Leveraging Legacy Code to Deploy Desktop Applications on #\Web

John R. Douceur, Jeremy Elson, Jon Howell, and Jacob R. Lorch
Microsoft Research

Abstract Our vision is to deliver feature-rich, desktop-class ap-

Xax is a browser plugin model that enables developer?"c?‘t'ons on the web. We belleve_ that the fastest and
to leverage existing tools, libraries, and entire program&aSiest way to create such apps is to leverage the ex-
to deliver feature-rich applications on the web. Xax em-iSting code bases of desktop applications and libraries,
ploys a novel combination of mechanisms that collec-tN€reby exploiting the years of design, development, and
tively provide security, OS-independence, performancedebugging effort that have gone into them. This ex-
and support for legacy code. These mechanisms includ§ting code commonly expects to run in an OS pro-
memory-isolated native code execution behind a narro/#€SS and to access OS services. However, actually run-
syscall interface, an abstraction layer that provides a cor"iNd the code in an OS process would defeat the OS-
sistent binary interface across operating systems, sydldependence required by web apps; and it would also
tem services via hooks to existing browser mechanismdMPede code security, because large and complex OS
and lightweight modifications to existing tool chains and System-call (osyscal) interfaces are difficult to secure
code bases. We demonstrate a variety of applications arf@inst privilege-escalation vulnerabilities [15].
libraries from existing code bases, in several languages, There is thus a trade-off betwe@8-independence
produced with various tool chains, running in multiple Security, andlegacy support No existing web-app
browsers on multiple operating systems. With roughlymechanism can provide all three of these properties.
two person_weeks of eﬁort, we ported 3.3 million lines Herein, we show that is pOSSib|e to achieve all thl‘ee, and
of code to Xax, including a PDF viewer, a Python inter- further to achieve native-cogerformance.
preter, a speech synthesizer, and an OpenGL pipeline.  In particular, we propose eliminating the process’s ac-
. cess to the operating system, and instead providing only

1 Introduction a very narrow syscall interface. A sufficiently narrow

Web applications are undergoing a rapid evolution ininterface is easy to implement identically on different
functionality. Whereas they were once merely simpleoperating systems; and it is far easier to secure against
dynamic enhancements to otherwise-static web page#palicious code. However, it may not be obvious that a
modern web appsare driving toward the power of fully process can do much useful work without an operating
functional desktop applications such as email clientssystem to call, and it is even less clear that legacy code
(Gmail, Hotmail, Outlook Web Access) and productiv- could easily be made to work without an OS.
ity apps (Google Docs). Web applications offer two  Surprisingly, we found that with minimal modifica-
significant advantages over desktop apps: security—ition, legacy libraries and applications with large code
that the user’s system is protected from buggy or mabases and rich functionality can indeed be compiled to
licious applications—and OS-independence. Both ofrun on a very simple syscall interface. We demonstrate
these properties are normally provided by a virtual ex-this point by running the GhostScript PDF viewer, the
ecution environment that implements a type-safe laneSpeak speech synthesizer, and an OpenGL demo that
guage, such as JavaScript, Flash, or Silverlight. Howrenders 3D animation. In total, it took roughly two
ever, this mechanism inherently prohibits the use of nonperson-weeks of effort to port 3.3 million lines of code
type-safe legacy code. Since the vast majority of extanto use this simple interface. This existing code was writ-
desktop applications and libraries are not written in aten in several languages and produced with various tool
type-safe language, this enormous code base is currentthains, and it runs in multiple browsers on multiple op-
unavailable to the developers of web applications. erating systems.



We achieved these results wiXax, a browser plu- The next section details the goals of Xax and con-
gin model that supports legacy code in a secure and OSrasts with alternative approaches. Section 3 describes
independent manner, and which further provides nativethe four mechanisms Xax uses to achieve its goals: pico-
code performance as required by feature-rich applicaprocesses, the Platform Abstraction Layer, services via
tions. Xax achieves these properties with four mechabrowser mechanisms, and lightweight code modification.
nisms: Section 4 describes our implementations of Xax in Linux

) ) ) and Windows, as well as our proxy-based browser inte-
e The picoprocessa native-code execution abstrac- gration. Section 5 describes some of our example ap-
tion that is secured via hardware memory isolationjications. Section 6 evaluates the four benefits of Xax
and a very narrow system-call interface, akin t0 ayegcrined in Section 2. Sections 7 and 8 describe related
streamlined hardware virtual machine and future work. Section 9 summarizes and concludes.

e The Platform Abstraction Layer (PAL), which pro- )
vides an OS-independent Application Binary Inter- 2 Goals and Alternatives

face (ABI) to Xax picoprocesses In this section, we detail the goals that must be sat-

e Hooks to existing browser mechanisms to provideiSﬁed to deliver desktop applications on the web, and
applications with system services—such as networkVe consider alternative mechanisms for achieving these
communication, user interface, and local storage—90alSs-
that respect browser security policies

2.1 Xax Design Goals
e Lightweight modifications to existing tool chains As previewed in the Introduction, Xax has four de-

and c_ode bases, for_retargetmg legacy code to thgign goals: security, OS-independence, performance,
Xax picoprocess environment and legacy support. For the first three, our intent is to

The key principle behind Xax is that the browser alreadyMatch the benefits of existing web-app mechanisms, such
contains sufficient functionality to support the necessanfS Javascript and Flash. Xax’s main benefit beyond ex-
system services for running legacy code. Xax providedSting mechanisms is support for legacy code.
this support with its novel combination of four mecha- security — The particular form of security required
nisms and its specific design decisions within each mechfor web applications is protecting the client against mali-
anism. Together, these choices achieve our goal of higheious code. (For the scope of this paper, we ignore other
performance support for legacy desktop code in securdhreats such as cross-site scripting and phishing.) Part of
0OS-independent web applications. what makes web applications attractive is that they are
Xax provides key pieces of a comprehensive solutiorsupposed to run safely without requiring explicit trust
to enable skilled developers to deploy actual desktop apassumptions from the user. This stands in contrast to
plications on the web. Although we have not yet built installed desktop applications, which have nearly unfet-
a large, full-featured application, we have built severaltered access to the client machine, so users make trust as-

moderate-sized applications using a dozen libraries angumptions whenever they install a desktop program from
application components we have ported. a CD orviathe Internet. Web applications are considered
In addition, by leveraging not only existing applica- safe because they execute within a sandbox that sharply
tion code and libraries but also existing development toorestricts the reach of the program.
chains, Xax allows even moderately skilled developers OS-independence —Unlike desktop apps, web ap-
to combine the conventional DOM-manipulation model plications are not tied to a particular operating system,
of web applications with the power of existing non-web- because they do not make direct use of OS services. In-
specific code libraries, arbitrary programming languagesstead, web apps invoke services provided by the browser
and familiar development tools. We demonstrate thisor by a browser plugin, which is responsible for export-
by porting a Python interpreter to Xax and providing ing the same interface and semantics across OS imple-
language bindings to JavaScript DOM functions, aftermentations. Ideally, web apps are also independent of
which we created a social-network visualization app usthe particular browser in which they run; however, some
ing unmodified Python wrappers for the graphviz library. aspects of HTML and the JavaScript environment are not
Finally, we show that the Xax plugin model can ac- implemented consistently among browsers [22], which
tually subsume other browser plugins. We demonstratesomewhat limits this benefit in practice. In addition, a
this with a basic port of the Kaffe Java Virtual Machine particular web app might rely on features of a particu-
(JVM) into Xax. Because Kaffe runs within a Xax pi- lar plugin version, so running the web app might require
coprocess, it does not add to the browser’s trusted coddownloading and installing a new version of the plugin
base, unlike the standard JVM browser plugin. (which entails making a trust assumption).



