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ABSTRACT
RankNet is one of the widely adopted ranking models for
web search tasks. However, adapting a generic RankNet
for personalized search is little studied. In this paper, we
first continue-trained a variety of RankNets with different
number of hidden layers and network structures over a pre-
viously trained global RankNet model, and observed that a
deep neural network with five hidden layers gives the best
performance. To further improve the performance of adap-
tation, we propose a set of novel methods categorized into
two groups. In the first group, three methods are proposed
to properly assess the usefulness of each adaptation instance
and only leverage the most informative instances to adapt a
user-specific RankNet model. These assessments are based
on KL-divergence, click entropy or a heuristic to ignore top
clicks in adaptation queries. In the second group, two meth-
ods are proposed to regularize the training of the neural
network in RankNet: one of these methods regularize the
error back-propagation via a truncated gradient approach,
while the other method limits the depth of the back prop-
agation when adapting the neural network. We empirically
evaluate our approaches using a large-scale real-world da-
ta set. Experimental results exhibit that our methods all
give significant improvements over a strong baseline ranking
system, and the truncated gradient approach gives the best
performance, significantly better than all others.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Internet search; H.3.0 [Information
Storage and Retrieval]: General—Web search

General Terms
Measurement,Experimentation
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personalized search, deep learning, ranking adaptation
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1. INTRODUCTION
Search engine personalization, or otherwise known as per-

sonalized search, is getting more and more attention from
the information retrieval community in recent years [24, 2,
5, 17, 18, 22, 23, 16]. In general, in order to better serve
their users, search engines often record certain user activ-
ities such as queries and search-result clicks, and leverage
such information to improve the relevance of the returned
documents. To perform personalization, search engines try
to match the user behaviors from the target users to others
who have similar search behaviors and then aggregate the
information from others to estimate the target user’s search
intent. Essentially, many of the existing works act fairly
close to the collaborative filtering method [24, 22], where
the user similarity is defined by considering their queries
[22, 23], tasks [24], and etc.

In this paper, we address the personalized search problem
from a model adaptation perspective. We adapt a gener-
ic RankNet model [3] that is trained on a user-independent
data set to each individual user based on his/her search his-
tory and result preference. In literature, little has been stud-
ied on this direction until very recently, where the authors
in [21] demonstrated competitive adaptation performance
of RankNet when comparing with RankSVM and Lamb-
daMART for personalized model adaptation. Interestingly,
in their framework, the authors only used a RankNet with-
out hidden layers which is mathematically equivalent to a
logistic regression model. With the recent advance of lever-
aging deep learning models for information retrieval [9, 15,
11], we believe that, a well-trained deep RankNet with mul-
tiple layers of non-linear representations can offer an even
better performance in training personalized models.

Our motivation of using deep learning for adaptation comes
from two aspects. First and foremost, existing approaches
on ranking model adaptation mainly focus on adapting from
a source domain to a few number of target domains [8, 7] due
to efficiency concern. It would be prohibitively expensive to
adapt a generic model to each individual user using the cur-
rent methods. Therefore, our proposal takes a model-based
approach. i.e., we first train a user-independent ranker, and
then for each individual user, we update the parameters of
the global ranking model accordingly. Since a typical user’s
search history is short, adapting the global model becomes
much more efficient than re-training the entire ranker.

Secondly, deep learning framework naturally construct-
s a semantic/abstract representation from the inputs. This
property is desirable for model adaptation. Existing feature-
based model adaptation methods, for example the CLRank



algorithm in [4], maps both the source and target domains
into a lower-dimensional space to learn a common feature
representation. However, finding a reduced dimension, e.g.,
using SVD, is prohibitively expensive. Instead, deep learn-
ing automatically constructs reduced feature spaces from in-
creasingly more compact representations of the network and
achieves semantic representations at higher levels.

However, there are many challenges in using deep learn-
ing for personalized search. One of the biggest concerns in
personalized search is the data sparsity issue, where each
user only has a handful of queries in their search histories
and therefore limits the learning capability of the person-
alization algorithms. Despite the recent advances via using
probabilistic models [17] and model adaptation frameworks
[21], little has been explored on the relationship between da-
ta sparsity and model performance in personalized search.
Also, issues like model complexity and overfitting in person-
alized ranking model adaptation remain to be discussed.

Specifically, our paper makes the following contributions:
1. We use a deep learning framework for personalized rank-
ing adaptation. This framework works by first training a
deep RankNet as a global ranking model from user-independent
label data. We then adapt the global model to each user by
training individual models based on the user’s search histo-
ry. We train a variety of RankNets with different numbers
of hidden layers and network structures on a per-user basis,
and observed that a deep neural network with five hidden
layers gives the best performance.

2. To further improve the performance of adaptation, we
introduce several novel ideas including re-weighting adap-
tation data and regularizing back-propagation. Among all
of the five proposals, we observe that a truncated gradient
approach performs the best.

3. We empirically analyze the issue of model complexity
and how it affects model training and the overfitting issue,
on a large-scale data set from a commercial search engine’s
logs. We discover that overfitting can indeed happen if the
adaptation data is not sufficient, or early-stopping is not
performed properly.

4. We investigate the relationship between data sparsi-
ty and model performance by sampling users with different
search frequencies. We observe that the adaptation perfor-
mance often increases with more user search history data.
On the other hand, when adaptation data is limited, regu-
larizing back-propagation becomes important.

The remainder of the paper is organized as follows: Sec-
tion 2 describes related work in personalized search and deep
learning for ranking; Section 3 describes the data set used
in this paper; Section 4 presents our adaptation framework;
Section 5 shows the empirical results; Section 6 concludes
our work with discussion and future work.

