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In this chapter, we describe an effi cient, growth transformation (GT)-based approach to the dis-
criminative parameter estimation problem in classifi er design where each class is characterized by 
an exponential-family distribution discussed in Chapter 1. The next chapter extends the results here 
into the more diffi cult but practically more useful case of hidden Markov models (HMMs).

4.1 EXPONENTIAL-FAMILY MODELS FOR CLASSIFICATION
In this section, we derive the GT formulas for estimating parameters of exponential family distri-
butions. This class of densities covers a large number of contemporary statistical models and is of 
important theoretical and practical interests. The derived formulas “grow” the unifi ed rational-form 
discriminative training criterion O(L) defi ned in Chapter 2. In the next chapter, we will present 
the derivation for the Gaussian mixture density HMM, which is widely used in modern speech 
recognition.

Let us start from the problem of C-class classifi cation. Let the data of each class be i.i.d. 
(independent and identically distributed) that are modeled by an exponential family distribution. 
Although parameter estimation for this problem has a nice closed-form solution under ML train-
ing, it is more complicated under discriminative training. In the latter case, the objective function 
O(L) is diffi cult to optimize directly but because it is a rational function as expressed in (3.2), we 
can construct the auxiliary functions of F and then V based on F (see Section 1.5.5). Optimizing 
V (L; L¢) becomes a relatively easy problem and it leads to the GT formula for all types of discrimi-
native criteria unifi ed by (3.2).

Assume that there are R observation samples xr(r = 1, . . . , R) in the training set and that each 
sample xr is a vector with dimension D. Each sample xr is associated with a reference label (e.g., a 
class index) Sr Î{ci | i = 1, . . . ,C }, where C denotes the total number of classes in the task. Using 
the above notations, the task is considered a C-class classifi cation problem, where each observation 
sample xr is to be classifi ed into one of the C classes.

C H A P T E R  4

Discriminative Learning Algorithm for 
Exponential-Family Distributions
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Note that, denoting by qi the natural parameter vector of the exponential family distribution 
of the ith class, and denoting by L = {qi} the whole model parameter set, p(x|ci) takes the following 
form (as (1.6) in Chapter 1):

 
p(x|ci;L) = p(x|qi) = h(x) · exp

{
qT

i T(x)− A(qi)
}

 (4.1)

4.2 CONSTRUCTION OF AUXILIARY FUNCTIONS
According to Section 3.2.2, the objective function of discriminative training is a rational function. 
Following the background material presented in Section 1.5.5, we can construct the objective func-
tion of

 
O(L) =

G(L)
H(L)

 (4.2)

in the same form of (1.26), where G(L) and H(L) are the nominator and denominator of (3.2). 
Then, the GT-based optimization algorithm constructs the auxiliary function of

 F(L;L′) = G(L)− O(L′)H(L) + D  (4.3)

where D is a quantity independent of the parameter set L, and L¢ denotes the parameter set 
obtained from the immediately previous iteration of the algorithm. The purpose of constructing 
(4.3) is that it is easier to optimize than (4.2). However, (4.2) is still diffi cult to optimize, and we 
desire to introduce another auxiliary function from V (L; L¢) in (4.3). This new function is con-
structed by

 

V(L;L′) =
∫
c

f (c ,L′)log f (c ,L)dc  (4.4)

where the positive, real-valued function f (x, L) > 0 is constructed to satisfy

 F(L;L′) =
∫
c

f (c ,L)dc  (4.5)

Then, we have

xiaohe
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numerator
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log F(L;L′)− log F(L′;L′) = log

F(L;L′)
F(L′;L′)

= log
∫
c

f (c ,L′)
F(L′;L′)

f (c ,L)
f (c ,L′)

dc ≥
∫
c

f (c ,L′)
F(L′;L′)

log
f (c ,L)
f (c ,L′)

dc

=
1

F(L′;L′)

⎡
⎣∫
c

f (c ,L′)log f (c ,L)dc −
∫
c

f (c ,L′)log f (c ,L′)dc

⎤
⎦

=
1

F(L′;L′)
[
V(L;L′)− V(L′;L′)

]

 

(4.6)

The inequality above is attributable to Jensen’s inequality being applied to the concave log 
function. The result of (4.6) states that an increase in the auxiliary function V (L; L¢) guarantees 
an increase in logF (L; L¢). Because logarithm is a monotonically increasing function, this also 
guarantees an increase of F (L; L¢) and hence the original objective function O(L). The technique 
that “transforms” the parameters from L¢ to L so as to increase or “grow” the values of the auxiliary 
functions and hence the value of the original objective function is called the growth-transformation 
(GT) technique. We now apply this GT technique to the exponential-family distribution with the 
unifi ed discriminative optimization criterion formulated in (3.2).