performance — Simple web apps, such as web pagesbrary (ATL), as well as support for other languages such
with dynamic menus, may not require much performanceas Delphi and Visual Basic. ActiveX controls work only
from their execution environments. However, the perfor-on Windows, and because they have unrestricted OS ac-
mance demands may be significant for feature-rich applicess, they provide no security against malicious code.
cations that provide functionality comparable to desktop Type-safe intermediate-language systemsclude
applications, such as animated 3D rendering. Flash, the Java Virtual Machine (JVM), and Sil-

legacy support —Developing complex, feature-rich verlight. These all provide security via translating a
applications requires an enormous effort. A nearly essertype-safe source language into a type-safe intermediate
tial practice for mitigating this effort is software reuse, language—such as bytecode—that is downloaded to the
which has been a staple of the computer industry sincérowser. The definition of the intermediate language is
the idea was first proposed in 1969 [27]. Despite theOS-independent, and interpreters or JIT compilers ex-
fact that the past decade has seen an increasing amodust for all major browsers. Performance is good be-
of new code written in type-safe languages, the vast maeause of JIT compiling. Collectively, these systems sup-
jority of extant software is not type-safe. Of 311 mil- port a sizeable count of type-safe languages: Flash byte-
lion lines of code in the SourceForge [40] repository, code can be generated from ActionScript and LZX. Java
half are C (29%) and C++ (18%); by contrast, Java, C#bytecode can be generated from Java, Python, Ruby,
and JavaScript combined account for only 17%. LargelavaScript, and Common Lisp. Common Language Run-
fractions of the 86 million lines [21] of Mac OS X, time code, Silverlight 2's intermediate language, can be
200 million lines [1] of Windows Vista, and 283 mil- generated from C#, Visual Basic, Managed C++, and
lion lines [36] of the Debian GNU/Linux distribution a number of uncommon languages. However, none of
are general libraries that provide significant functiotyali these systems can support legacy code written in a non-
to desktop applications; much of this legacy code couldype-safe language, which — as observed above — is the
benefit the development of rich web applications. vast majority of extant code.

2.2 Alternative Mechanisms 2.2.2OS processes _
Xax achieves all four of the above goals. Many exist- Since the lion’s share of legacy code was written to run

ina mechanisms for developina web apps already exis in an OS process and to access OS services, a hatural way
9 ping bp y tto support this code within a web application is to actu-

but each falls short of these goals in at least some "€\lv run it inside an OS process. This approach provides
spects. There are also other yet-undeployed approach s/ b ; PP P

) e performance of native-code execution as well as di-
one could explore; we argue that Xax has advantages .
rect legacy support. However, it leads to two problems
over each of these other approaches.

o ) that could potentially be solved at some cost.
2.2.1 Existing web-app mechanisms First, and most obviously, OS processes are not OS-

There are a number of existing mechanisms for im-independent. However, it is possible to write compatibil-
plementing web applications. This set of mechanismsty layers [47] that that map foreign OS calls to native OS
cannot be totally ordered with respect to our four goalsicalls. Such compatibility layers are notoriously hard to
however, we make an attempt to present them in roughlyvrite, because OS processes require bug-for-bug binary-
increasing order of goal satisfaction. compatible emulation of the OS interface.

JavaScript is an interpreted scripting language with  Second, OS processes provide insufficient safety for
dynamic typing and very late binding. It is included in web apps, since the interface to the OS is powerful
all major web browsers, so it has the exclusive benefienough for the process to harm the client machine. How-
of not requiring a plugin. It provides language-based seever, it is possible to write confinement layers [16, 17,
curity and OS-independence. Because it is interpreted34] that restrict the allowable system calls made by a pro-
it does not have very good performance, and the lateeess. Such confinement layers are also quite challenging
binding dynamic semantics of the language make it diffi-to create, not because the mechanism is particularly diffi-
cult to JIT and therefore slow. Conversion tools providecult, but because of the subtleties in defining appropriate
limited legacy support for other type-safe languages, inpolicies that are sufficiently liberal to permit applicatio
cluding Python, Java, C#, and Pascal, but not for anyfunctionality while sufficiently restrictive to prevent-se
non-type-safe language. curity breaches [15].

ActiveX controls are means for packaging client-side  More broadly, we believe that trying to pare away dan-
code that can be invoked from a web page. They executgerous entry points and combinations of calling param-
natively, so they provide high performance. They haveeters from a wide and complex interface is fraught with
some legacy support for non-type-safe code, particularherror. As described below, Xax takes the opposite tack by
for C++ code that is compiled with the Microsoft Foun- starting with no interface and then adding the minimum
dation Class (MFC) library or the Active Template Li- necessary to provide useful functionality.



2.2.3 Hardware virtual machines duces the size of VM images, since they contain little
Another alternative is to run a legacy application, more than application code. Moreover, reducing the size
along with the OS for which it was written, inside a of the VMM reduces the size of the trusted code base,
hardware virtual machine (VM). Modern VM technol- thereby improving security. Such extreme paravirtualiza-
ogy provides impressive performance that rivals nativetion is one way to view the Xax picoprocess architecture,
execution speed. It achieves strong security against mavhich we describe next.
licious code through a combination of isolation via hard- .
ware and communication via a virtual network interface.3 Mechanisms
A VM that runs on top of multiple host OSes can provide  Section 2.1 itemized four design goals, and the present
OS-independence, and a VM that executes multiple guesfection describes the four mechanisms by which Xax
OSes can provide full legacy support. Tahoma containgichieves these goals. Despite the agreement in num-
web browsers using VMs [8]. However, use of a VM for ber, there is not a one-to-one correspondence between the
executing web applications leads to three concerns.  goals and the mechanisms. Security is provided by pico-

First, the virtual machine monitor (VMM), which pro- processes and browser-based services; OS-independence
vides the hardware emulation environment for a VM, isis provided by picoprocesses and the Platform Abstrac-
part of the trusted code base. Because VMMs are largdéon Layer; performance is provided by picoprocesses;
and complex, they contain significant potential for secu-and legacy support is provided by lightweight code mod-
rity vulnerabilities [32]. ification.

Second, _thual machine images are very Iar_ge, pe3,1 Picoprocesses
cause they include not only the application and libraries
but also a full OS. For instance, we measured that a The core abstraction in Xax is thgcoprocess As
sparsely configured Debian system fetches over 25 MBlescribed in the previous section, a picoprocess can be
of pages merely to boot. Given typical wide-area con-thought of as a stripped-down virtual machine with-
nection speeds, VM images can take hours to downloacPut emulated physical devices, MMU, or CPU kernel
even with optimizations [23, 5, 39]. It is plausible that mode. Alternatively, a picoprocess can be thought of
sophisticated caching and prefetching strategies coul@s @ highly restricted OS process that is prevented from
mitigate some of this download time. In addition, the making kernel calls. In either view, a picoprocess is
techniques we use to port apps to X48.4) could simi- @ single hardware-memory-isolated address space with
larly be applied to reducing VM image sizes. strictly user-mode CPU execution and a very narrow in-

Third, VM technology is challenging to implement, f[erfgce to the world outside the picoprocess, as illusirate
which makes it difficult to extend to other platforms, n Figure 1.
such as mobile devices. A VMM must perform accu- Picoprocesses are created and mediated by a browser
rate emulation of kernel-mode execution, a full MMU, plugin called theXax Monitor. Like a virtual machine
addressable and programmable devices, and the convgronitor (in the VM analogy) or an OS kernel (in the
luted addressing modes employed during OS boot. Thi®S process analogy), the Xax Monitor is part of the
complexity is so challenging that only one fully virtual- browser’s trusted code base, so it is important to keep
izing VM product is currently able to run multiple guest it small. The picoprocess communicates by makiag-
OSes and to run on multiple host OSes [45]. calls (analogous to syscalls) to the Xax Monitor.

The complexity of VM technology can be reduced Because the Xax Monitor uses OS services to create
by paravirtualization [46], which entails making small and manage picoprocesses, it is necessarily OS-specific.
changes to the guest code to reduce the emulation buMoreover, to ease the implementation burden and help
den on the VM system. Such changes may obviate somkeep the Xax Monitor simple, we do not enforce a stan-
of the more cumbersome addressing modes or eliminatdard xaxcall interface. The specific set of xaxcalls, as
the need for binary rewriting to mask unvirtualizable ma-well as the xaxcall invocation mechanism, may vary de-
chine features. pending on the underlying OS platform. We describe

We observe that the paravirtualization concept can béome differences below in sections on our Ling#.Q)
taken to an extreme. Rather than merely modifying theand Windows §4.3) implementations. In terms of func-
guest OS, one can eliminate the guest OS along witftionality, xaxcalls provide means for memory allocation
some of the guest libraries, and then make changes to trand deallocation, raw communication with the browser,
guest application that enable it to run on a dramaticallyraw communication with the origin server, access to
less-functional substrate. Such an approach substgntiallURL query parameters, and picoprocess exit.
reduces the size and complexity of the VMM, since it The simplicity of the xaxcall interface makes it very
need not emulate physical devices, the MMU, or CPUeasy to implement on commodity operating systems,
kernel mode. In addition, this approach dramatically re-which assists OS-independence. This simplicity also



‘" C----ZZZZh We herewith present the entire Xax ABI. For memory

|
h [ application | | | allocation and deallocation, the ABI includes the follow-
|| — Il ing two calls:

e | libraries | | rpicoprocess

- libc | 1| isolation voi d *xabi _al | oc(

[ © . -

: : o | interpose | : : boundary void *start 3 | ong | en); -

0 i [ Map | en zero-filled bytes of picoprocess memory,

| | | libxax | u starting atst ar t if specified. Return the address.

