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ABSTRACT

Web search is seeing a paradigm shift from keyword based search
to an entity-centric organization of web data. To support web search
with this deeper level of understanding, a web-scale entity link-
ing system must have 3 key properties: First, its feature extraction
must be robust to the diversity of web documents and their var-
ied writing styles and content structures. Second, it must maintain
high-precision linking for “tail” (unpopular) entities that is robust
to the existence of confounding entities outside of the knowledge
base and entity profiles with minimal information. Finally, the sys-
tem must represent large-scale knowledge bases with a scalable
and powerful feature representation. We have built and deployed
a web-scale unsupervised entity linking system for a commercial
search engine that addresses these requirements by combining new
developments in sparse signal recovery to identify the most dis-
criminative features from noisy, free-text web documents; explicit
modeling of out-of-knowledge-base entities to improve precision
at the tail; and the development of a new phrase-unigram language
model to efficiently capture high-order dependencies in lexical fea-
tures. Using a knowledge base of 100M unique people from a pop-
ular social networking site, we present experimental results in the
challenging domain of people-linking at the tail, where most enti-
ties have limited web presence. Our experimental results show that
this system substantially improves on the precision-recall tradeoff
over baseline methods, achieving precision over 95% with recall
over 60%.
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1. INTRODUCTION

Web search is undergoing a paradigm shift from keyword-based
search to an entity-centric organization of web data. A core com-
ponent of this transformation is our improved understanding of the
contents of documents — replacing the shallow summarization of
documents sketched out by keywords with a deeper association be-
tween documents and the entities mentioned in them. Together with
other technologies to allow better understanding of searchers’ in-
tents, this enables powerful new user experiences, from search re-
sults that directly show key facts about people, places and things,
to improved refinement interfaces that allow searchers to quickly
locate web documents that mention only the specific people, places
or other things they are looking for.

Entity linking is the process of matching the references to peo-
ple, places and other entities in a document to specific instances
in an entity knowledge base. Entity linking is a critical step in
establishing entity-level understanding of web documents and sub-
sequent entity-centric search experiences. An entity linking system
must have three desired properties to be successful at web-scale.
First, it must work with heterogeneous web documents that differ
in content structure, writing style, vocabulary and editorial qual-
ity, enabling a unified approach to analyzing noisy personal blogs
as well as professional news articles. The second desired property
is robustly linking “tail” entities that, individually, are infrequently
seen in web documents, but in aggregate make up a significant bulk
of entity references on the web. Linking these “tail” or unpopular
entities is challenging because the entity descriptions at the “tail”
are more likely to contain minimal information, in contrast with
the comprehensive articles written about more popular entities in
Wikipedia. Furthermore, because of the sheer number of existent
tail entities, the corresponding tail knowledge bases include an or-
der of magnitude or more entities than Wikipedia and other head
knowledge bases. As a result of its size, a tail knowledge base
is more likely to include entities that match confounds, including
unknown homonymous entities that are not contained in even the
largest of today’s knowledge bases. Finally, and crucially, the sys-
tem must effectively represent the information in the knowledge
base and web documents using scalable representations for web-
scale deployment.

We present an unsupervised entity linking system that provides
a complete solution to all of these desired properties. Our pri-
mary contribution is the presentation and evaluation of the three
key components of our system. First, we achieve a unified ap-
proach to analyzing diverse web documents through sparse signal
recovery. We use a sparse signal recovery technique, adapted with
a novel probability-based distance metric, to efficiently determine
the most discriminative features in a web document — and ignor-
ing noisy and irrelevant features — regardless of the document’s



content structure or style. Secondly, we incorporate into our algo-
rithms an explicit model of the entities outside of our knowledge
base. This model improves the accuracy of “tail” entity linking
by acting as a competing hypothesis that, in effect, dynamically
adapts our decision criteria based on the statistical distributions of
population features. Third, we capture higher-order dependencies
among the lexical features in our web documents and knowledge
base by replacing a token-based unigram language model with a
phrase language model. This phrase language model maintains the
same parameter complexity as a unigram language model, enabling
efficient storage and access. While there is much existing research
on entity recognition and linking, to our knowledge, no previous
work has met all of these requirements for practically operating
entity-linking in a web-scale environment with diverse document
styles and structures and large-scale, tail-heavy knowledge bases.
We have built and deployed our system for a commercial search en-
gine, linking entity references in web documents with a large entity
knowledge base.

