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ABSTRACT
Online learning to rank holds great promise for learning personal-
ized search result rankings. First algorithms have been proposed,
namely absolute feedback approaches, based on contextual ban-
dits learning; and relative feedback approaches, based on gradient
methods and inferred preferences between complete result rankings.
Both types of approaches have shown promise, but they have not pre-
viously been compared to each other. It is therefore unclear which
type of approach is the most suitable for which online learning to
rank problems. In this work we present the first empirical com-
parison of absolute and relative online learning to rank approaches.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval
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1. INTRODUCTION & RELATED WORK
Learning from user interactions is becoming increasingly im-

portant in Web information retrieval (IR), as it enables information
systems to provide personalized results. For example, search engines
could learn preferences for retrieved documents, and recommender
systems could adapt to users’ tastes. Exploiting user interactions to
improve the performance of search systems has been studied from
many perspectives. However, it is challenging, as user interactions
are typically biased and noisy [7].

Recently, bandit algorithms have been explored as a basis for
learning from user interactions in a principled way [4]. Particularly
promising are contextual bandit algorithms, which can integrate
information about the document, query, or user context in the form
of context features [5]. They learn a parameterized function of these
context features, which allows them to generalize learned solutions
to e.g., previously unseen query-document pairs. Current contex-
tual bandit algorithms learn from absolute interpretations of user
feedback, to optimize, e.g., click-through rate (CTR). An alternative
approach has been developed on the basis of interpreting user feed-
back as relative preferences between rankings [3]. The resulting
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signal has been successfully used as a basis for stochastic gradient
techniques [2]. Both types of approaches have shown promising
results, but their relative performance has not been examined.

This work presents the first empirical comparison between ab-
solute and relative online learning to rank approaches for IR. It
addresses the following questions, designed to improve our under-
standing of the relative performance and of these approaches. Q1:
How do absolute and relative approaches compare in terms of online
performance on standard IR learning to rank tasks? Q2: How are
both types of approaches affected by noise in user interactions?
Q3: How do they perform in settings that (a) require generalization
across queries, and (b) do not require such generalization? Our
answers to these questions show that different approaches should be
used for different learning to rank settings. This has important im-
plications for practical applications, and for the future development
of more effective online learning to rank approaches.

2. METHODS
We focus on two online learning approaches that exemplify learn-

ing from absolute and relative feedback. Both assume context
information is observed in the form of feature representations of
query-document pairs, and learn linear ranking models from user
interactions. As characteristic for the bandit learning setting, the
learner only observes feedback on actions (e.g. documents) it has
presented to the user, resulting in a partial feedback setting [4]. The
key to effective learning in this setting is to balance exploration of
potential new solutions with exploitation of solutions learned so far.
Absolute approach. We present Lin-ε, an ε-greedy version of Lin-
UCB [5]. LinUCB learns linear combinations of ranking features
to optimize absolute metrics, e.g., CTR. Our Lin-ε approach learns
models of the same form, and uses the same model updates as
LinUCB, but uses the simpler ε-greedy strategy, a standard explo-
ration scheme for online learning approaches that has been found
to perform well and robustly in practice [4]. Lin-ε is outlined in
Algorithm 1. In each round, it observes the context features and esti-
mates rewards for each action based on the current ranking models.
generate_list(ε, κ) then fills a list of length κ slot-by-slot, each
with a 1− ε probability to pick the document with the next-highest
reward estimate, and an ε probability to pick one uniformly at ran-
dom. Following LinUCB, we experiment with two variants. Lin-
ε(disjoint) learns distinct models for each document. Lin-ε(hybrid)
uses a joint component to generalize across documents and queries.
Relative approach. We use the state-of-the-art method for online
learning to rank from relative feedback, Candidate Preselection
(CPS) [2], outlined in Algorithm 2. CPS learns from relative ranker
comparisons obtained through interleaving. To optimally use ob-
served samples it uses observations collected in previous rounds to
select a promising candidate ranker for the next round. CPS learns
in rounds, too. After observing context features, a promising can-



didate ranker is selected. generate_list(·) returns a ranked result
list given the weight vector. The result lists for the current and
the candidate weight vectors are combined, presented to the user,
and interactions are projected back to the result lists to infer a user
preference. The current ranker is then updated accordingly.