: '————481 Il int xabi _free(void *start);

' Tooot] | PAL (Platform [ - . L :

: 00 : Abstraction Layer) : : Free the memory region beglnnlng_sattart , which

| [plock] | —— —— | |browser must be an address returned fraimbi _al | oc. Re-
G __ call o ___] turn 0 for success o+ 1 for error.

| Xax Monitor ke As described in the next section, the picoprocess appears

to the browser as a web server, and communication is
Figure 1: The Xax architecture. Everything inside the pico- typically over HTTP. When the browser opens a connec-
process §3.1) isolation boundary is untrusted. The Xax Mon- tion to the picoprocess, this connection can be received
itor mediates access to the outside world, employing exsti by the following call:
browser mechanismg§3.3) to implement xaxcalls from the pi-
coprocess. The PALSB.2) provides a consistent Application i nt xabi _accept ();
Binary Interface (ABI) across OS platforms. Above the ABI,  Return a channel identifier, analogous to a Unix file
the specific structure can vary; the depicted structure ésiom descriptor or a Windows handle, connected to an in-
have found useful when porting cod§S(4). coming connection from the browser. Returi if no

incoming connection is ready.

aids ;ecunty, smcef itis much (_aasu?r to reazon_ abi)ut th?he picoprocess can also initiate connection to the server
security aspects of a narrow interface with simple Seqy, 5, provided the picoprocess application. To initiate a

mantics than_ a wide interface with C(_)mplex Se_mam'(_:sconnection to the home server, the picoprocess uses the
Because a picoprocess executes native code, it prov'd?éllowing call:

good performance. However, it is not necessarily clear
that this architecture supports legacy code that was writi nt  xabi _open_ur | (
ten with the expectation of running in an OS process with  const char *net hod,

access to rich OS services; we address this poifiBin const char *url);
below. Return a channel identifier connected to the given
3.2 Platform Abstraction Layer URL, according to the specifigtet hod, which may

be “get”, “put”, or “connect”. Fetch and cache the
URL according to the Same Origin Policy (SOP) rules
for the domain that provided the Xax picoprocess.

As mentioned in the previous section, the xaxcall in-
terface may vary slightly across OS platforms. For OS-
independence, Xax defines a consist&pplication Bi-
g?/%g;gﬁ;egﬁg2Iglr32%2‘;“;38;?;gr?i?eecrtlzirr;g C;g'thThe operations that can be performed on an open channel
x86 ABI is different from the PowerPC ABI. Sreread, wri te,pol |, andcl ose:

The ABI is exported by an OS-specifielatform  jnt xabi _read(

Abstraction Layer(PAL), which translates the OS- int chnl, char xbuf, int len);
independent ABI into the OS-specific xaxcalls of the Xaxj nt xabi _writ e(

Monitor. The PAL is included with the OS-specific Xax int chnl, char xbuf, int len);
implementation; everything above the ABI is native code  Transfer data on an open channel. Return the number
delivered from an origin server. The PAL runs inside the bytes transferred) if the channel is not ready, or
Xax picoprocess, so its code is not trusted. Security iS _q jf the channel is closed or failed.

provided by the xaxcall interface (dashed border in Fig-

ure 1); the PAL merely provides ABI consistency acrosst ypedef struct {

host operating systems (wiggly line in Figure 1). i nt channel ;

All xaxcalls are nonblocking except f@ol | , which short events; /=* requested */
can optionally yield until I/O is ready. This provides suf- short revents; /=* returned =*/
ficient functionality for user-level threading. } xabi _poll _fd;



int xabi _poll( 3.3 Services via browser mechanisms

xabi _pol | _fd *pfds, int npfds, A key Xax principle is that there is sufficient func-
bool bl ock); tionality within the browser to support the system ser-
Indicate the ready status of a set of channels by updagices needed by web applications. In fact, we assert not
ingrevents. If bl ock is true, do not return until o)y that it is sufficient for the Xax Monitor to employ

at least one requested event is ready, thereby allowghe prowser’s functionality, but also that doing so im-
ing the picoprocess to yield the processor. Return theygyes the system’s security. Because Xax reuses the ex-
number of events ready; do not returif bl ock is sting security policy—and much of the mechanism—in

true. the browser, Xax introduces no new security vulnerabil-
int xabi _close(int chnl); ities, modulo implementation bugs in the Xax Monitor’s

Close an open channel. Retuirfor success or-1  (Small) trusted code base.

for error. The Xax Monitor has the job of providing the ser-

) . vices indicated by the xaxcall interface. Some of these
During picoprocess boot, the loadg4(4) needs to know  seryices are straightforward for the Xax Monitor to per-
the URL from which to fetch the application image. We form directly, such as memory allocation/deallocation,
could have required a custom loader for each applicationyccess to URL query parameters, and picoprocess exit.
with the URL baked into the loader’s image. Instead, WeThe Xax Monitor also provides a communication path
wrote a general loader that reads the application URLig the browser, via which the Xax picoprocess appears
from the query parameters of the URL that launched theys 5 web server. This communication path enables the
picoprocess. The following call, which in normally used x5y application to use ead andwr i t e calls to serve
only by the loader, provides access to these parameter§tTp to the browser. From the browser’s perspective,
(Note that there is no corresponding xaxcall, the paramipese HTTP responses appear to come from the remote
eters are written into the PAL during picoprocess initial- garver that supplied the Xax app. It is clear that this ap-

ization.) proach is secure, since the Xax application is unable to
const char *+xabi _args(): do anything that the remote server could not have done
Return a pointer to a NULL-terminated list of pointers PY Sérving content directly over the Internet.
to arguments specified at instantiation. Using the picoprocess-to-browser communication

path, the Xax application can employ JavaScript code
Lastly, the ABI provides a call to exit the picoprocessin the browser to perform functions on its behalf, such
when it is finished: as user interface operations, DOM manipulation, and ac-
voi d xabi _exit(): cess to browser cookigs. In our applications, we h_ave

applied a common design pattern: The Xax app provides

Although the PAL runs inside the picoprocess, itis notan HTML page to the browser, and this page contains

part of the application. More pointedly, it is not deliv- JavaScript stubs which translate messages from the pico-
ered with the OS-independent application code. Insteadsrocess into JavaScript function invocations.
the appropriate OS-specific PAL remains resident on the |t would be possible but awkward to use JavaScript for
client machine, along with the Xax Monitor and the web network communication. To pass through JavaScript, an
browser, whose implementations are also OS-specificapplication or library binary from a remote server would
When a Xax application is delivered to the client, the apphave to be uuencoded, encapsulated in JSON, transferred
and the PAL are loaded into the picoprocess and linkedja HTTP, de-encapsulated, and decoded. To simplify
via a simple dynamic-linking mechanism: The ABI de- this process, we provide the ABI calhbi _open_ur |
fines a table of function pointers and the calling conven+g allow direct communication between a Xax picopro-
tion for the functions. For x86 architectures, this calling cess and its origin server. Both our Linux and Windows

conventionisdecl ; for the PowerPC, itis the one stan- xax Monitors provide corresponding xaxcalls that im-
dard calling convention; and, for other architectures, noplement the primitives efficiently.

Xax ABI has yet been defined. . . .