We believe that entity linking at the tail is the core challenge that
must be met for entity-linking systems to meet the requirements
of next-generation web search and entity-centric applications, and
previous entity linking works cannot provide web-scale solutions
with desired requirements. In this paper, we use a knowledge base
of 100 million unique people from a popular social networking
site. We present experimental results in the challenging domain of
people-linking at the tail, where most entities have many confound-
ing and often unknown homonyms. We characterize this com-
plexity, and demonstrate that our system substantially improves on
the precision-recall tradeoff over baseline methods, achieving 96%
precision with 62% recall. While it is not the focus of this paper,
our quality reviews of our system’s production deployment show
that we achieve precision over 95% and recall over 80% on entity
linking against Wikipedia entities, which consist of mainly “head”
(popular) entities. We also test the performance of our paralleliz-
able system, demonstrating that, with an average per-node process-
ing capacity of 750 documents per second, it can be easily scaled to
process tens of billions of web documents using existing distributed
computing infrastructures.

The rest of the paper is organized as follows. Section 2 briefly
reviews the necessary background on sparse signal recovery. Sec-
tion 3 introduces our entity linking system in detail. Performance
evaluation and algorithm complexity are analyzed in Section 4. We
review related works in entity linking in Section 5. Section 6 con-
cludes the paper.

2. SPARSE SIGNAL RECOVERY

Since the entity linking system exploits the recent developments
in sparse signal recovery, we briefly review the model and tech-
niques for finding sparse signals in this section as a technical prepa-
ration. Readers familiar with this area are free to skip this section
without loss of understanding.

2.1 Model

Sparse signal recovery, also known as compressed sensing, has
received much research attention [6, 11]. It studies how to represent
a signal of interest (e.g., speech, image, video, text) by using only a
few building elements (usually out of a dictionary with many build-
ing elements) and still capture the gist of the signal for an applica-
tion. Mathematically, the goal is to approximate a signal y using a
signal x under the constraint that x is sparse, which has only a few
nonzero coefficients. Let 7 (x) be some transformation of x as the
approximated signal. As a popular scenario, when 7 (x) = Ax for
a known matrix A € R™*™, the underlying signal model reduces

to the linear model y = Ax + z, where z represents the fitting er-
ror. Let D(7(x),y) be a metric of the distance between the target
signal y and the approximated signal 7 (x). For the linear model,
D can be the Euclidean distance, i.e., D(Ax,y) = ||Ax — y||3.
Let S(x) > 0 measure the sparsity of the signal x, i.e., a smaller
S(x) indicates a sparser x. Sparse signal recovery aims to find x
according to the following generic optimization

x" =argminD(T (x),y) st. S(x) <e (D

where € > 0 is a pre-defined threshold on the sparsity level, and x*
is the estimate of the sparse signal.

2.2 Algorithms

There are mainly two classes of algorithms for finding sparse sig-
nals: joint recovery algorithms and sequential selection algorithms.
Joint recovery algorithms jointly estimate all nonzero entries in x
by materializing (1) or its variants. In the case of a linear model,
a well known example is the Lasso algorithm [36], which employs
the Euclidean distance and S(x) = ||x/||1, and solves for

RKLasso = arg rgﬂi& |Ax — y|I3 + Allx||. 2

where A > 0 is a regularization parameter, which balances between
fitting quality and sparsity of the solution vector.

Sequential selection algorithms do not materialize and solve (1)
directly. Rather, they sequentially determine the nonzero entries of
x one by one via a number of iterations. At each iteration, an algo-
rithm of this class determines a nonzero entry whose addition into
the signal x can most reduce the distance D, and then updates the
signal with the newly found nonzero element. The algorithm ter-
minates using a stopping criterion, which guarantees the sparsity of
x by limiting the number of iterations. A well known example for
the linear signal model is the Matching Pursuit algorithm, which
we briefly review as follows. As an initialization, let y(o) =y and
B = (. Consider the k-th iteration. There have been (k — 1)
nonzero entries’ locations recorded in B*~Y from the previous
(k — 1) iterations. Now, Matching Pursuit finds among the re-
maining locations the column that best approximates the previous
residual signal via the following optimization criterion