4.3 GT LEARNING FOR EXPONENTIAL-FAMILY 
DISTRIBUTIONS

In this section, we derive the GT formula for general exponential-family distributions. The formula 
“grows” the unifi ed discriminative training criterion O(L). As discussed above, O(L) is diffi cult to 
optimize directly but because it is a rational function as expressed in (3.2), we can construct the aux-
iliary functions of (1) F and then (2) V based on F. Optimizing V (L; L¢) becomes a relatively easier 
problem and it leads to the fi nal GT formula for all types of discriminative criteria unifi ed by (3.2). 
In the next section, we will present the derivation for two specifi c exponential-family distributions 
— multinomial distribution and Gaussian distribution.

In the rational function of

 O(L) =
G(L)
H(L)

  
(4.7)

as the unifi ed form of the discriminative objective function (3.2) for maximum mutual information, 
minimum classifi cation error, and minimum phone error/minimum word error, we have
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G(L) =å

s
p(X, s |L)C(s) and H(L) =å

s
p(X, s |L)  (4.8)

where we use s = s1, . . . , sR to denote the class label (including correct or incorrect labels) for each 
of the R training tokens, respectively, and use X = x1, . . . , xR to denote the observation samples for 
these R training tokens. Note that each observation sample is a feature vector.

For the auxiliary function of

 F(L;L′) = G(L)− O(L′)H(L) + D  (4.9)

we substitute (4.8) into (4.9) to obtain the new auxiliary function

 

F(L;L′) = å
s

p(X, s|L)C(s)− O(L′)å
s

p(X, s|L) + D

= å
s

p(X,s|L)
[
C(s)− O(L′)

]
+ D  (4.10)

The main terms in the auxiliary function F(L;L¢) above can be interpreted as the average deviation 
of the accuracy count.

Because p(s) is the prior probability of s, it is irrelevant for optimizing L. Using p(X,s |L) = 
p(s)· p(X|s, L), we obtain

 

F(L;L′) = å
s

[C(s)− O(L′)]p(s)p(X|s,L) + D

= å
s
å
c

[
G(L′) + d(s)

]
p(c |s,L)  (4.11)

where

 G(L′) = d (c ,X)p(s)
[
C(s)− O(L′)

]
 (4.12)

In (4.10), D = Ssd(s) is a quantity independent of the parameter set L. In (4.12), d( c, X ) is the 
Kronecker delta function for discrete valued observations, and c represents the entire data space where 
X belongs. The summation over this data space is introduced here for accommodating the parameter-
independent constant D; that is, Ss Sc d(s)p(c|s, L) = Ss d(s) = D is a L-independent constant.

In the case where the observation vector is continuous valued, the summation operation 
above will be replaced with integration, and d( c, X ) in (4.12) needs to be a Dirac delta function.

We now proceed to construct the new auxiliary function of (4.4). To achieve this, we fi rst 
identify from (4.5) and (4.11) that

 
f (c , s,L) =

[
G(L′) + d(s)

]
p(c |s,L)
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To ensure that f  (c, s, L) above is positive, d(s) should be selected to be suffi ciently large so 
that G(L¢) + d(s) > 0 (note that p(c|s, L) is nonnegative). This issue will be discussed in greater de-
tails in Section 5.4.

Then, using (4.4), we have

 

V(L;L′) = å
s
å
c

[
G(L′) + d(s)

]
p(c

∣∣s,L′ ) log

⎧⎪⎨
⎪⎩
[
G(L′) + d(s)

]︸ ︷︷ ︸
optimization - indept

p(c |s,L)

⎫⎪⎬
⎪⎭

= å
s
å
c

[
G(L′) + d(s)

]
p(c

∣∣s,L′ ) log p(c
∣∣s,L′ ) + Const.

= å
s

p(X, s|L′)
(
C(s)− O(L′)

)
log p(X

∣∣s,L′ )

+å
s
å
c

d(s)p(c |s,L′) log p(c
∣∣s,L′ ) + Const.

  
(4.13)

The key reason which makes this new auxiliary function (4.13) easier to optimize than that 
in (4.11) is the new logarithm in log p(X  | s, L), which was absent in (4.11). As for the case of ML 
learning case for exponential-family distributions, this enables drastic simplifi cation of the new 
auxiliary function of V (L; L¢), which we outline below.