We have found it helpful to create a simple shim Ii- 3.4 Lightweight code modification
brary calledl i bxax that an application may statically =~ One of our most surprising findings is how little effort
link. i bxax exports a set of symbolxébi _r ead, it takes to port a legacy application, library, or tool chain
xabi _open_url, etc.) that obey the function linkage to the minimalist Xax ABI. This is surprising because
convention of the developer’s tool chain. The shim con-this legacy code was written to run atop an operating sys-
verts each of these calls to the corresponding ABI call intem, and it was naa& priori obvious that we could elim-
the PAL. This shim thus provides a standard Applicationinate the OS and still enable the legacy code to perform
Programming Interface (API) to Xax applications. its main function. For instance, to enable development of



the app described i§6.2, we ported the graphviz library to the RAM disk, or to somewhere else, such as a file
and the Python interpreter to Xax. Usisgjr ace, we  downloaded from the origin server. For Python/graphviz,
saw that a quick test application makes 2725 syscalls (3%e use internal emulation to satisfy 1409 syscalls (14
unique). Porting this code to Xax would seem to requireunique), 943 of which fail obliviously.
an enormous emulation of OS functionality. However, The fifth and final step is to provide real backing func-
using our lightweight modifications, we ported this mil- tionality for the remaining system calls via the Xax ABI.
lion lines of code in just a few days. For Python/graphviz, most of the remaining syscalls are
Although the particular modifications required are for user input and display output, which we route to Ul
application-dependent, they follow a design pattern thatin the browser. We provide this functionality for the
covers five common aspects: disabling irrelevant depenremaining 137 syscalls (11 unique). Specifically, we
dencies, restricting application interface usage, applyi implementset sockopt, | i st en, accept, bi nd,
failure-oblivious computing techniques, internally emu-r ead, wi t e, brk, cl ose, mmap2, ol d_mmap, and
lating syscall functionality, and (only when necessary)nunmap.
providing real syscall functionality via xaxcalls. The first three steps are application-specific, but for
The first step is to use compiler flags to disablethe final two steps, we found much of the syscall support
dependencies on irrelevant components. Not all li-developed for one app to be readily reusable for other
braries and code components are necessary for use withipps. For example, we originally wrote the internally
the web-application framework, and removing them re-emulated tar-based file system to support eSpeak, and
duces the download size of the web app and also rewe later reused it to support Python. Similarly, the back-
duces the total amount of code that needs to be portedng functionality for thenmap functions and networking
For Python/graphviz, by disabling components such asunctions (i st en, accept, bi nd, ...) is used by all
pango and pthreads, we eliminated 699 syscalls (1&f our example applications.
unique). For any given application, once the needed modifica-
The second step is to restrict the interfaces that the agtions are understood, the changes become mechanical.
plication uses. For instance, an app might handle 1/OThus, it is fairly straightforward for a developer to main-
either via named files or viat di n/st dout , and the tain both a desktop version and a Xax version of an app,
latter may require less support from the system. Dependdsing a configure flag to specify the build target. This is
ing on the app, restricting the interface is done in var-already a common practice for a variety of applications
ious ways, such as by setting command-line argumenttghat compile against Linux and BSD and Win32 syscall
or environment variables. For Python/graphviz, we usednterfaces.
an entry-point parameter to change the output method )
from “xlib” to “svg”, which eliminated 367 syscalls (21 4 Implementation

unique). o _ o In this section, we describe the implementations of
The third step is to identify which of the application’s xax on Linux and Windows, as well as our proxy-based
remaining system calls can be handled trivially. Forprowser integration.
example, we can often return error codes indicating  Ajthough they have some significant differences, our
failure, in a manner similar to failure-oblivious com- {0 implementations of Xax share much common struc-
puting [35]. For Python/graphviz, it was sufficient yre. The main aspect in which they differ is in the
to simply reject 125 syscalls (11 unique). Specif-yerne| support for picoprocess isolation and communi-
ically, we obviate getui d32, rt.sigaction, caion, which we will discuss after first describing the

fstat 64, rt_sigprocmask, ioctl, unane, common aspects.
get ti meof day, connect, tine, fcntl 64, and )
socket . 4.1 Monitor, boot block, and PAL

The fourth step is to emulate syscall functionality ~The Xax Monitor is a user-mode process that creates,
within the syscall interpose layer (see Figure 1). For in-isolates, and manages each picoprocg3dlj, and that
stance, Python/graphviz reads Python library files from grovides the functionality of xaxcall§3.3). A picopro-
file system at runtime. We package these library files agess is realized as a user-level OS process, thus leverag-
atar ball, and we emulate a subset of file-system calls usng the hardware memory isolation that the OS already
ing libtar to access the libraries. The tar ball is read-pnlyenforces on its processes. Before creating a new picopro-
which is all Python/graphviz requires. For some of ourcess, the Xax Monitor first allocates a region of shared
other ported applications, we also provide read/write acmemory, which will serve as a communication conduit
cess to temporary files by creating a RAM disk in the in-between the picoprocess and the Monitor. Then, the pi-
terpose layer. Code in the interpose layer looks at the fileoprocess is created as a child process of the Xax Moni-
path to determine whether to direct calls to the tar balltor process.



This child process begins by executing an OS-specifigprocess. On entry to a syscall, the Xax Monitor normally
boot block which performs three steps. First, it maps replaces whatever system call the child process requested
the shared memory region into the child process’s adwith a harmless system call (specificalgjet pi d) be-
dress space, thereby completing the communication corfere releasing control to the kernel. This prevents the
duit. Second, it makes an OS-specific kernel call thatchild process from passing a syscall to the OS.
permanently revokes the child process’s ability to make Syscalls are also legitimately used by the PAL to sig-
subsequent kernel calls, thereby completing the isolatiomal a xaxcall. Thus, whept r ace notifies the Xax
Third, it passes execution to the OS-specific PAL, whichMmonitor of an entry to a syscall, the Monitor checks
in turn loads and passes execution to the Xax applicationyhether the shared memory contains a legitimate xax-

Note that the boot block is part of the TCB, even call identifier and arguments. If it does, the Xax Moni-
though it executes inside the child process. The childor performs the operation and returns the result, as de-
process does not truly become a picoprocess until aftescribed above. If the xaxcall is a memory-management
the boot block has executed. At that point, the child pro-operation &l | oc or f r ee), it has to be handled spe-
cess has no means to de-isolate itself, since this would resially, because Linux does not provide a mechanism for
quire a kernel call but the picoprocess is prevented froma process to allocate memory on behalf of another pro-
making kernel calls. cess. So, in this case, the Xax Monitor does not over-

After transferring control to the Xax application, the write the syscall witlget pi d. Instead, it overwrites the
PAL (§3.2) has the job of implementing the Xax ABI syscall withmmap and a set of appropriate arguments.
by making appropriate xaxcalls to the Xax Monitor. To Since the return from the syscall is also intercepted by
make a xaxcall, the PAL writes the xaxcall identifier and pt r ace, the Xax Monitor has an opportunity to write a
arguments into the shared memory region, then traps teeturn value for thal | oc xaxcall into the shared mem-
the kernel. In an OS-specific manner (described belowry, based on the return value from timeap syscall.
the kernel notifies the Xax Monitor of the call. The Mon-  Use of an existing kernel facilitypt r ace) en-
itor then reads the shared memory, performs the indiables our Linux implementation to be deployed without
cated operation, writes the result to the shared memorkernel-module installation or root privilege. However, it
and returns control to the picoprocess. entails a performance hit, because every xaxcall requires

Although the Xax Monitor has different implemen- three syscalls from the Xax Monitor: one to swap out the
tations on different operating systems, it handles mossyscall withget pi d or mmap, a second to enter the ker-
xaxcalls in more-or-less the same way irrespective ofel, and a third to resume the picoprocess. More impor-
OS. Theal | oc andfr ee xaxcalls are exceptions to tantly, if the Xax Monitor fails and exits without proper
this rule, so their differentimplementations are desatibe signal handling, the child process may continue to run
in the following two sections. Foaccept, the Xax  without having its syscalls intercepted [34]. This failure
Monitor maintains a queue of connection requests frontondition could turn the picoprocess back into a regular
the browser, and each call dequeues the next reque$dS process, which would violate security.