2. RELATED WORK
We will be discussing two relevant areas of related work in

this section: (1) personalized search and (2) deep learning
for IR.

(Personalized Search) There have been many research-
es on personalized search and we will highlight a few that
is considered interesting and representative. In [23], White
et al. leveraged short-term user behavior signals such as
browser history, query history, as well as desktop informa-
tion to re-rank the search results and predict the user search
interests in the future. In particular, they built a predictive

model leveraging the contextual information by represent-
ing user interests as a list of Open Directory Project (ODP)
categories so that the model is capable of scaling up to a
quarter million users with billions of URLs.

In [17], Sontag et al. proposed to learn user profiles from
user’s long-term search history. The authors introduced a
generative probabilistic model to infer the search relevance
of URLs. Two models were introduced: the first probabilis-
tic model built directly on the user history without consider-
ing any background models; the second model, on the other
hand, considered the topic distribution of documents which
is incorporated into the personalized models to further im-
prove the predictive performance.

Shen et al. [16] introduced a context-sensitive method
by leveraging implicit user feedback for re-ranking. Their
model used both click-through information and contextual
queries as implicit signals from users. Specifically, the au-
thors proposed to enhance the KL-divergence based retrieval
model by incorporating the context-sensitive information in-
to language models. They empirically analyzed the perfor-
mance by constructing a test set from TREC AP data set,
the result of which indicated an improved retrieval perfor-
mance than the baseline methods.

Recently, White et al. [24] introduced a novel model
by modeling the search task behavior among search users.
Comparing to previous work that often model user similar-
ity based on queries, the authors were among the first to
introduce a novel concept of task where a task is considered
as an atomic user information need, often containing several
queries and search-result clicks. The task information was
used to group users together to cohorts for generating click
features for a particular set of users in consideration. Re-
sults indicated that task-based user grouping outperforms
query-based and session-based groupings significantly.

From the model adaptation perspective, Wang et al. [21]
brought this concept to personalized search from domain
adaptation. They introduced a general framework for adap-
tation by first training a global ranking model on a user-
independent data set and then adapting models to each indi-
vidual user. To reduce the parameter size, feature grouping
based on linear transformations such as scaling and shift-
ing is proposed. The authors then applied their general
framework to three popular ranking models: RankSVM,
RankNet and LambdaRank. Note that in the realization
of the RankNet model, no hidden layers are considered con-
cerning the feature grouping complexity, and therefore it
could result a suboptimal performance of RankNet.

Dou et al. [5] conducted a large-scale evaluation on several
personalized search algorithms, by using a 12-day query log
from MSN. They divided personalization into person-level
re-ranking and group-level re-ranking, and compared five d-
ifferent variants. They employed two metrics for evaluation,
namely web page ranking score and average rank. Experi-
ments indicated that all personalized methods significantly
outperformed the default ranking algorithm. It also revealed
that personalized search has different effectiveness on differ-
ent types of queries. For example, they observed that for
queries with small click entropy, the performance gain was
not that obvious comparing to those with large entropy.

(Deep Learning for IR) In recent years, the deep learn-
ing technique has been introduced to domains such as speech
and image recognition with great success. In information
retrieval, Hinton et al. [9] first introduced the idea of us-



ing neural networks for dimensionality reduction. In their
work, they leveraged the representation of deep belief net-
work (DBN) to initialize the deep network structure, and
then used a deep auto-encoder to reconstruct the input da-
ta. Their results indicated that the variables on the top
layer were able to give a better representation of each doc-
ument, so that semantically similar documents are mapped
to a closer position to each other.

Mirowski et al. [15] presented a novel algorithm for topic
modeling and information retrieval based on a deep auto-
encoder architecture. The objective of auto-encoder in gen-
eral is to minimize the reconstruction error of the input in-
stance. In their work, the authors leveraged a deep structure
which produces increasingly more compact representations
of the document vector space to reduce the dimensionality so
that semantic representation can be achieved at higher level
of the network. Besides minimizing the reconstruction error,
their framework also minimized a weighted cross-entropy
loss between word histograms concurrently. Experimental
results on the NIPS article data set demonstrated a lower
perplexity score than Latent Dirichlet Allocation (LDA).

Recently, Huang et al. [11] leveraged this technique to im-
prove web search. In particular, the authors tried to bridge
the lexical gaps between queries and documents via seman-
tic matching using deep learning framework. In their model,
queries and documents were treated as bag-of-words vectors
as the input of the neural network, the model then learnt
several layers of deep non-linear projections and outputted
a vector in the semantic space. During the learning phases,
each query is given the title of a URL that is clicked by users
along with several un-clicked URLs, where clicked URLs are
assumed to be relevant. The learning objective is to mini-
mize the relevance loss of query titles on the sematic space,
where the relevance is computed using cosine similarity be-
tween the query semantic space and URL semantic space.
Experimental results on a large-scale data set indicated sig-
nificant improvement over the traditional tf-idf based model
as well as deep auto-encoder models.

Similarly, Wang et al. [20] addressed the issue of data s-
parsity in social media question-answering application. Due
to the small length of both questions and answers, tradi-
tional ways of modeling their relationship turned out to be
suboptimal. Instead, the authors leveraged deep learning to
address the semantic relationship between them, by using
two deep belief networks to model the semantic relevance.
Experiments on a Chinese forum corpora indicated better
performance than traditional methods.