(k) = arg min min Hyuﬁil) — OéAz”% (3)

ie{1,...,m}\B*-1) [a€R

1

where A; denotes the i-th column vector of A. Note that the in-
ner minimization finds the best fit to y*~ 1 using a given column
A;, whereas the outer minimization finds the best fit over all re-
maining columns. In effect, this step recovers a new nonzero entry
that most reduces the matching error to the previous residual sig-
nal in Euclidean distance. Then, let B%) = B*~=D y {i¥)}, and
k) _ (k=1) A Al
y®) = yk=1) _ D
as the number of iterations reaches a pre-defined threshold, or the
approximation error is small enough. The final index set, denoted
by B, contains the indices corresponding to the locations of the
nonzero entries. The values of the nonzero entries can be readily
found by solving a least squares problem

%xp = (ALAg) 'ALy.

y(k_l). Matching Pursuit terminates

The full vector Xmp can be determined by using the values of X at
corresponding indices in B and setting zero to all other locations.

We will evaluate entity linking algorithm instances from both
classes of algorithms in our experiments.



3. THE ENTITY LINKING SYSTEM

We present our web-scale entity linking system in this section.
To assist the technical development, we present the following defi-
nitions and notations. Let £ denote an entity knowledge base. For
each entity e € £, the information is represented in the form of
attribute-value pairs. Let a. denote an attribute of e, and v. denote
the corresponding value of attribute a.. We work with text-based
(lexical) values, although, in general, the values can take on other
forms such as image, audio, or video. Using this representation, the
profile of an entity e in the knowledge base can be characterized by
{(a® ,v¥))}r_,. where 7 is the number of attribute-value pairs
available for entity e. For a given web document D, the goal of
entity linking is to determine an entity e € £ so that D mentions e
in its content. If no such entity exists, we claim that D mentions an
entity that is outside of &, or simply an unknown entity.

3.1 Importance of Sparsity in Entity Linking

For web-scale entity linking, the system is required to be able
to process heterogeneous web documents that significantly differ
in edit quality, writing style, content structure, among other char-
acteristics. It is inevitable that a web document usually contains
information that is irrelevant to the entity of interest. The key re-
alization that motivates the design of our system is that the most
discriminative features in a web document for entity linking are
usually only a few, and thus highly sparse compared with all the
information presented in the document. As an example, below is
an excerpt from a person Ryan Smith’s home page.

“Ryan Smith is a versatile, classically trained pianist from South
Carolina. Ryan has performed solo and collaborative recitals across
the Southeast. He has recently appeared at the Columbia Museum
of Art, Piccolo Spoleto Festival, [Edit: other venues he played at.]

Ryan is a member of the Columbia Music Teachers Association.
In 2007 Ryan was designated a Nationally Certified Teacher of Mu-
sic (NCTM) by the National Music Teachers’ Association. [Edit:
continue to discuss his students.]

In addition to performing, [Edit: his other interests.]”

Among the many lexical terms presented above, the salient lex-
ical features leading to a confident entity linking can be “pianist”,
“South Carolina”, and “Columbia Music Teachers Association”,
together with the person’s name. The rest of the lexical compo-
nents include (i) language components which are merely related
to the entity, e.g., “a member of”, “in addition to performing”;
(i) features that are less critical (and more ambiguous) once the
most salient features are identified, e.g., “versatile”, “Southeast”,
and the places loosely related to him due to his appearance at, e.g.,
“Columbia Museum of Art”.

Note that the excerpt above (from a person’s home page) can
be regarded as a document with average editorial quality. The
web documents generated by social media, such as social network
pages, blogs, forums, are usually of lower editorial quality and
more arbitrary content organization. Conceivably, in such doc-
uments, the most discriminative information for entity linking is
even sparser due to the usage of free style writing and the nature of
discussion.

In our system, we fully exploit the sparsity nature in entity link-
ing by identifying a small amount of features with the most dis-
criminative power. We designed a Bayesian sequential selection
approach to select the most discriminative features one by one. The
selection process is terminated as soon as a decision on entity link-
ing can be confidently reached. This ensures that only a small set
of features is selected, therefore guaranteeing sparsity. An accom-
panying novel aspect that distinguishes our system from virtually
all other sparsity signal recovery systems is that we adopt the pos-

terior probability as the distance metric, which is in sharp contrast
to the dominant adoption of the Euclidean distance. The Bayesian
framework naturally leads to the posterior probability as the dis-
tance metric. Our experiments show that much higher precision in
entity linking can be achieved, which is a highly desirable property
for novel entity search applications.

Now, let us start unveiling the system in mathematical details.
Some details are intentionally left unexplained at present, and they
will become clear as we progress into later sections.