Input : exploration rate ε, result list length κ, initial model
for query qt(t = 0 . . . T ) do

Estimate rewards given observed context
l← generate_list(ε, κ)
Present l to user and observe absolute rewards
Update models, following [5]

end
Algorithm 1: Lin-ε: ε-greedy strategy with linear models.

Input :CPS parameters θ, result list length κ, initial weights w0

for query qt(t = 0 . . . T ) do
Generate ranker pool and select best candidate w′

t

l1, l2 ← generate_list([wt,w
′
t], κ)

Infer ranker preference
Update model: wt+1 ← (wt wins ? wt : w

′
t)

end
Algorithm 2: Candidate preselection (CPS), following [2].

3. EXPERIMENTS
Our experiments are designed to address questions Q1-Q3 (Sec-

tion 1). They are based on the open source evaluation framework
Lerot [8], a standard evaluation setup for online learning to rank
methods that uses annotated query-document data and models of
user interactions (which reflect, e.g., click noise and bias). Follow-
ing [2], we experiment at three levels of noise and bias: perfect (no
noise or bias), navigational (little noise, high bias) and informational
(high noise, medium bias). Our main metric is online performance –
the discounted cumulative reward of the results shown to the simu-
lated user (in terms of (a) NDCG@10 and (b) CTR@1) [8]. We use
offline performance for additional analysis.

Given this setup, we conduct two sets of experiments, as follows.
Experiment 1 (general) addresses Q1 and Q2. It examines learn-
ing performance across queries and requires generalization across
queries. Data: NP2003 (named page finding) LETOR 3.0 data [6].
Experiment 2 (focused) addresses Q2 and Q3, by examining learn-
ing for specific repeated queries. Data: 10 queries sampled at
random from the TD2003 (topic distillation) LETOR 3.0 data [6].

Each experiment compares three approaches: (1) disjoint Lin-ε,
(2) hybrid Lin-ε (both Algorithm 1), (3) CPS (Algorithm 2), all with
standard parameters as reported in [5] and [2].

4. RESULTS
The results of our experiments are shown in Table 1 and Table 2.

We see that CPS performs best on the general task and Lin-ε (disjoint
or hybrid) does better in the focused task (Q1). This is consistent
with our expectations regarding the need for generalization. In the
general task, Lin-ε(disjoint) shows significantly lower performance
on all user models and metrics. It performs much better in the
focused task, which also indicates that the lack of generalization
results in the need of sufficient feedback (Q3). Comparing across
different user models, CPS shows the best robustness to noise (Q2).
We plot the offline performance under the navigational user model
from the first experiment in Figure 1, which shows that Lin-ε(hybrid)
reaches the highest performance after enough interactions (training,
it requires approximately 10 times more samples than CPS), but
again does not generalize well to completely new queries (test).

5. CONCLUSION

We have presented a first empirical comparison of absolute and
relative online learning to rank for IR approaches. We found that,
Table 1: Online performance, general experiment for perfect
(per), navigational (nav) and informational (inf) user models.
Best scores are shown in bold. Statistically significant differ-
ences with CPS are indicated by M/O(p = 0.05), N/H(p = 0.01).

NDCG@10 CTR@1
per nav inf per nav inf

CPS 106.64 104.88 97.83 62.22 62.05 57.78
Lin-ε(disjoint) 6.40H 5.16H 2.74H 5.60H 4.14H 1.51H

Lin-ε(hybrid) 71.11H 88.64H 33.58H 55.73O 66.69 20.01H

Table 2: Online performance, focused experiment.
NDCG@10 CTR@1

per nav inf per nav inf

CPS 70.71 61.45 47.34 91.01 85.85 63.74
Lin-ε(disjoint) 120.22N 50.85 14.67H 165.14N 128.21N 26.12H

Lin-ε(hybrid) 90.54N 63.07 47.13 98.52 118.69N 96.94N

Figure 1: Offline performance (nav), focused experiment.

while absolute approaches can be more effective when reliable feed-
back can be inferred, and in cases with few queries and documents
(e.g., standing queries, recommendation), relative approaches are
more robust to noisy feedback and can deal with larger document
spaces. An urgent direction for future work is to extend current
linear learning approaches with online learning to rank algorithms
that can effectively learn more complex models.
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