3. DATA COLLECTION
We collect two sources of data for (1) global ranking model

training, and (2) personalized model adaptation, respective-
ly. Both of these data sets are sampled from the logs of a
large-scale commercial search engine. Since the focus of this
paper is Web document ranking, we filtered the logs to re-
move non-Web vertical records. In this study, we limit the
scope to be English queries within the US search market.

We first randomly sampled a set of 456,238 queries from
the logs, between April 2011 and October 2011. For each
of the queries, we collected 10 to 30 top URLs returned by
the search engine and asked human judgers to assess their
relevance. The total query-URL pairs to judge is 5,578,881.
The judgers were given 5 choices to annotate each query-
URL pair: Perfect, Excellent, Good, Fair and Bad. Each

Users Queries URLs
Training Set - 456,238 5,578,881

Adaptation Set 3,000 48,238 479,923

Table 1: Statistics of training and annotation sets.
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Figure 1: The distribution of user query frequency.

pair is judged by three different assessors. Majority voting
is used to determine the final label of each pair.

On the other hand, to generate user-specific data, we ran-
domly selected 10,000 unique users based on their user id
in the logs, between Jan 2013 and March 2013, a total of
60 days. User session information such as queries, clicked
URLs, clicked positions are collected. For model adapta-
tion purpose, we require a user to have at least 6 queries
at minimum (2 for training, 2 for validation and 2 for test-
ing). We further filtered out users with insufficient search
history. Finally, we randomly sampled from the filtered set
and gathered a total of 3,000 users. Table 1 summarizes
the statistics of these two data sets. Figure 1 plots the user
query frequency distribution, where the most frequent user
had 682 queries and many users only had 6 queries.

4. METHODOLOGY
In this section, we introduce our deep learning framework

for personalized model adaptation.

4.1 Preliminary
We first briefly review the RankNet model [3]. Unlike

the traditional neural network framework, where each train-
ing instance first forward propagates the weights to the top
layer, and then adjust the weights of individual neurons by
back propagating the errors computed from the difference
between the true label and the predicted label, RankNet
works by considering query-URL pairs. Given a query q,
each pair of URLs, say Ui and Uj , is considered as a train-
ing pair if they have different relevance labels. Given these
training pairs, the model learns a scoring function f(·) for
each of such pair, si = f(xi) and sj = f(xj), where x rep-
resents the feature vector of the URL U . si and sj are then
mapped to probabilities using a logistic function

Pij ≡ P (Ui ≻ Uj) ≡
1

1 + e−(si−sj)
, (1)

where Ui ≻ Uj denotes a preference relationship of Ui over
Uj . The model applies cross entropy as its cost function to
penalize the deviation of the predicted probabilities from the
true probabilities obtained from the labels. Denoting P ij as



Figure 2: Deep learning framework for personalized
ranking adaptation.

the true probability, the cost function can be written as

Cij = −P ij logPij − (1− P ij) log(1− Pij). (2)

Taking the gradient of the above function, we have

∂C

∂si
= −

1

1 + esi−sj
(3)

for Ui ≻ Uj . The gradient is used during the back propaga-
tion of the RankNet to update the weights of each neuron:

wk → wk − η
∂C

∂wk

= wk − η

(

∂C

∂si

∂si
∂wk

+
∂C

∂sj

∂sj
∂wk

)

, (4)

with η denoting learning rate. The RankNet can be further
speed up by accumulating the gradient for each URL to
perform a mini-batch update [3], where the speed up if often
close to quadratic.

4.2 Deep RankNet for Personalized Model Adap-
tation

In this section we detail our framework of using deep
RankNet for personalized search. Our framework can be di-
vided into two stages: (1) training a global ranking model,
and (2) adapting the global model to each individual user.

Specifically, we leverage the human labeled data to first
train a deep RankNet, where each input URL Ui is repre-
sented by its feature vector Xi ∈ R

m that has m dimensions.
The network consists of d hidden layers {H1, ...Hd}, where
each layer can have different number of neurons. The output
layer Y is a scalar value that calculates the predicted value
of each URL, which is used to update the weights of neurons
during the back propagation step as in eq. (4). The hyper-
parameter space of the deep RankNet includes the number
of hidden layers, the number of neurons in each layer, the
learning rate during back propagation, the number of itera-
tions in training, as well as the weights of each neuron. So
far in the deep learning community, these parameters are of-
ten set empirically. For example, a held-out validation set is
often used to determine whether to increase or decrease the
learning rate, or when to perform early stop of the training.
On the other hand, greedy layer-wise pre-train is often used
to initialize the weights of neurons, which has shown some
improvement over random initialization [9]. We will discuss
the choices of these parameters in our empirical study.

To adapt the global model to each user, we first need to
construct user preference data. Since each user’s informa-
tion need is hidden from the search logs, it is not realistic
to rely on human assessors to label the data. Therefore, we
leverage the user clicks to construct user preference data.

Specifically, we denote a preference pair Ui ≻ Uj if Ui re-
ceives a click from the users and Uj does not, given the same
query. Additionally, in order to address the issue of position-
al bias, we also employed two click feedback strategies from
[12], namely Click > Skip Above and Click > No Click Next,
where the first one constructs pairs from the clicked URL
and all the skipped URLs that are ranked above that URL.
The second method constructs one pair if the current URL
gets a click and the immediate URL ranked below does not
receive any click.

Figure 2 illustrates our framework. In general, we perform
continue-train on the global model for each individual user.
E.g., we update the global model using the adaptation data
from each user until model converges. Comparing to retrain-
ing the whole model by adding user preference data to the
training set, the benefit of continue-train is two-fold. First,
this strategy avoids revisiting the general user-independent
training data, and thus is more efficient. Second, as illus-
trated in Figure 1, users often have only a handful of queries.
Thus adding this small amount of data into millions of user-
independent training samples may only incur subtle changes
to the entire ranking model. In contrast, continue-train will
refresh the model solely on the user preference data, and
therefore can adapt the global model more effectively.