Let F. denote the set of lexical features for entity e. Let P(f|e)
be the probability of seeing feature f in a document that mentions
entity e. A typical approach for estimating P(f|e) is to apply the
maximum likelihood estimate, which translates into the normalized
frequency of the occurrence of f in F.. A smoothing method can
be applied to improve the estimation [8]. Let P(e) denote the prior
probability of the entity e.

For entity linking, it is often helpful to apply proper heuristics to
reduce the search space to a set of entities that are most likely to
contain the underlying entity. Let us work with a confined entity
set, denoted by &. with £, C &£, which is usually a much smaller
subset of the entity knowledge base £. For example, we might se-
lect an &, such that each entity in the subset has a name or nickname
that is at least a partial match with some name in the document.

To exploit the sparsity in entity linking, we develop the Posterior
Probability Pursuit (PPP) algorithm, which is an instance of the
sequential selection algorithms for sparse signal recovery. Given
a document D and its lexical feature set G, PPP iteratively selects
the most discriminative features, and it terminates with a confident
entity linking decision using as few iterations as possible, resulting
in a sparse set of features being selected. The algorithm is described
in Algorithm 1.

input : &.,G,P(fle),P(e),t € (0,1); K € N.
output: ¢*

begin

Initialization. Fo = 0,k = 1;

while G\ Fj, # 0 do

Feature selection. Let

fy=arg min \min-log P(e|lFr-1U{g})| ()
Set Fr. = Fr_1 U {fk},
if maxcce. P(e|Fx) >t or k = K then
| break;
end
k<« k+1;

end
e* = argmin. — log P(e|Fx). (&)

end

Algorithm 1: The Posterior Probability Pursuit algorithm.

The essence of PPP is to find the best features which can mini-
mize the distance between the web document and some entity pro-
file in the entity knowledge base. To this end, PPP adopts the se-
quential selection principle to augment the best feature set F over
a number of iterations. At the beginning of each iteration, the most
discriminative yet unselected lexical feature from G is found to
maximally decrease the distance metric, which measures the agree-
ment between an entity and the features selected from the web doc-
ument thus far. Indeed, by letting D(D,e) = —logP(e|F) and
S(F) = |F]|. this step of PPP resembles (3) in the Matching Pur-



suit algorithm. By enforcing an early termination, PPP encourages
only a small amount of highly discriminative features to be utilized
for resolving entities, which echoes the sparsity nature underlying
the problem. At termination, the entity with the lowest distance to
the web document is determined as the entity linking outcome. In
particular, the distance metric, to be exact, is the negative log pos-
terior probability, i.e., —log P(e|F). This is a novel application
of sparse signal recovery, which is different from the widely used
Euclidean distance metric in this area but is shown later to be much
more suitable for entity linking.

The PPP algorithm can be also interpreted as combining the
Naive Bayes classifier with the sparse sequential selection princi-
ple. From a Bayesian viewpoint, PPP only uses a subset of features
with the most discriminative power, which are determined dynam-
ically for a given web document. This is different from the Naive
Bayes classifier which bases its decision on all features.

3.2 Competing Hypothesis for Tail Entities

Web-scale entity knowledge bases significantly extend into the
entities with limited web presence and popularity, which are collo-
quially termed as tail entities. As examples, many people entities
on social networks such as LinkedIn and Facebook have limited
web presence outside their profiles on the social network. Resolv-
ing tail entities are much more challenging due to the following
reasons. First, the profile of a tail entity often contains much less
information, i.e., smaller number of attribute-value pairs, and/or
shorter value descriptions. This can be readily seen by comparing
a random person’s LinkedIn profile and, say, NBA player Michael
Jordan’s Wikipedia page. Another reason is the incomplete cov-
erage of entity knowledge bases. The majority of tail entities are
not been included in even the largest of today’s entity knowledge
bases. Ironically, however, while these knowledge bases are not
large enough to contain the majority of tail entities, they are large
enough to include some of the confounding, homonymous enti-
ties. The result is that, in practice, we discover that the out-of-
knowledge-base entities indeed create a significant challenge for
a robust entity linking system. If these unknown entities are not
addressed in the model, a system will mistakenly assign an entity
with the same name in the knowledge base to the web document,
hurting the precision of the system and entity-centric experiences
built upon it.