Theopen_ur | xaxcall makes an HTTP connection to  These performance and security problems could be
a remote resource; the returned channel identifier cormitigated by using a custom kernel module instead of
responds to either a socket handle or a file handle, degpt r ace. In the future, we intend to employ this ap-
pending on whether the requested data is cached. Thsroach, and we have already done so in our Windows
I/O callsread, wite,poll, andcl ose are imple-  implementation.

mented by reading, writing, polling, and closing OS file .
descriptoys on sogkets an% fﬁes. 'Iqé‘oel t xaxcal? sim- 4.3 Windows kernel support

ply terminates the child process. In our Windows implementation, when the child pro-
42 L K | ¢ cess’s boot block makes a kernel call to establish an in-

) INUX Kernel suppor terposition on all subsequent syscalls, it makes this call

Our Linux implementation involves no custom ker- to a custom kernel modulXaxDrv. Because every Win-
nel code. Instead, it makes use of the Linux kernel'sdows thread has its own pointer to a table of system calll
pt r ace facility, which enables a process to observe anchandlers, XaxDrv is able to isolate a picoprocess by re-
control the execution of another process. placing the handler table for that process’s thread. The

As described above, the boot block makes a kernel calteplacement table converts every user-mode syscall into
to revoke the child process’s ability to make subsequenan inter-process call (IPC) to the user-space Xax Moni-
kernel calls. In our Linux implementation, this is done tor. For a syscall originating from kernel mode (e.g., for
by callingpt r ace( TRACE_ME) , which causes the ker- paging), XaxDrv passes the call through to the original
nel to intercept the entry and exit of every subsequenhandler, preserving the dispatcher’s stack frame for the
syscall, transferring control to the Xax Monitor parent callee’s inspection.



When the Xax Monitor receives an IPC, it reads cess, and allows each picoprocess to contact its origin
the xaxcall identifier and arguments from the sharedserver viaxax_open_ur| . This contact employs the
memory and performs the operation. Unlike the same mechanism that fetches ordinary URLs, and thus
Linux case, no special handling is required for obeys the SOP.
memory-management operations, because Windowg
Nt MapVi ewOY Sect i on allows the Monitor to map Examples
memory on behalf of its child process. This section highlights several features of Xax by way

Although XaxDrv has to be ported to each version of of brief presentations of some application examples.

Windows on which it runs, the changes are minimal, in-5 1 Headline Reader and 3D Demo
volving two constant scalars and a constant array: (1) ) )
The only connection between a Xax picoprocess and

the offset in the kernel thread block for the pointer to the ’ . . .
syscall handler table, (2) the count of system calls, and€ Prowser is an HTTP channel, which might seem in-

(3) for each system call, the total parameter byte Cc)um$u1‘ficient to deliver the rich content that can be provided
This information is readily available from the kernel de- PY Other plugins. However, we present two applications
bugger in the Windows Driver Kit [28]. We have ported that show this channel to be sufficient.

XaxDrv to Windows XP, Windows Vista, and Windows ~ First. the Headline Reader app performs text-to-
Server 2008. speech conversion. We ported the 25K-line eSpeak

speech synthesizer to Xax and invoke it with a small

followed the common approach [25, 38] of patching ev-WraPPer app we wrote. The app produces .WAV audio
ery entry in the standard system-call table. However, Iv”_cllps, which are transferred to the browser via the HTTP

crosoft discourages this practice because it transpgrentfnannel and then played using the browser's standard au-

changes the behavior of every process in the system. Fuflio helper. )
thermore, even if the interposed handlers were to prop- Second, the 3D Demo performs real-time 3D render-

erly fall through to the original handlers, they would still N9 We ported the 684K-line Mesa OpenGL library to
add overhead to every system call. Xax. It includes a demo which draws480 x400-pixel

3D scene; we modified it to animate. We express the

4.4 Loaders output of OpenGL as a series of PNG files, which are

The Linux toolchain emits standard statically-linked sequentially transferred to the browser periodically and
Elf binaries. These Xax binaries are loaded by a smalinserted into an HTML DIV element for display. This
el f Loader . This loader reads the target binary, parsesapproach is performance-limited by the time spent en-
it to learn where to map its program regions, and looks upgzoding PNG files; the Xax mesa demo renders 8.8 frames
two symbols: a global symbol where the binary’s copy per second on a machine where native OpenGL renders
of | i bxax expects to find a pointer to the PAL's dis- the same scene at 36 frames per second.
patch table, and the address ofteéar t symbol. Then 52 Social Network Visualizer

el f Loader maps the program, writes the dispatch ta- i ) e . .
ble location into the pointer, and jumps st ar t . The lightweight code modifications described in Sec-

The Windows toolchain emits statically-linkedEXE tion 3.4 are not very time-consuming, but they do require
binaries in Windows' native PE-COEE format. Our a fair degree of sophistication from the developer porting

peLoader performs the corresponding tasks to mapthe code. However, we present an application that shows
and launch PE executables how Xax enables developers with no special skill to cre-

. ) ate new and interesting apps.

4.5 Browser integration We separately ported a Python interpreter and the
Recall 3.3) that the Xax application appears to the graphviz graph-layout library to Xax. We also wrote
browser as part of the origin server that just happens téanguage bindings between Python and the DOM-
handle HTTP requests very quickly; this ensures that thenanipulation functions in JavaScript, which allows
picoprocess is governed by the Same-Origin Policy [20]Python code to directly manipulate the DOM. Because
just as is the origin server. there are Python wrappers for graphviz, it is possible for
Our implementation integrates Xax into the browserPython code to call the powerful graph visualization rou-

via an HTTP proxy. This approach is expedient, and ondines in this library.

implementation serves all makes of browser. The proxy Another developer, who had no familiarity with the
passes most HTTP requests transparently to the specifigntocess of porting code to Xax, then wrote a web app
host. However, if the URL's path component begins within Python for visualizing a social network, specifically
| xax/ , the proxy interposes on the request to directa network of actors from the Internet Movie DataBase
the request to an existing picoprocess or to create a ne@MDB), akin to “six degrees of Kevin Bacon”. The
one. The proxy is integrated with the Xax Monitor pro- app’s web page provides a text box for entering an ac-

An alternative implementation of XaxDrv could have



tor's name. The client queries a back-end service to enu-| Environment tool| compute  syscall allog

merate the movies featuring that actor, as well as lists of shal  close l6M8
other actors in each movie. The client-side web app uses| __ : @ (b) (©)
graphviz to plot and present the network of actors and | Linuxnative  gcc | 5,930,000 430 27,120

Linux Xax gcc | 5,970,000 69,400 202,60

mt;zlles- bled the devel | he ad q XP native VS | 4,540,000 1,126 31,39
ax enabled the developer to leverage the advance XP Xax gcec | 6,170,000 16,880 235,30

non-type-safe legacy code base of grahpviz, which was | vjsta native VS | 4,580,000 1,316 40,90
developed over more than a decade. It also enabled this| vjista Xax gce | 6,490,000 59,900 612,00
developer to use his knowledge of Python to write an
app without needing to learn a new language, such a$able 1:Microbenchmarks§6.1). Units are machine cycles,
JavaScript. None of this required the developer to learri/(2.8 x 10°) sec; maxZ=6.6%.

how to port code to Xax. The tool and library were ported

once, and they are now usable by non-experts.

5.3 GhostScript and Kaffe SHA-1 hash of H.G. WellsThe War of the WorldsXax

) .. . performs comparably to the Linux native host. The Win-
The fact that Xax is yet another browser plugin might yq,5 native binary was compiled with a different com-

give one cause for concern. Even though Xax provide%”er (Visual Studio vs. gcc); we believe this explains the

bgnefits unavailable in any e>_<isting plugin,.q user mig_htimproved performance of the Windows native cases.
still be bothered by having to install an additional plugin The benefits of native execution led us to accept over-

in the browser. However, we present two examples tha . . e
. eads associated with hardware context switching; how-
show how the Xax plugin model can actually subsume . . : . :
. ever, our simple uninvasive user-level implementations
other browser plugins.

First, we ported the GhostScript PDF viewer to Xax. lead to quite high overheads. Table 1(b) reports the cost

PDF viewers are currently available as browser plu insOf anullxaxcal | compared with a null native system
to enable users to view )IgDF documents on wgb gitesba”; In each case, we invold ose(- 1) Table 1(c)
T X L reports the cost of allocating an empty 16MB memory
Xax enables PDF viewing functionality without the need .
) . . region. The Xax overhead runs 7-16.1
for a special-purpose plugin. Moreover, by running the Despite high . head | licati
PDF viewer inside a secure Xax picoprocess, we protect espite nighxaxcal | -overhead, real applications

the browser from the dozens of vulnerabilities that have.Dencorm quite well because applicqtions_ use 1/O spar-
been discovered in PDF plugins [32]. ingly. Two macrobenchmarks quantify this observation.