Despite the potential benefits, there are two issues we need
to consider when performing continue-training. First, unlike
the user-independent training data which are annotated by
professionals, the user-preference data only contains click
information, which is very noisy. Second, the amount of
user-preference data is usually very limited, and therefore
over-fitting becomes a critical issue. In order to address
the first issue, we propose a variety of methods to estimate
how informative the adaptation samples are, and update the
model according to the data that mostly reflects the user-
specific preference. In order to address the second issue, we
regularize the back-propagation based training of the neural
network in various ways. In the first method, inspired by the
truncated gradient learning [13], we update the weight only
when the corresponding gradient is significant, e.g., the ab-
solute value is above certain threshold. In another method,
we follow the techniques in [10, 25], by constraining the back-
propagation to only the top layer. In the following sections,
we describes the proposed techniques in details.

4.3 Strategy 1: Controlling Adaptation Data
The first strategy we use in adaptation is to properly esti-

mate the weight of user data according to their importance.
Take the query amazon for example, if a user issued this
query and clicked on www.amazon.com, then re-training on
this data point is most likely to have minimum effect on
learning user preference since the majority of other user-
s would also do so. However, if the user instead clicked on
wikipedia.org/amazon/ or geography.about.com/amazonriver,
then we know that the user probably has a different intent
than others, and the global ranking model should be adjust-
ed by taking these clicks into account.

The above example is from a user’s perspective. On the
other hand, from a query’s perspective, if the click concen-
tration of a query is very low, i.e., different users tend to click
on different returned documents of that query, it might also
be a good indicator that the query needs to be treated with
higher weight due to its ambiguity.



Models Training Pair Error Validation Pair Error Training NDCG@3 Validation NDCG@3
50 50 0.14390 ± 0.0222 0.17383 ± 0.0492 0.6931 ± 0.0529 0.5678 ± 0.0503

100 100 100 0.20890 ± 0.0326 0.22909 ± 0.0329 0.6738 ± 0.0292 0.5211 ± 0.0322
100 100 20 20 0.17445 ± 0.0305 0.19694 ± 0.0684 0.687 ± 0.0690 0.5299 ± 0.0440

100 100 50 50 20 0.14375 ± 0.0653 0.16828 ± 0.0685 0.7033 ± 0.0295 0.5682 ± 0.0281

Table 2: Training and validation results of several deep RankNets. Each model was repeated five times with
random split data of 1:1 ratio between two sets. The best performed model is highlighted.
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Figure 3: An illustration of how query weights are
calculated based on KL and CE, where KL is esti-
mated on a per-user basis and CE is estimated from
the entire training set.

Therefore, we propose three heuristics here to assess the
importance of adaptation queries.

Heuristic 1: local query weighting via Kullback-
ŰLeibler (KL) divergence. Given a particular user u

and all his/her queries in training {q(u)1 , ..., q
(u)
n }, consider

each query q
(u)
i to have a click distribution Pu(q

(u)
i ) for user

u and P¬u(q
(u)
i ) for the remaining users, normalized to be

probability distributions. Its weight is determined by the
KL divergence of these two probability distributions:

WKL(Pu(q
(u)
i )||P¬u(q

(u)
i )) =

∑

j

logPu(q
(u)
i , j)

(

Pu(q
(u)
i , j)

P¬u(q
(u)
i , j)

)

,

(5)

so that the more similar user u’s click pattern on q
(u)
i to the

remaining users’ pattern, the lower that q
(u)
i will be weight-

ed. When the two click patterns are exactly the same, that
query will receive zero weight and therefore not used for
adaptation.

Heuristic 2: global query weighting via click en-
tropy (CE) measurement. In this method, we do not
consider individual user but to aggregate all clicks for a par-
ticular query qi across all users. The weight of qi is then
calculated as:

WCE(qi) = −
∑

j

P (qi, j) · logP (qi, j), (6)

where P (qi, j) is the probability of document j being clicked
given query qi (regardless of users). This heuristic is inspired
by previous research [19]. According to the authors, queries
with higher click entropies are more useful for personaliza-
tion rather than lower ones.

Figure 3 briefly shows the difference between the KL and
CE measurements. Each user’s adaptation data is first di-
vided into three parts, for training, validation and test-
ing purposes. The KL measurement calculates individual
query’s weight on a per-user basis using only the training
data, while CE leverages the entire training part to estimate
the global weight for each query.

Lastly, we propose a heuristic that ignores queries for
which a user clicked on the top-1 returned results, on a per-
user basis:

Heuristic 3: remove queries with top-one result
clicks from the training set. The reason for this heuris-
tic is quite straight-forward: search engines have already
learnt to present the results in descending order of their rel-
evance, having the user clicked on the top result brings few
information to help learn a better personalized model.

4.4 Strategy 2: Regularizing Back Propaga-
tion

In this section, we address how to regularize the back
propagation step to prevent model overfitting. Generally,
from a regularization perspective, we hope to update the
weight of a neuron only if the neuron is not certain about
a particular adaptation example. From a semantic point
of view, each neuron is trained to explore certain portion of
the feature space for decision making, e.g., topic distribution
in IR [15], edge detector in vision [14]. Thus, when a new
training example exhibits different feature distribution than
previous ones, the algorithm should take it into account and
update the corresponding neurons accordingly. In machine
learning, such technique is often referred to as L1-regularized
subgradient, or truncated gradient [13], or otherwise known
as confidence-weighted learning [6]. In principle, our pro-
posed technique mimics these methods but with a notable
difference: our truncation is enforced on each neuron, while
previous methods often truncate feature weights. In our s-
tudy, we introduce a regularization method by leveraging
the statistics from a held-out validation set.