We fi rst ignore the optimization-independent constant in (4.13), and divide V (L; L¢)  by 
another optimization-independent quantity, p(X|L¢), in order to convert the joint probability p(X, s 
|L¢) to the posterior probability p(s, X |L¢). We then obtain an equivalent auxiliary function of

 

U(L;L′) =

term - I︷ ︸︸ ︷
å

s
p(s

∣∣X,L′ )
(
C(s)− O(L′)

)
log p(X

∣∣s,L′ )

+å
s
å
c

d′(s)p(c
∣∣s,L′ )log p(c |s,L)︸ ︷︷ ︸

term - II  (4.14)

where

 d′(s) = d(s)/p(X
∣∣L′ )  (4.15)

Note that X = X1, ¼, XR is a large aggregate of all training data with R independent tokens. 
For each token Xr, it is independent of each other and it depends only on the rth label. Hence, log 
p (X  | s, L) can be decomposed, enabling simplifi cation of both term-I and term-II in (4.14). We 
now elaborate on the simplifi cation of these two terms.
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term - I = å
s

p(s
∣∣X,L′ )

(
C(s)− O(L′)

) R

å
r=1

log p(xr |sr,L)

= å
s

p(s
∣∣X,L′ )

(
C(s)− O(L′)

) R

å
r=1

sr = ci

C

å
i=1

log p(xr |ci,L)  (4.16)

The simplifi cation process for the second term in (4.14) is below (using the notations s~ = s1, 
. . . , sr -1, sr +1, . . . , sR, c~ = c1, . . . , cr -1, cr +1, . . . , cR):

 

term - II = å
s

dí(s) å
c1,...,cR

p
(
c1,...,cR

∣∣s,L′ ) R

å
r=1

log p(cr |sr,L)

= å
s

d′(s)
R

å
r=1
å
cr

p(cr
∣∣sr,L′ )å̃

c
p
(
c̃
∣∣s̃,L′ ))

︸ ︷︷ ︸
=1

log p(cr |sr,L)

=
R

å
r=1

I

å
i=1

d(r, i)å
cr, t

p(cr
∣∣ci,L′ )log p (cr |ci,L)  (4.17)

where

 
d(r, i) = å

s, sr=ci

d′(s)  (4.18)

Substituting (4.16) and (4.17) into (4.14), and using (4.1), we have:

 

U(L;L′) =å
s

p
(
s
∣∣X,L′ )(C(s)− O(L′)

) R

å
r=1

sr = ci

C

å
i=1

log p(xr |qi )

+
R

å
r=1

C

å
i=1

d(r,i)å
cr,t

p
(
cr
∣∣ci,L′ ) log p(cr |qi )  (4.19)

Because p(. | qi) is an exponential density and therefore its logarithm is a linear function of the 
data, U (L; L¢) becomes ready to be maximized, which we proceed below.

Setting, ¶U(L; L¢)             
¶qi             

= 0, i = 1, . . . , C, we obtain

xiaohe
Comment on Text
should be d'(s)
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0 = å

s
p
(
s
∣∣X,L′ )(C(s)− O(L′)

) R

å
r=1

sr = ci

(
T(xr)− ¶A(qi)

¶qi

)

+
R

å
r=1

d(r, i)å
cr,t

p
(
cr
∣∣ci,L′ )(T(cr)− ¶A(qi)

¶qi

)

 

with the constraints:

 

 

Using

Di =
R

å
r=1

d(r, i)

we obtain the solution that satisfi es

 

¶A(qi)
¶qi

=

å
s

p
(
s
∣∣X,L′ )(C(s)− O(L′)

) R

å
r= 1

sr = ci

T(xr) + Di · Ep(c |q ′
i )
[T(c)]

å
s

p(s|X,L′)
(
C(s)− O(L′)

) R

å
r= 1

sr = ci

1 + Di  (4.20)

If we defi ne

 Dg(i, r) =å
s

p
(
s
∣∣X,L′ )(C(s)− O(L′)

)
d (sr = ci)  (4.21)

Then we can rewrite (4.20) as

 

¶A(qi)
¶qi

=

R

å
r=1

Dg(i, r)T(xr) + Di · Ep(c |q ′
i )
[T(c)]

R

å
r=1

Dg(i,r) + Di

 (4.22)

Based on (4.22), we will present details in deriving the model estimation formulas for two 
important exponential-family distributions in the next section. These are multinomial distribution 

å
cr, t

p
(
cr
∣∣ci,L′ ) = 1

å
cr, t

p
(
cr
∣∣ci,L′ )T(cr) = Ep(c |q ′

i )
[T(c)]
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and Gaussian distributions. The former is commonly used to model discrete distribution and the 
latter is widely used to model continuous random variables. Equation (4.22) is also applicable to all 
other members of the exponential family.

4.4 ESTIMATION FORMULAS FOR TWO 
EXPONENTIAL-FAMILY DISTRIBUTIONS

4.4.1 Multinomial Distribution
In this section we discuss the discriminative training formulas when p(x | qi) is a single-observation 
multinomial distribution. Readers are referred to Section 1.4.3 for a general introduction of multi-
nomial distribution and its properties.

For the single observation multinomial distribution of the ith class, its standard form is

p(x|vi) =
K

Õ
k=1

vx(k)
i,k

where x = [x(1), …, x(K)]T is a K-dimensional observation vector and vi = [ vi,1 , …, vi,K]T is the K-
dimensional parameter vector.