Second, we performed a basic port of the Kaffe JaveFirSt' we wrote a Mandelbrot Set viewer that draws 300
Virtual Machine (JVM) into Xax. As described in Sec- distinct 400<400-pixel frames as it zooms into the Set

tion 2.2.1, JVM is an alternative mechanism for writ- (Table 2(a)). We chose this application for two reasons.

ing web applications, albeit one that does not provideF'rSt’ it involves both intensive computation and frequent

legacy support for non-type-safe code. Although Wel/|O.|Second, Itis sn:\_ll enoutgh to relmplem_entlm mull'q-
have not yet completed our port of the Qt implemen—p € languages, enabiing us 1o compare a singie applica-

tation of Kaffe's Abstract Windowing Toolkit, the core tion across multiple extension mechanisms. The Mandel-

Java execution engine is working and able to perforn{j&m benchmark ran at roughly the same speed under both

Ul functions via DOM manipulation. As with the PDF _md_ows and Linux, _under both Xa)f and using native
; eb|nar|es. For comparison, we also tried two other com-

mon browser extension languages: Java and JavaScript.
The benchmark ran 30% faster using Sun Java 1.6r7 un-
der Windows XP. This difference arises from the time
6 Evaluation taken encoding PNG images in the C implementations;
, to validate this hypothesis, we removed the PNG step,
Here we evaluate Xax’s performance, legacy support ; .
0S-independence, and security. and four,1d the C |rr.1pleme.ntat|on.as fast as Jav_a. Google
Chrome’s JavaScript engine (build 2200) required more
6.1 Performance than an hour. We gave up on Internet Explorer 7 and
To evaluate performance, we run microbenchmarkdgirefox 3's JavaScript engines after waiting ten minutes
and macrobenchmarks to measure CPU- and I/O-bountdr the first two frames.
performance. All measurements are on a 2.8GHz Intel Second, we compare the performance of rendering and
Pentium 4. displaying a one-page Postscript documentin Xax and on
Xax’s use of native CPU execution, adopted to achievehe native host, using Ghostscript 8.62 as the underlying
legacy support, also leads to native CPU performanceaendering engine in all cases (Table 2(b)). Ghostscript
Our first microbenchmark (Table 1(a)) computes theis a rich application that exercises CPU, allocation, and

OO O

protect the browser from vulnerabilities in the JVM im-
plementation [4, 9, 10, 37].



Environment | Mandelbrot  Ghostscripf e, L § _Lorem e -Moske rerex__CIDIR

300 frames 1 page Vourlourrent time: S O
(a) (b)

Linux native 169s 840ms

Linux Xax 170s 541ms

Win XP native 188s 835ms

Win XP Xax 177s 738ms

Win XP Java 138s —

JavaScript 4,870s —

Table 2:Macrobenchmarks.

I/0. The native benchmarks incur an additional overhead
of process launch; this test shows only that the Xax per-
formance is reasonable.

6.2 Legacy Support

To evaluate legacy support, we built Xax applica- ‘ 2
tions that use 15 libraries totaling 3.3 million lines of =
code (LoC) in four languages (Table 3). Only mini- . () (d)
mal changes were needed to compile the libraries. Most [& e w :
changes were configure flags to specify different library |jxpes, vercedes “‘“"SWFQ

Barrister, Susan
Brothers (1977)

Edt_View Hitory Bookmaks Took Heb

i

Applebee, Bec
Beattie, Tim
Fontaine, Lucy
Graham, Johanna

dependencies and to emit a static library as output. Bellin, Thomas

6.3 OS-Independence s Aor

To evaluate OS-independence, we ran all of the above
applications on our Linux 2.6, Windows XP, Windows
Vista, and Windows Server 2008 Xax hosts. Figure 2(a)
is a Linux-toolchain program running in Firefox on
a Linux-PowerPC host. Figure 2(b) is a Windows- Flawkan Hascen
toolchain program running in Firefox on Linux-x86. Fig- Uting, Maisey
ure 2(c) is a Linux-toolchain program running in Firefox
on Windows XP. Figure 2(d) is a Linux-toolchain pro-
gram running in Internet Explorer on Windows Vista.
Figure 2(e) is a Linux-toolchain program running in Fire- (€)
fox on Linux-x86.

6.4 Security
We roughly compare the strength of different isola- Ul stack with minimal TCB growth. By analogy, note
tion mechanisms by the count of lines of code in theirthat our PDF viewer isolates a 600K-line component that
TCBs [6]. The Xax picoprocess TCB is less than 5,000is otherwise commonly installed in the TCB.
lines (See Table 4). In contrast, language-based Flas
and Java have implementations around two orders o Related Work
magnitude bigger. Section 2.2.3 considered the alterna- One of the key observations that enables Xax to
tive of a hardware VM; note that Xen's TCB is similarly achieve its benefits§®.1) is that today’s type-safety-
large. based browser extension mechanisms do not admit
The previous comparison is somewhat generous tgegacy code. We chose a simple isolation mechanism
Xax, because the table counts Kaffe’s entire TCB, in-puildable from primitives available in commodity oper-
cluding both its isolated execution engine (the JVM, ating systems, but several alternative approaches exist.
around 50,000 lines) and the new native code Kaffe in- . .
troduces to provide features like rich GUI displays. On7'l Hardware isolation
the other hand, as a type-safety-based extension mecha-Other extension systems use memory hardware isola-
nism, Kaffe incorporates native Ul code in its TCB for tion differently. Nooks isolates drivers from a monolithic
performance or to exploit a stack of legacy code. Bykernel [42]. Mondrix has a similar goal, but requires
contrast, Xax Kaffe isolates any native Ul code it incor- hypothetical hardware support [48]. Palladium isolates
porates. In future work, we expect Xax to isolate Kaffe's kernel extensions by exploiting x86’s arcane, otherwise-

Shaw, David (1IT)

Hwerow Hweg (2002)

Dressing Granite (2007)

IMDB Visualizer

Figure 2:Screenshots of the applications itemized in Table 3.



Application Fig. | Language | Toolchain New | Mods Base
LoC | LoC LoC

XaxAnalogClock 2@ | C gcc4.1.2 459

elfLoader C gcc4.1.2 552

xaxlib C gcc4.1.2 412

dietlibc 0.31 C gcc 4.1.2 405 66,970

zlib1.2.3 C gcc 4.1.2 24 25,475

libpng 1.2.25 C gcc4.1.2 33 60,925

gd 2.0.35 C gcc4.1.2 20 72,202
Kevin Bacon Visualizer| 2(e) | Python python 2.5 143

xaxFsLib C gcc4.1.2 1,706

libtar 1.2.11 C gcc 4.1.2 17 11,348

Python 2.5 C, Python | gcc4.1.2 33 771,112

Zziplib 0.13.49 C, C++ gcc4.1.2 40 54,728

Jpeg 6b C, Asm gcc4.1.2 36 26,695

Expat 2.0.1 C gcc4.1.2 41 47,813

GraphViz 2.18 C, C++ gcc4.1.2 79 343,096
Headline Reader C gcc4.1.2 323

eSpeak 1.36 C++ g++4.1.2 46 25,170
3D Demo 2(c) | C,OpenGL| gcc4.1.2 257

Mesa 7.0.3 C gcc4.1.2 56 683,883
PDF Viewer 2(d) | C gcc4.1.2 366

GhostScript 8.62 C gcc4.1.2 29 666,216
Hello Webserver Java sun jdk 1.6 67

Kaffe 1.1.0 C, C++ gcc4.1.2 123 364,560
Hello Webserver 2(b) | C Vsl. Studio 2003| 189

peLoader C gcc4.1.2 613

libc.lib C 0 57,223

Total 982 | 3,277,416

Table 3:We have compiled a variety of applications for Xax using aetsrof libraries and compiler toolchains comprising over
3.3 million LoC. Each library we build on is listed once, redjass of how many applications use it. For the base libsafi®ur
LoC” consist mostly of build configuration. LoC is measurgdctoc.pl [6].

Isolation mechanism TCB LoC
Linux Moni t or +Pr oxy 2,596
Linux syscall entry path 1,632
4,228
WindowsNbni t or +Pr oxy 3,043
Xax kernel driver 978
NT syscall entry path 313
4,334
Gnash Flash player + deps 791,453
Kaffe non-Java code + deps 280,622
Xen VMM? 187,688

Table 4: Security. Because Xax exploits hardware memory

protection, both Xax implementations have small TCBs.