To be specific, each neuron’s output is computed using
its activation function, often in the form of sigmoid, i.e.,
a(z) = 1

1+e−z . During adaptation, we update the weights of
each neuron k using the truncated gradient as follows:

wk → wk − ηT1

(

∂C

∂wk

, a(k), θ

)

, (7)

where a(k) is the output of neuron k, C is the cost function
defined in eq. (2) and T1 is defined as follows:

T1(v, a, θ) =







max(0, v − a) if v ∈ [0, θ]
min(0, v + a) if v ∈ [−θ, 0]
v otherwise

Figure 4 shows two examples of the truncated gradient
with a(k) = 3, θ = 3 and a(k) = 1.5, θ = 3. For the
first case, when v falls into the range of [−θ, θ], T1 is always
pushed to zero. In the second case which is less aggressive,
only when v is between [−α, α], the gradient is rounded to
zero. Otherwise, T1 outputs the same value as v for v > θ.

It has been show in [13] that this version of truncat-
ed gradient T1 outperforms direct rounding algorithm (i.e.,
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Figure 4: An illustration of the truncated gradient
with different values of α and θ. X-axis is the value
of v and Y-axis the value of gradient.

T0(v, θ) = 0 if |v| ≤ θ) in most scenarios with a proper
choice of θ. Consequently, we propose a variance-truncation
heuristic in our RankNet framework:

Heuristic 4: perform truncated gradient on adap-
tation using a validation set. Given a validation set
{v1, ..., vn}, for each neuron k, calculate the output of each
validation example as {ak(v1), ...ak(vn)}. We assume that
the outputs follow a Normal distribution N ∼ (µk, σ

2
k). For

each adaptation example, update the model weight using
truncated gradient with parameter θ = µk + σk.

Specifically, after the model converges in training, we run
a set of held-out data through the network, without per-
forming back propagation, and store the output (activation)
values for all held-out examples at each neuron. During
adaptation, if the output α of a new example at a specific
neuron falls into the range of the mean plus one standard
deviation of the validation set, we will truncate the gradient
using T1, to propagate a smaller value of error term to the
next layer.

In another way, from the model structure perspective of
view, we can also consider training and adaptation to be two
different learning tasks but share the same network struc-
ture, i.e., they share the same input layer, hidden layers but
not the output layer due to a different objective function. In-
deed, this scenario has been explored in speech adaptation
for cross-lingual model transfer [10]. To be concrete, the
authors propose to back propagate only to the top hidden
layer and fix the rest hidden layers during adaptation. Se-
mantically, the top layer contains the most abstract features
which is more likely to be applicable to different domains
than those concrete features at bottom layers. Therefore,
when the adaptation data is sparse, it could be beneficial
for the model to only adapting the top layer. And therefore
we have the following heuristic:

Heuristic 5: back propagate to the highest lay-
er only. During the adaptation stage, we fix the neuron
weights of the remaining hidden layers but only perform
back propagation to the highest layer of the network and
update its neuron’s weight accordingly.

5. EMPIRICAL ANALYSIS
In this section, we present a comprehensive empirical s-

tudy on the real-world data set introduced in Section 3. Al-
though our focus is on the adaptation performance, we will
first discuss the results from training global ranking models.

5.1 Global Ranking Model Performance
For each training instance in the 5,578,881 query-URL

pair collection, we first extract top-400 most discriminative
features which are used by the commercial search engine.
These features include query-level features such as query
term number, URL-level features such as domain rank, and
query-URL features such as BM25 and so on. The reason for
only using top-400 features for global model training is due
to efficiency concern. Since the main focus on this paper
is on adaptation rather than tuning a best deep RankNet
for generic ranking purpose, we choose to use a limited set
of features to speed up training. Later, we show that even
with this limited set of features, the adaptation performance
of deep RankNet can still significantly outperform a generic
ranker which is trained using thousands of ranking features.
We then divided the data into training set and validation
set at a 1:1 ratio based on queries, ending up with rough-
ly 228,119 queries in each set. We experiment with differ-
ent configuration of the RankNet, from very shallow ones
to deep ones that have five hidden layers. For each of the
configuration, we repeat the data splitting and training for
five times and report on the average results. We set the
initial learning rate for each configuration to be fairly large
η = 1e−2. We empirically reduce the learning rate (at a step
length of 5, η ← η/5) after an iteration when the validation
performance becomes worse — in our scenario, the trigger
condition is either that the pair-wise error goes up by more
than 2%, or the validation NDCG@3 reduces by more than
1%. The minimum learning rate is controlled to be no less
than 1e−6. The maximum number of training iteration is set
to be 2,000. However, we often terminate training earlier if
we observe the model has already converged, i.e., when the
change of validation NDCG@3 is less than 0.01%.

We tested a total of over 20 different configurations of
RankNet. Due to space limitation, Table 2 only lists the
results of several typical models that have different number-
s of hidden layers. Note that here model “50 50” means a
RankNet model with two hidden layers (in addition to the
input and output layers), each of which has 50 neurons. The
most complex model we have trained is a model with five
hidden layers where each one has 100 neurons. Overall, the
best performance was achieved by the model “100 100 50 50
20”, followed by a very simple configuration with only two
hidden layers, “50 50”. In general, adding more hidden lay-
ers does seem to help improve the ranking performance on
average, as can be seen from the table that complex models
often outperform simple ones. However, we have also ob-
served that larger models tend to have higher variance than
smaller ones, which means that they are more likely to be
trapped into local minimums during back-propagation.