The exponential-family form of the is single observation multinomial distribution

 
p(x |qi ) = h(x) · exp

{
qT

i T(x)− A(qi)
}

 
where 

 T (x) = x̃ = [x(1),...,x(K− 1)]T  (4.23)

with x~ being the observation vector that contains the fi rst K - 1 elements of x. Given the above 
defi nition, according to properties of the multinomial distribution, we have the following

 
Ep(c |q ′

i )
[T(c)] = Ep(c |v ′

i )
[c̃] = ṽ ′

i  (4.24)

where v~i¢= [v ¢i,1, . . . , v ¢i,K - 1]
T is an parameter vector that contains only the fi rst K - 1 parameters.

Substituting (1.16), (4.23), and (4.24) into (4.22), and denote by v~i¢= [v ¢i,1, . . . , v ¢i,K - 1]
T , we 

have

 ṽi =

R

å
r=1

Dg(i, r)x̃r + Di · ṽi
′

R

å
r=1

Dg(i, r) + Di

 (4.25)
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By summing both sides of (4.25) over k = 1, ¼, K - 1, we have

 K−1

å
k=1

vi,k =

R

å
r=1

Dg(i, r)
K−1

å
k=1

xr,k + Di ·
K−1

å
k=1

v′i,k

R

å
r=1

Dg(i, r) + Di

 

from which, we obtain

 

vi,K = 1−
K−1

å
k=1

vi,k

= 1−

R

å
r=1

Dg(i,r)
K−1

å
k=1

xr,k + Di ·
K−1

å
k=1

v′i,k

R

å
r=1

Dg(i,r) + Di

=

R

å
r=1

Dg(i,r)

(
1−

K−1

å
k=1

xr,k

)
+ Di ·

(
1−

K−1

å
k=1

v′i,k

)
R

å
r=1

Dg(i,r) + Di

=

R

å
r=1

Dg(i,r)xr,K + Di · v′i,K

R

å
r=1

Dg(i,r) + Di

 (4.26)

Combining (4.25) and (4.26), we have the GT estimation formula for multinomial distribution:

 

vi =

R

å
r=1

Dg(i,r)xr + Di · v ′
i

R

å
r=1

Dg(i,r) + Di

 

(4.27)

4.4.2 Multivariate Gaussian Distribution
In this section, we will derive and present discriminative training formulas when p(x |qi) is a mul-
tivariate Gaussian distribution. Readers are referred to Section 1.4.3 for a general introduction of 
multivariate Gaussian distribution and its properties.
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For a multivariate Gaussian distribution of the ith class, its standard form is

 

p(x |li ) = N(x |mi,åi) =
1

(2p)
D
2
∣∣∣åi

∣∣∣1
2

exp
{
−1

2
(x− mi)Tå−1

i (x− mi)
}

 (4.28)

and its exponential family form is

 
p(x |qi ) = h(x) · exp

{
qT

i T(x)− A(qi)
}

 

where

 

T(x) =

[
x1

x2

]
=

[
x

Vec
(
xxT)

]
 (4.29)

Given the above defi nition, according to the property of the multivariate Gaussian distribu-
tion, we have

 Ep(c |q ′
i )

[T(c)] = Ep(c |m ′
i ,S′i )

[
x

Vec
(
xxT)

]
=

[
m ′

i

Vec
(
S′i + m ′

i m
′
i

T)
]

 (4.30)

Substituting (1.22), (1.23), (4.29), and (4.30) into (4.22), we fi nally obtain

 

[
mi

Vec
(
mimT

i + Si
)] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R

å
r=1

Dg(i,r)xr + Di · m ′
i

R

å
r=1

Dg(i,r) + Di

R

å
r=1

Dg(i,r)Vec
(

xr xT
r

)
+ Di · Vec

(
S′i + m ′

i m
′
i

T
)

R

å
r=1

Dg(i,r) + Di

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

 

After rearrangement and canceling out the Vec() function at both sides, we can obtain the 
parameter updating formulas as

 mi =

R

å
r=1

Dg(i,r)xr + Di · m ′
i

R

å
r=1

Dg(i,r) + Di

 (4.31)
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 Si =

R

å
r=1

Dg(i,r)xr xT
r + Di ·

[
S′i + m ′

i m
′
i

T
]

R

å
r=1

Dg(i,r) + Di

− mimT
i  (4.32)

Equations (4.27), (4.31), and (4.32) give the discriminative training formula for the multino-
mial distribution and Gaussian distribution. The computation of Dg (i, r) will be presented in greater 
details in Chapter 6, and the issues of setting the constant Di is discussed in Section 5.4.

•  •  •  •



58MC_He_Ch04_v1.indd                                                            Achorn International                                                            06/25/2008  11:11AM