7.2 Binary rewriting

Another approach to isolation is binary rewriting. Ba-
sic software-fault isolation for RISC [44] and CISC [26]
architectures has quite high overhead if required to en-
force both read- and write-safety; such mechanisms
are thus envisioned as robustness-improving rather than
adversary-proof. XFI [12] showed how to achieve
adversary-proof isolation for operating system exten-
sions, but overheads still range from 28-116%, and the
system has been applied only to short pieces of legacy
code.

Vx32 is a general-purpose mechanism that combines
segments and binary rewriting [14] to achieve low-

unused segment-based isolation mechanism [3]. Each averhead adversary-proof protection, and might be a pos-
these mechanisms emphasizes lightweight rich-pointesible alternative to our picoprocesses. However, the use
interactions between a minimally-modified extensionof segment registers places an additional constraint on
and its host environment. Thus the systems improve rotoolchains. More importantly, it excludes other architec-
bustness of existing code compositions, but preventingures, which may be important for future mobile devices;

malice is an explicit non-goal.

Xax already runs on PowerP@g(.3).



Besides isolation, binary rewriting has also been use® Limitations and future work

to provide transparent cross-architecture portabiliy [2 In this section, we discuss limitations of the current

Itmay have applicability in_the Xax Contgxt: Where web Xax implementation and plans for future enhancements.
developers have only provided an x86 binary, a non-x86-

based host may employ binary rewriting to exchange per8.1  Security analysis
formance for compatibility. We argue that Xax is secure by its small TCB; how-
ever, as a practical matter, our implementations reuse
commodity operating systems as substrate. A production
Another way to isolate untrusted web applications isimplementation deserves a rigorous inspection to ensure
via operating system-level virtualizatipwherein an OS  both that the kernel syscall dispatch path for a picopro-
provides multiple isolated instances for separate subeess isindeed closed, and that no other kernel paths, such
systems, each with the same API as the underlyingis exception handling or memory management, are ex-
OS. Examples include Solaris zones [33] and FreeBSDploitable by a malicious picoprocess. We should also ex-
jails [41]. The implementation of OS virtualization per- plore alternative implementations that exclude more host
meates a monolithic kernel, so its TCB is larger and moreDS code from the TCB, such as a MacOS implementa-
amorphous than that of the picoprocess mechanism. Fution that uses Mach processes, or a VM-like implementa-
thermore, the mechanism sacrifices OS-independenagn that completely replaces the processor trap dispatch
and is not supported on many deployed OSes. table for the duration of execution of a picoprocess.

7.4 Low-level type safety 8.2 Rich application enhancements

Another possible alternative for isolating legacy code Rich web applications, Xax or otherwise, will require
is the use of a safety-enforcing typed assembly languag@rowser support for efficiently handling large binaries
(TAL) [29], an instance of a proof-carrying code [31]. (Such as remote differential compression [43]), and sup-
TAL is type-safety-based mechanism, similar to thosePort for offline functionality [11, 18]. Because Xax ap-
described in§2.2.1, but it is lower-level than JVM or plications access resources via the browser, any browser
.NET’s object-oriented type system. For example, it carenhancements that deliver these features are automati-
enforce safety in polymorphic languages without requir-cally inherited by the Xax environment.
ing that objects use vtables. Thus one cannot compile When we port a shared-library loader, Xax can expe-
TAL to JVM; a separate TAL runtime must be deployed. rience further performance improvements from selective

TAL should be easier to target than a higher-level typepreloading [24].
system; however, no current compilers emit TAL for 8.3 Improved browser integration
weakly typed languages such as C. One could perhaps |nteqrating Xax with the browser using a proxy is ex-
produce such a compiler by modifying the back end of &, gient, but for several reasons it would be better to di-
type-retrofitting C compiler such as CCured [30]. EX- recly integrate with the browser. First, rewriting the
perience with CCured, however, shows several limitayamespace of the origin server is an abuse of proto-
tions that restrict its appllcab|llty_ to improving robust- col. Instead, the browser should provide an explicit
ness rather than adversary-p.rooflng. First, although somga heds object with which a page can construct and
work has been done to verify the safety of CCured's,ame 4 picoprocess for further reference. Second, the
output [19], the CCured compiler must generally bep oy is unaware of when the browser has navigated
trusted.  Second, annotating legacy code to convincgyay from a page, and when it is thus safe to terminate
CCured to compile it efficiently has proven to be quite 54 reclaim a picoprocess. Third, the proxy cannot op-
labor-intensive [7], and even then rarely eliminates all of 5 ot orht t ps connections. For these reasons, we plan
the “trusted casts” [19]. to integrate Xax directly into popular browsers.

7.5 Application context 8.4 Threading

Many of the papers described above mention potential Supporting some threading model is a requirement for
application to web browsers; however, ours is the firsttargeting general applications. The nonblocking I/O in-
to demonstrate how to enable legacy code to be readerface §3.2) is sufficient to implement cooperative user-
ily compiled and deployed in the web context. VXA re- level threading, such as Kaffg'¢ hr eads. Adding to
stricts extensions to a narrow interface, and shows applithe xaxcall interface a mechanism to deliver an asyn-
cability to a restricted class of applications (codecs);[13 chronous signal (e.g., when a poll condition is satisfied)
one important contribution of the present work is to showis sufficient to implement preemptive user-level thread-
how a narrow interface to the existing browser is suffi-ing. Finally, the xaxcall interface could expose a mecha-
cient to support a much broader range of softwgBe3).  nism for launching additional kernel-level threads to en-

7.3 Operating system-level virtualization



able the picoprocess to exploit a multicore CPU. Each e Xax’s legacy support comes from lightweight code
mechanism offers improved application performance in modification; we demonstrate that just a few hun-

exchange for expanding the Xax Monitor’s contribution dred lines of configuration options are sufficient to
to the TCB. port 3.3 million lines of legacy libraries and appli-
8.5 Porting additional libraries cations,

Most of the ports in this paper were built on our mod- Over decades of software development in non-type-safe
ifications to dietlibc. Similarly modifying more main- languages, vast amounts of design, implementation, and
stream i bcs, such as the GNU C library and Microsoft testing effort have gone into producing powerful legacy
Visual Studio’s standard libraries, will greatly ease port applications. By enabling developers to leverage this
ing of other libraries. One challenge in porting either prior effort into web applications’ deployment and ex-
library is their reliance on x86 segment registers to manecution model, we anticipate that Xax may change the
age thread-local storage. Because segment registers cdandscape of web applications.
not be assigned in user mode, we must emulate or obviate
this functionality. 10 Acknowledgments

We also plan to port more interactive code. Our first The authors thank Jeremy Condit, Chris Hawblitzel,
efforts will be aimed at GUI libraries with few dependen- Galen Hunt, Emre Kiciman, Ed Nightingale, and He-
cies (e.g. QUEmbedded). We expect to blit frame bufferien Wang for enlightening discussions and comments on
regions to the browser; keyboard and mouse events wearly drafts of this paper. We also thank the anonymous
will capture in JavaScript and send back to Xax. reviewers and our shepherd, Anthony Joseph, for their

8.6 Relocatable code suggestions.

The picoprocess restricts application code to a fixedReferences

addressrang€8.1). This restrictionis an arbitrary inter- [1] CARDINAL, C. Live From CES: Hands On With

e ooy 2T Vita_—Vita B The Numbers, A Deeloper Tl
gsy ’ 9 All. Presentation at Gear Live, Jan. 2006.

plementations will not require further narrowing it. We

plan to explore an alternative approach: requiring Xax [2] CHERNOFF, A., AND HOOKwAY, R. DIGITAL
applications to be relocatable, capable of running onan  Ex132 — running 32-bit x86 applications on Alpha

ABI that makes no guarantee about any particular abso-  NT. In Proceedings of the USENIX Windows NT
lute virtual addresses. One possible limitation with this Workshop(1997), pp. 9-13.

approach is that it may impede an attempt to import ex-

isting binaries directly into Xax. [3] CHIUEH, T., VENKITACHALAM , G., AND PRAD-
. HAN, P. Integrating segmentation and paging pro-
9 Conclusion tection for safe, efficient and transparent software
We introduce Xax, a browser plugin model that en- extensions. IiProceedings of Symposium on Oper-
ables developers to adapt legacy code for use inrichweb  ating Systems Principles (SOSRP99), pp. 140-
applications, while maintaining security, performance, 153.

and OS-independence. .
[4] CIAC M-060. http://lwww.ciac.org/.

e Xax’'s security comes from its use of the picoprocess
minimalist isolation boundary and browser-based [5]
services; we demonstrate that Xax’s TCB is orders
of magnitude smaller than alternative approaches.