5.2 Adaptation Performance
In this section, we focus on reporting the adaptation per-

formance based on two of the most well-performed models in
the previous section due to space concern, i.e., “50 50” and
“100 100 50 50 20”. From now on, we refer them as 2-layer
and 5-layer models, respectively.

5.2.1 Data preparation and evaluation metrics
As described in Section 4.2, the user-dependent adapta-

tion data is constructed based on user click feedback. How-
ever, since the click signal is binary, it becomes inappro-
priate to use NDCG for evaluation. Therefore, we mea-



sure the ranking quality by using mean average precision
(MAP) and mean reciprocal rank (MRR), where MAP is
defined as the average precision scores on all queries, and
MRR is the average reciprocal ranks of all results, defined
as MRR = 1

N

∑

i
1

ranki
, with ranki being the rank of the

first relevant URL in the list. For details of the metrics,
readers can refer to [1].

Unlike the user-independent data used for training global
models which we can randomly split into training and val-
idation sets according to queries, user-specific data comes
in chronological order where queries have time dependen-
cies. Therefore, a rigorous way for performance evaluation
is to split the user queries by their timestamps, use the first
part for training, second part for validation and the latest
queries for testing purposes. We uniformly set the ratios to
be 1

3
: 1

3
: 1

3
in our experiments.

5.2.2 Baseline Ranking Performance
We compare with three baselines. The first baseline is the

performance of the production ranking system which uses
much more training data than our data set, with more fea-
tures (over 3,000 features) than our model (400 features).
The second and third baselines are the results without per-
forming adaptation. i.e., we directly use the two global
RankNet models trained using user-independent data and
check their performance on the user-specific portion testing
data. Finally, we adapt the two global models to the user
data by performing continue-train on the 1/3 portion train-
ing data. We monitor the adaptation performance using
the validation data. Parameter settings and the early stop-
ping criteria for adaptation are the same as training stage
described in Sec. 5.1.

Table 3 lists the results. We see that without adapta-
tion, deep RankNet models perform worse than the baseline
system, which is quite expected since the production system
leverages many more training data and features. With adap-
tation conducted, the ranking performance is improved quite
drastically. Both models were able to improve the MAP and
MRR scores by more than 6%, while reducing the average
user-click position by more than 0.2, when compared to the
production system. Paired t-test shows that both improve-
ments are significant with p-value less than 0.05, comparing
to the baseline production ranking. Comparatively, the 5-
layer adaptation model slightly beats the 2-layer one, but
insignificantly with a p-value around 0.2.

We further analyze the adaptation performance of the 5-
layer model by randomly selecting two users from the adap-
tation set. One of the users is considered as a heavy user
of the search engine who has issued over 300 queries during
the two months, while the other user uses the search engine
much less frequently and only had 20 queries during that
period. The purpose is to study how likely the data sparsi-
ty issue could cause model overfitting. Figure 5 plots their
training and validation errors over 2,000 iterations. From
the figure, it becomes quite clear that the model adapted for
the heavy user is much less immune to overfitting, since the
validation error keep decreasing. On the other hand, with
only less than 10 queries for training, the model adapted
for the light user greatly suffered from the overfitting issue,
whose validation error continues to rise after approximately
500 iterations and never decreases again. This illustration
demonstrates the importance of early stopping. Note that
for illustration purpose, we deliberately allow overfitting to

Model MAP MRR Avg. Click
Position

Production System 0.5782 0.5783 1.83928
Baseline (2-layer) 0.5017 0.5102 2.46839
Baseline (5-layer) 0.5092 0.5132 2.40555
2-layer adaptation 0.6311 0.6325 1.55006
5-layer adaptation 0.6421 0.6494 1.54805

Table 3: Per-user basis performance comparison be-
tween three baselines and two adaptation models.
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Figure 5: Performance of two users, (a) is considered
a frequent user and (b) is an infrequent user.

happen in this case. During the actual adaptation stage, the
process is stopped earlier before the overfitting happens.

5.2.3 Do Adaptation Strategies Help?
Next, we evaluate the performance of the five heuristics

for different types of users. To be concrete, we sort users
based on their query numbers, which follows a power-law
distribution as shown in Figure 1. We separate the users
evenly into three categories, each of which has roughly 1,000
users, namely heavy, medium and light users.

(Strategy 1 Performance) We first compare the three
heuristics in strategy 1 with the baseline adaptation perfor-
mance. Overall, all three heuristics achieve performance im-
provement over the baseline adaptation, with 0.6506, 0.6977
and 0.6524 MRR scores for KL divergence (KL), Click En-
tropy (CE) and Drop Top Click (DT) for the 2-layer frame-
work. Comparatively, the 5-layer RankNet improved even
more with the heuristics, which in general outperforms the
2-layer model in terms of MRR scores by increasing roughly
0.15. Among all heuristics, CE has the best improvement
while KL improves the least. In Figure 6, we plot the MRR
scores in each category of users from the output of the 5-
layer RankNet, along with their standard deviations. Most
improvement comes from heavy users, where CE improves
the MRR for more than 8%, and KL for 2.5% on average.
However, for low-frequency users, we observe that KL per-
forms even worse than the baselines, while DT has marginal
gains and CE still shows significant improvement. We at-
tribute the reason of different performance improvement to
the fact of their query coverage, i.e., how many queries are
affected by each heuristic. Since CE measures the global
weight of the query, its coverage is always 100%. Mean-
while, KL means user-specific query weights, which requires
a query to be issued by both the current user and at least
once by one of the remaining users according to eq. (5),
and therefore has a much lower coverage. DT, on the oth-
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Figure 6: Comparison of three heuristics in strategy
1 with baseline adaptations in terms of MRR scores,
divided by three user groups.