In our system, we adopt a simple and effective model for the
out-of-knowledge-base entities, similar to the approach advocated
in [18]. The essence of the model is to construct a profile of a spe-
cial entity, which is designed to characterize all the entities outside
the entity knowledge base. Thus, this artificially injected entity
serves as a competing hypothesis that represents the tail entities
outside the knowledge base and therefore cannot be linked yet.

To be concrete, let us formally define an unknown entity, denoted
by e., to represent the out-of-knowledge-base entities. For e,,, we
define

P(flew) = {e: f € Fe}l/I€]

for f € UeceFe, which means that the probability of encounter-
ing feature f in a document describing an out-of-knowledge-base
entity is approximated by the probability of seeing f in the fea-
ture set of a random entity from the knowledge base. Essentially,
we assume that the knowledge base is representative of the greater,
unknown population.

To employ the unknown entity in the PPP algorithm, we simply
treat it as a regular entity and factor it into the equations. Specifi-
cally, in the computation of (x) in Algorithm 1, we use the Bayes

rule as well as the conditional independence assumption to obtain
P(Zle)P(e)
Ze’egcu{eu} P(f‘e/)p(e,)

P(elF) =

where
P(Fle) = [T p(fle), e €& Ufeu}
fer
and the prior probabilities of the entities are computed as follows
1

Ple) = STERTA ecé&
M
Plen) = STl AL

Note that the free parameter M € N controls the prior probability
of the unknown entity as well as the known entities.

Meanwhile, the (A) of the PPP algorithm should include the un-
known entity as one possible outcome, as shown below.

Revised (A) in PPP: e = arg mingce,u{e,} — log P(e|Fz).

Similarly, this unknown entity model may also be integrated with
Naive Bayes and other probabilistic methods.

3.3 Phrase Language Model

The last component of our system is the extraction of features
f from web documents and entities in our knowledge base for use
in the PPP algorithm. Our system utilizes lexical features to build
models for entities. All the (text-based) values (i.e., v.’s) in the
knowledge base serve as the source of lexical features. Tradition-
ally, lexical features are exploited using a bag of words model or
a unigram language model [7]. These models have proven effec-
tive in many information retrieval tasks [10, 33, 21, 3]. A major
drawback of the unigram LM is its inability to model high-order
dependencies among words. Higher order language models have
been pursued to address this issue. However, such LMs require
a much larger parameter space and hence are not suitable for web-
scale entity linking with potential storage and processing feasibility
constraints, despite the modest performance gains [7].

In our system, we employ a novel phrase unigram language mo-
del P(fle), in which a lexical feature f can be either a word or
a phrase, where the latter can naturally preserve the dependencies
among words [38, 26]. However, phrase boundaries are usually
hidden, unlike those between words. Building a phrase unigram
language model requires that phrases be systematically harvested
from the text. Two phrase discovery approaches are explored.

The first approach relies on the observation that some attribute
ae usually takes a phrase as its value v.. For example, in the
LinkedIn knowledge base, attributes such as “geographic area”,
“professional association”, and “job title” typically have values whi-
ch are by themselves phrases, e.g., “South Carolina”, “Columbia
Music Teachers Association”, and “classical pianist”, respectively.
Using this heuristic, the value v, in its entirety can be extracted as
a phrase.

The second approach algorithmically discovers phrases from free
style texts, such as the main body of a Wikipedia article, a detailed
review of a restaurant on Yelp, a summary of some person’s pro-
fessional experiences and qualifications on LinkedIn, and the bi-
ography of a movie director on IMDb. The phrases are extracted
through application of a statistical language model, which models
phrase boundaries as partially observable random variables. Punc-



tuation marks provide some phrase boundaries, while other phrase
boundaries are unobserved. A phrase segmentation is a set of con-
tiguous phrases spanning a particular range of text. The procedure
applies successive EM iterations. The first step of an iteration is to
define new phrases. The second step is to re-segment the training
corpus. The third step is to rebuild the model. The iterations are
terminated when over-fitting is observed on a held-out data set.

In our system, we use both approaches for harvesting phrases
from text. The advantages of a phrase unigram language model is
that it effectively captures useful dependencies among words in a
model that can be efficiently stored and accessed.

