 
suffi ciently large but still bounded constant D so that V (L; L¢) of (5.27), with the integrand defi ned 
by (5.30) is still a valid auxiliary function of F (L; L¢); that is, an increase in the value of V (L; L¢) 
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can guarantee the increase in the value of F (L; L¢). Such a proof has indeed been developed in the 
recent work of Axelrod et al. [3], which we will outline in the later part of this section. (Because 
V (L; L¢) is still a valid auxiliary function, all derivations from (5.27) to (5.36) are valid.)

Given suffi ciently large Di , the convergence of the model estimation formulas, that is, (5.21), 
(5.26), (5.35), and (5.36), can be proved. However, the value of Di that guarantees convergence 
is usually too large to obtain a reasonable convergence speed. Before further research advance to 
lower the value of Di , in practice, Di is often empirically set to achieve compromised training 
performance.

Empirical setting of Di has been extensively studied since GT/EBW was proposed. In the 
early days, only one global constant D was used for all parameters [14, 34]. Later research discov-
ered on the empirical basis that for CDHMM, a useful lower bound on (nonglobal) Di is the value 
satisfying the constraint that the newly estimated variances remain positive [35]. In Refs. [50, 51], 
this constraint was further explored, leading to quadratic inequalities with which the lower bound 
of Di can be solved. Most recently, in [46], constant Di was further bounded by an extra condition 
that the denominators in the reestimation formula remain nonsingular.

In [52], use of Gaussian-specifi c Di was reported to give further improved convergence speed. 
For MMI, the Gaussian-specifi c constant Di was set empirically to be the maximum of (i) twice the 
value necessary to ensure positive variance, that is, 2 × Dmin; and (ii) a global constant E multiplied by 
the denominator occupancy; for example, E × gi  

den. Specifi cally, for MMI in the work of Woodland 
and Povey [52], g i  

den = SR  r = 1 ST  t = 1 gi ,r  
den(t) = SR  r = 1 STr  t = 1 SSr p(sr|Xr , L¢)gi,r,sr

(t). For MPE reported in 
[38–40], the empirical setting of Di was the same as MMI, that is, Di = max{2 × Dmin, E × gi  

den} ex-
cept that the computation of the denominator occupancy became: g i  

den = SR  r = 1 STr  t = 1 max(0, -Dg(i, 
r, t)). Moreover, the obtained new parameters were smoothed with the ML estimate of parameters 
(which was called I-smoothing).

For MCE, in our previous experimental work [20, 58], we developed the empirical setting 
of g i  

den as SR  r = 1 STr  t = 1 p(Sr|Xr , L¢)gi,r,sr
(t). It was based on the consideration that MCE and MMI are 

equivalent in the special case of having one utterance in the training set and hence the parameter 
estimation formulas of them should be identical in this special case. We tested this setting and 
obtained strong results as reported in [20, 58]. Further discussions and comparisons of different 
settings of empirical Di can be found in [14, 20, 34, 35, 40, 46, 51, 52].

5.4.1. Existence Proof of Finite D in GT Updates for CDHMM
As discussed earlier, optimization based on Jensen’s inequality cannot be applied directly to Gauss-
ian CDHMM because the value D in the GT update formulas (5.35) and (5.36) may be infi nite, 
making the algorithm’s convergence infi nitely slow. In this section, we follow the insight provided in 
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[3] to prove that there exist fi nite values of D that make the GT update formulas (5.35) and (5.36) 
practical for all MMI, MCE, and MPE/MWE.

To proceed, we substitute (5.30) into (5.27) and obtain

 V(L;L′) =å
q
å

s

∫
c

[
G(L′) + d(s)

]
p
(
c ,q

∣∣s,L′ ) log p
(
c ,q |s,L)

+ Const.  (5.40)

We prove below that for a CDHMM, given a suffi ciently large but bounded (i.e., fi nite) 
constant D,

 F(L;L′)− F(L′;L′) ≥ V(L;L′)− V(L′;L′) (5.41)

First, we defi ne

 DD =
[
F(L;L′)− F(L′;L′)

]− [
V (L;L′)− V (L′;L′)

]
 (5.42)

and will show that DD ³ 0 for any parameter set L. Substituting (5.29) and (5.40) into (5.42), we 
obtain

DD =
[
F(L;L′)− F(L′;L′)

] − [
V(L;L′)− V(L′;L′)

]
= å

q
å

s

∫
c

[
G(L′) + d(s)

][
p
(
c ,q |s,L)− p(c ,q

∣∣s,L′ ]dc

−å
q
å

s

∫
c

[
G(L′) + d(s)

]
p
(
c ,q

∣∣s,L′ )[
log p

(
c ,q |s,L)− log p

(
c ,q

∣∣s,L′ )]dc

= å
q
å

s

∫
c

[
G(L′) + d(s)

]
p
(
c ,q

∣∣s,L′ )[
p
(
c ,q |s,L)

p
(
c ,q |s,L′ ) − 1− log

p
(
c ,q |s,L)

p
(
c ,q |s,L′ )

]
dc

= å
q
å

s

∫
c

[
G(L′) + d(s)

]
p
(
c ,q

∣∣s,L′ )H
(
c ,q, s,L,L′)dc

 (5.43)

where

 H
(
c ,q, s,L,L′) =

[
p
(
c ,q |s,L)

p
(
c ,q |s,L′ ) − 1

]
− log

[[
p
(
c ,q |s,L)

p
(
c ,q |s,L′ ) − 1

]
+ 1

]
 

Then, we need to show that there exists a bounded d(s) that ensures the summand of DD in 
(5.43) be nonnegative. To proceed, we expand the summand to
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∫
c

[
G(L′) + d(s)

]
p
(
c ,q

∣∣s,L′ )H
(
c ,q, s,L,L′)dc

= p(s)
[
C(s)−O(L′)

]
p
(
X,q

∣∣s,L′ )H
(
X,q, s,L,L′)+ d(s)

∫
c

p(c ,q|s,L′)H
(
c ,q, s,L,L′)dc (5.44)

We now use the following key theorem from [3]: If f (X, L) is nonnegative and analytic 
for X Î c and L Î W, where c and W are the data space and model space, respectively, then there is 
a L-independent constant K > 0 such that

 
∫
c

f (c ,L)dc ≥ K f (X,L) (5.45)

for any valid model L. (Readers are referred to [3] for a rigorous proof.)
Defi ne f (X, L) = p(X, q|s, L¢) H(X, q, s, L, L¢). Here, f (X, L) is nonnegative and analytic 

because both p(X, q|s, L¢) and H(X, q, s, L, L¢) are nonnegative and analytic (for CDHMM). Using 
(5.45), we have

 
∫
c

p
(
c ,q

∣∣s,L′ )H
(
c ,q, s,L,L′)dc ≥ Kp

(
X, q

∣∣s,L′ )H
(
X,q, s,L,L′) (5.46)

Now we construct nonnegative d(s) as follows:

 d(s) =

⎧⎨
⎩

0 if C(s) ≥ O(L′)
1
K

p(s)
(
O(L′)− C(s)

)
if C(s) < O(L′)

 (5.47)

Then, (5.46) becomes

 d(s)
∫
c

p
(
c ,q

∣∣s,L′ )H
(
c ,q, s,L,L′)dc > −p(s)

[
C(s)− O(L′)

]
p
(
X,q

∣∣s,L′ )H
(
X,q, s,L,L′) 

This proves that the summand of DD , òc[G(L¢) + d(s)] p( c, q|s, L¢) H(X, q, s, L, L¢)dc, is nonnega-
tive for any s (according to (5.44)), and therefore DD ³ 0.

•  •  •  •