Coverage Heavy Medium Low
H1: KL Divergence 43% 25% 6%
H2: Click Entropy 100% 100% 100%
H3: Drop Top Click 44% 31% 18%

Table 4: Percentage of queries re-weighted by three
heuristics. Note in DT, re-weighting means setting
the query weight to 0 and drop from training.

er hand, is also a user-specific weighting heuristic, which is
determined by the percentage of top-1 clicks of the users.

The statistics from Table 4 confirms our hypothesis. Clear-
ly, we can infer the reason why KL does not perform as
well as CE. In general, KL has much lower query cover-
age than CE. Even for the heavy users, only 43% of the
queries are found common among different users, while for
low-frequency users, only 6% of queries can benefit from the
re-weighting by KL divergence. On the other hand, DT con-
tinues to drop more queries when the user type becomes less
frequent. In particular, for low-frequency users, DT drops as
much as 82% of all queries. We analyzed the logs for a few of
low-frequency users, and found out that indeed, those users
have a much higher percentage of navigational queries like
amazon and yahoo email than heavy users. Clicks of these
queries are mostly on the first results, and therefore filtered
from adaptation. In summary, the three re-weighting mech-
anisms review that heuristics with a high query coverage is
critical to achieve good adaptation performance.

(Strategy 2 Performance) We now turn to analyzing
heuristics of strategy 2, where the focus is more on the reg-
ularization of back propagation. Figure 7 plots the overall
MRR and MAP scores of the two heuristics comparing with
two baseline adaptation methods. The Truncated Gradient
(TG) method expresses very compelling performance, which
substantially improves the metrics from around 0.63 to 0.73,
a 16% relative increase. However, the other heuristic, Back
One Layer (BO), does not perform as well. BO only has
a marginal 1% increase over the baselines, which are not
statistically significant (p-value ≈ 0.12).

For a deep understanding of layer-wise performance, we
randomly sampled three neurons from each layer of the 5-
layer model, and plotted the histograms of the output values
given the validation set. Figure 8 shows the results. Note
that here Layer 1 is the first/bottom layer of the network
and Layer 5 the highest/top layer. The pattern looks quite
consistent for neurons within each layer. In general, lower-
layer neurons tend to have larger variances than neurons
at high layers, which causes less updates to happen in the
lower layers since more gradients are truncated during back
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Figure 7: Comparison of two heuristics in strategy
2 with baseline adaptations in terms of MAP and
MRR scores.
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Figure 8: Example of neuron outputs for the valida-
tion set on different hidden layer of RankNet. Title
indicates (mean, std) of each neuron. Higher-layer
neuron generally has less output variances.

propagation. From the statistics of over 2 million validation
query-URL pairs, the gradients of neurons on layer 5 are
truncated roughly 23% of all adaptation pairs, while the
gradients of the first-layer neurons are truncated over 79%
of the time.

Table 5 shows the comprehensive results of the heuristics
performance along with the baseline. From the overall per-
formance as well as user-category specific performance, we
can observe that Truncated Gradient outperforms all other
heuristics with significance. The results also suggest that
applying heuristics on deep network (5 hidden layers) has
better effect than shallow ones (2 hidden layers).

5.2.4 Repeated/non-repeated Query Performance
In this section, we analyze the ranking performance by

using different criteria in terms of queries. Table 6 lists the
fairly comprehensive results of the five heuristics. We on-
ly report the performance of the 5-layer adaptation due to
space limit. First, we separate queries in the test set in-
to either repeated queries and new queries for each user,
where repeated queries were previously seen in that user’s
adaptation query set while new queries not. We see that
for all methods, most gains come from the repeated queries,
which agrees with previous research results in [21]. For new
queries, however, unlike in [21] where sometimes the result-
s got worse than baselines, all our five heuristics are still
able to increase the MRR scores comparing to the baselines.
Compared to the 5-layer baseline (0.5602), Truncated Gradi-
ent has the largest improvement (0.6082), followed by Click
Entropy (0.5827), both of which are statistically significant,
followed by marginal improvements of the remaining ones.

Next, we compare the individual query performance to
the baseline production ranking. Our criteria is to look at



Model MAP MRR Avg. Click MRR For User Category
Position Heavy Medium Low

2-layer Adaptation 0.6311 0.6325 1.55006 0.6587 0.6348 0.6198
5-layer Adaptation 0.6421 0.6494 1.54805 0.6693 0.6483 0.6210

KL(2-layer) 0.6541 0.6506 1.51197 0.6893 0.6593 0.6129
Entropy(2-layer) 0.6982 0.6977 1.45615 0.7494 0.6894 0.6492
Drop Top(2-layer) 0.6582 0.6524 1.50758 0.6739 0.6598 0.6284

Truncated Gradient(2-layer) 0.7389 0.7382 1.41913 0.7789 0.7385 0.7194
Back One Layer(2-layer) 0.6583 0.6582 1.44059 0.6878 0.6589 0.6283

KL(5-layer) 0.6672 0.6649 1.43849 0.6928 0.6679 0.6230
Entropy(5-layer) 0.7046 0.7085 1.41837 0.7589 0.6978 0.6589
Drop Top(5-layer) 0.6691 0.6692 1.47823 0.6819 0.6683 0.6375

Truncated Gradient(5-layer) 0.7473 0.7497 1.38973 0.7859 0.7508 0.7239
Back One Layer(5-layer) 0.6696 0.6673 1.42974 0.6928 0.6700 0.6359

Table 5: Overall performance of all heuristics compared to baseline. The performance for different categories
of users are also shown. Both RankNet frameworks with heuristics outperform adaptation without heuristics.

the combination of MRR, MAP and click position to see
whether a particular query gets improved or worsen, and
then calculate the percentage for each heuristic. Table 6 also
shows these two comparisons in column 4 and 5. Note that
the majority of the queries remain the same performance
so these two columns do not add up to 100%. Similarly,
Truncated Gradient and Click Entropy improve more queries
than other heuristics.