CLARK, C., FRASER K., HAND, S., HANSEN,

J. G., UL, E., LiMmPACH, C., RRATT, |., AND

WARFIELD, A. Live migration of virtual machines.

In Proceedings of Networked Systems Design and

e Xax's OS-independence comes from its use of pi- Implementation (NSDKR005), pp. 273-286.
coprocesses and its platform abstraction layer; we
demonstrate that Xax applications compiled on any
toolchain run on any OS host.

[6] CLoC. http://cloc.sourceforge.net/.

[7] ConNbDIT, J. personal communication, 2008.

e Xax's performance derives from native code execu- [8] Cox, R. S., RIBBLE, S. D., LEVY, H. M., AND

tion in picoprocesses; we measure Xax's compute = * ansen, J. G. A safety-oriented platform for Web
performance to be comparable with native execu- applications. InProc. Symposium on Security and
tion, and that even with quite inefficient /O perfor- Privacy (2006), pp. 350-364.

mance, Xax delivers compelling whole-application

performance. [9] CVE-2003-0111. http://cve.mitre.org/.



[10] CVE-2007-0043. http://cve.mitre.org/. [23]

[11] Dojo Toolkit. http://dojotoolkit.org/offline.

[12] ERLINGSSON U., ABADI, M., VRABLE, M.,
BubpIu, M., AND NECULA, G. C. XFI: software
guards for system address spacesPioceedings
of Operating Systems Design and Implementation
(OSDI)(2006), pp. 75-88.

(24]

[25]
[13] FoRrbD, B. VXA: A virtual architecture for durable
compressed archives. Proceedings of File and

Storage Technologies (FAS{R005), pp. 295-308.

[14] ForpD, B., AND CoOX, R. Vx32: Lightweight user- [26]
level sandboxing on the x86. Proceedings of the
USENIX Annual Technical Conferen(2008). To
appear.

[27]

[15] GARFINKEL, T. Traps and pitfalls: Practical
problems in system call interposition based se-
curity tools. In Proceedings of Network and
Distributed Systems Security Symposium (NDSS[)28]
(2003), pp. 163-176.

[16] GARFINKEL, T., PFAFF, B., AND ROSENBLUM,

M. Ostia: A delegating architecture for secure
system call interposition. IfProc. Network and
Distributed Systems Security Symposi(2604),

pp. 187-201.

(29]

[17] GOLDBERG, |., WAGNER, D., THOMAS, R., AND [30]
BREWER, E. A. A secure environment for un-
trusted helper applications: Confining the wily
hacker. InProceedings of USENIX Security Sym-
posium(1996), pp. 1-13.

[31]

[18] Google Gears. http://gears.google.com/.

[19] HARREN, M., AND NECULA, G. C. Using depen-
dent types to certify the safety of assembly code. In
Static Analysis Symposium (SA3005), pp. 155— [32]
170.

[20] JacksoN, C., BoRTz, A., BONEH, D., AND
MITCHELL, J. Protecting browser state against
Web privacy attacks. IrProceedings of WWW

(2006).

(33]

[21] JoBs, S. Keynote address. Apple Worldwide De-
velopers Conference, Aug. 2006. [34]
[22] KICIMAN, E., AND LIVSHITS, B. AjaxScope: A
platform for remotely monitoring the client-side be-
havior of Web 2.0 applications. IRroceedings
of the 21st ACM Symposium on Operating Systemf35]
Principles (SOSPj2007), ACM.

KozucH, M., AND SATYANARAYANAN , M. In-
ternet suspend/resume.Pmoceedings of the Work-
shop on Mobile Computing Systems and Applica-
tions (WMCSAJ2002), pp. 40-48.

LIVSHITS, B., AND KiCIMAN, E. Doloto: Code
splitting for network-bound Web 2.0 applications.
Tech. Rep. TR 2007-159, 2007.

LORCH, J. R.,AND SMITH, A. J. The VTrace
tool: building a system tracer for Windows NT and
Windows 2000. MSDN Magazine 1510 (2000),
86-102.

MCCAMANT, S.,AND MORRISETT, G. Evaluat-
ing SFI for a CISC architecture. Ih5th USENIX
Security Symposiuf2006), pp. 209-224.

MclILroY, M. D. Mass produced software com-
ponents. InSoftware EngineeringP. Naur and
B. Randell, Eds. NATO Science Committee, Jan.
1969, pp. 138-150.

MICROSOFT CORPORATION  Windows Driver
Kit. http://microsoft.com/whdc/devtools/wdk/
default. mspx.

MORRISETT, G., WALKER, D., CRARY, K., AND
GLEwW, N. From System F to typed assembly lan-
guage. InSymposium on Principles of Program-
ming Languages (POPIL(1998), pp. 85-97.

NEcuULA, G. C., @ONDIT, J., HARREN, M., Mc-
PEAK, S.,AND WEIMER, W. Ccured: type-safe
retrofitting of legacy software. ACM Trans. Pro-
gram. Lang. Syst. 2B (2005), 477-526.

NECULA, G. C.,AND LEE, P. Safe kernel exten-
sions without run-time checking. IRroceedings

of Operating Systems Design and Implementation
(OSDI)(1996), pp. 229-243.

NIST Vulnerability Database.

http://nvd.nist.gov/nvd.cfm.

PRICE, D., AND TUCKER, A. Solaris zones: op-
erating system support for server consolidation. In
Proceedings of the 18th Large Installation System
Administration Conference (LIS£2004), pp. 241—
254,

Provos, N. Improving host security with system
call policies. InProceedings of the 12th conference
on USENIX Security Symposium (SSY[®R0N03),
pp. 18-18.

RINARD, M., CADAR, C., DUMITRAN, D., Roy,
D., LEu, T., AND BEEBEE, J. Enhancing server



availability and security through failure-oblivious
computing. InProceedings of Operating Sys-
tems Design and Implementation (OSD2004),

Notes

1The term “Rich Internet Application” or “RIA” is sometimesed
to refer to these high-end apps. Since the distinction tetwaeweb

app and an RIA is fuzzy at best, we consistently use the tereb“w
app” herein.

2This value includes code supporting multiple platformsg &rus
overestimates the size of the Xen TCB.

pp. 303-316.

[36] ROBLES, G. Debian counting. http://
libresoft.dat.escet.urjc.es/debian-counting/.

[37] SA7587. http://secunia.com/advisories/7587/.

[38] SaBIN, T. Strace for NT.
www.securityfocus.com/tools/1276.

http://

[39] SAPUNTZzAKIS, C. P., GHANDRA, R., FFAFF, B,
CHow, J., LAM, M. S., AND ROSENBLUM, M.
Optimizing the migration of virtual computers. In
Proceedings of Operating Systems Design and Im-
plementation (OSDIj2002), pp. 377-390.

[40] SourceForge. http://sourceforge.net.

[41] STOKELY, M., AND LEE, C. The FreeBSD Hand-
book 3rd Edition, Vol. 1: User's GuideFreeBSD
Mall, Inc., Brentwood, CA, 2003.

[42] SwIFT, M., BERSHAD, B. N., AND LEVY, H. M.

Improving the reliability of commodity operating

systems. InProceedings of Symposium on Oper-

ating Systems Principles (SOSRP03), pp. 207—-

222.

[43] TRIDGELL, A. Efficient Algorithms for Sorting and

SynchronizationPhD thesis, 1999.

[44] WAHBE, R., Lucco, S., ANDERSON T. E.,AND

GRAHAM, S. L. Efficient software-based fault iso-

lation. InProceedings of Symposium on Operating

Systems Principles (SOS@P93), pp. 203-216.

[45] WALDSPURGER C. A. Memory resource man-

agement in VMware ESX server. Rroceedings

of Operating Systems Design and Implementation

(OSDI)(2002), pp. 181-194.

[46] WHITAKER, A., SHAW, M., AND GRIBBLE, S. D.

Denali: Lightweight virtual machines for dis-

tributed and networked applications. Tech. Rep.

02-02-01, 2002.

[47] Wine Windows

www.winehq.org.

compatibility library.

[48] WITCHEL, E., RHEE, J., AND ASANOVIC, K.
Mondrix: Memory isolation for Linux using Mon-
driaan memory protection. IRroceedings of Sym-
posium on Operating Systems Principles (SOSP)

(2005), pp. 31-44.