Another similar criterion we used is to see how many test
queries are pushed to top rank after adaptation, while how
many top-ranked queries are dropped down from the No.1
ranking position. Column 6 and 7 in Table 6 demonstrate
that Truncated Gradient and Drop Top push more queries
to No.1 than others, while Back One Layer and Truncated
Gradient drop less number of top-ranked queries to lower
positions than the remaining heuristics.

Finally, we separate the test queries into navigational and
informational queries based on user intent. We use a rough
classification method here: if more than 75% of all clicks
for a query is on the same hyperlink, we classify the query
as navigational. Otherwise the query is informational. Our
classifier is by no means the state-of-the-art, but is sufficient
for our task here to observe performance by different query
types. We notice that in general, navigational queries have
a much higher MRR scores than informational queries, for
both baseline methods and all five heuristics. In compari-
son, Truncated Gradient still exhibits the most impressive
performance, with both categories of queries improved no-
ticeably from the baselines.

5.3 Model Comparison
We conclude our experiments with the performance com-

parison of the five proposed heuristics. To show the relative
strength, we simply average their MAP and MRR scores for
each pair of the methods in comparison, i.e., Score(Hi|Hj) =
1
2

(

MAP (Hi)
MAP (Hj)

+ MRR(Hi)
MRR(Hj)

)

, which indicates the relative per-

formance of Hi compared to Hj . Figure 9 plots the heatmap
of their scores, where each cell can be read, from y-axis to
x-axis, as Hi vs. Hj .

Overall, we observe that TG performs best among all,
while KL performs the worst. Other than the case that CE
outperforms BO, in general, strategy 2 outperforms strat-
egy 1, which suggests that regularizing back-propagation

Figure 9: Comparison of the 5 heuristics used in this
paper in terms of MAP and MRR scores. Higher
values indicate better comparative performance.

can potentially lead better performance gain than adding
constraints directly to the adaptation instances. The re-
sult also suggests that keeping as much data as possible for
adaptation seems better than dropping some portion of the
data which we assumed would not help adaptation. A glob-
al weighting mechanism for queries in general beats user-
specific query weighting, as can be seen by the comparison
between CE and KL. Finally, regularizing the gradient for
each individual neuron (TG) seems to outperform a layer-
wise treatment (BO) in back propagation. In summary, the
relative strength of the 5 methods is: TG > CE > BO >
DT > KL.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a large-scale study of person-

alized search adaptation, from a deep learning perspective.
We proposed to use deep RankNet to first train a global
ranking model, and then adapted to each individual user
via continue-train. We proposed two strategies to improve
the performance of adaptation. Strategy 1 focused on re-
weighting the user-specific adaptation data so that more im-
portant adaptation instances would be assigned higher im-
portance weights. Strategy 2 emphasized on regularizing the
back propagation stage, where we introduced the usage of
truncated gradient when updating the neuron weights. We
then empirically evaluated our framework on a real-world
data set. The results indicated that a deep RankNet with
5 hidden layers in general outperformed a shallow RankNet



Model Repeated New Q % Query % Query % Q Push % Rank-1 Q Nav Q Info Q
Q MRR MRR Improves Worsen to Rank 1 Drop Down MRR MRR

2-layer 0.6893 0.5538 10.30% 6.87% 2.30% 0.82% 0.7283 0.5489
5-layer 0.6913 0.5602 10.89% 6.41% 2.26% 0.78% 0.7385 0.5512
H1: KL 0.7093 0.5603 10.99% 6.35% 2.37% 0.65% 0.7483 0.5389
H2: CE 0.7243 0.5827 12.83% 6.68% 2.44% 0.44% 0.7531 0.5523
H3: DT 0.7033 0.5786 11.17% 6.13% 2.45% 0.67% 0.7392 0.5493
H4: TG 0.7483 0.6082 13.27% 4.19% 2.62% 0.49% 0.7592 0.5747
H5: BO 0.7034 0.5793 11.01% 6.17% 2.07% 0.43% 0.7804 0.5486

Table 6: (5-layer RankNet) Performance breakdown of the five heuristics by different query criteria.

with 2 hidden layers. Among the 5 heuristics we proposed
to improve adaptation, the truncated gradient method per-
formed the best, followed by the click entropy method that
re-weighted adaptation instances.

There are several future work that we want to explore.
We saw that click entropy has one of the best performance
in all heuristics. Nevertheless, calculating click entropy for
all queries is quite expensive in practice. The system needs
to constantly update the weights of all queries whenever new
user clicks become available, which is impractical for a pro-
duction system. We therefore think of coming up with some
approximation methods that can easily get the query weight-
s without going back to the search logs constantly. Same for
the truncated gradient heuristic, we want to approximate
the truncation values more efficiently. On the other hand,
since we observed that most performance gain came from
heavy users rather than users with fewer queries, one way
to improve the performance of light users is to group users
together and use other similar users’ search information to
compensate for the short search history for light users.
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