3.4 Discussion on Algorithmic Detail

3.4.1 Parameter Selection

In PPP, the parameters ¢ and K directly control the termination
criteria. Obviously, ¢ takes values between [0,1]. When ¢ is set
closer to 1, the stopping criterion is more stringent. The effect is
to require more lexical features for entity linking. Thus, it reduces
the rate of falsely claiming a matching entity, at the expense of
missing out entities that are actually mentioned in the web docu-
ment. It is usually the requirement of the application that deter-
mines the operational performance tradeoff. The parameter K can
be a pre-defined threshold indicating the maximum number of iter-
ations. Our experiences show that K = 20 usually suffices. The
parameter M determines the prior probability of all entities, and
it can be interpreted as an estimate of the total amount of out-of-
knowledge-base entities, which is itself difficult to estimate [15,
23].

3.4.2 Adaptive Feature Selection

Note that PPP dynamically determines the most salient features
from a web document. This is different from the existing feature
selection techniques [17, 32] in which a set of feature dimensions
with fixed weights are learned using the training data and then used
for classification in all test cases. Essentially, our system adap-
tively selects the salient features on a per-test-case basis. Beside
the benefit that no labeled data is required to perform the proposed
techniques, the mechanism of dynamic feature selection represents
an adaptation to leverage the sparse intersection between lexical
features of the web document and the entities caused by various
reasons including frequent updates to the knowledge base as well
as different writing-styles, which are circumstances that systems
with fixed weighting schemes cannot handle robustly [5].

4. EVALUATION

In our regular quality reviews of our commercial deployment, we
find that our system’s performance on “head” (Wikipedia) entities
achieves a precision over 95% with recall over 80%. In this pa-
per, we focus our performance evaluation on the more challenging,
and we believe as yet unaddressed, task of entity linking for “tail”
entities.

For this purpose, we use an entity knowledge base of 100M peo-
ple profiles, gathered from a social networking site; and evaluate
the quality of our entity linking on a selection of diverse web pages
mentioning people. Note that our experiments focus on the entity
linking task, and we assume that entity recognition (finding entity
mentions, for example) is handled separately.

4.1 Entity Knowledge Base

The knowledge base is built upon the information from a popular
online social network. It contains the profiles of about 100 million
unique people entities. Most of the people entities are tail entities,

which means that their web presences are limited. Each profile em-
ploys the attribute-value pair representation to store various aspects
of information about a person. For the purpose of illustration, Ta-
ble 1 presents an example profile of a people entity.

Attribute | Value
Name | Ryan Smith
Location | Columbia, South Carolina
University | University of South Carolina
Degree | Doctor of Musical Arts
Work | South Carolina State University
Expertise | Taubman approach and physical aspects ...

Table 1: An example profile in the people knowledge base.

4.2 Documents with Entity Labels

Building an independent set of web documents with entity la-
bels requires one to determine whether some or none of the people
entities in the knowledge base are mentioned in a document. Com-
prehensively labeling entities is particularly important for measur-
ing the recall for linking tail entities. Overall, we obtained labels
for 555 web documents with entity labels. Among them, 185 web
documents are found to have matching people entities in the entity
knowledge base. For the rest of the 370 web documents, our ex-
haustive search found no matching entities within the knowledge
base, and hence they are labeled as out-of-knowledge-base, un-
known entities. Specifically, the large portion (about 67%) of the
documents with an unknown entity label clearly signals the sever-
ity of out-of-knowledge-base tail entities, even for a large KB with
over 100M entities.

The detailed procedure is described as follows. We randomly
selected 50 names from our people knowledge base. For each se-
lected name, we collect a set of web pages that may mention some
people entity with this name as follows. By using each name as
a query, we first obtain the top 20 results in the SERP via a com-
mercial search engine. Then, the following types of web pages
are manually removed: (i) Directory page. A web document of
this kind usually mentions many different people entities with the
same or similar names. Common domains for such web pages are,
for example, pipl.com and www. spokeo. com. (ii) Password-
protected page, which requires log-in to access the actual informa-
tion. (iii) Web pages directly from the social network which are
used to build our entity knowledge base. Using this procedure,
we obtain 555 web documents with potential people entity men-
tions. These web documents encompass a large variety of writ-
ing styles and editorial qualities. Only about 10% of the docu-
ments are news articles and online knowledge base articles which
have decent editorial quality. The rest of the documents include (i)
home pages of people with different professions; (ii) home pages of
different small businesses; (iii) articles/conversations/reviews from
blogs (e.g., WordPress), technical forums, YouTube, academic re-
search listings, social networks, etc. For each web document D, the
people entities with the name which is used as the query to retrieve
D comprise the confined entity set £.. The size of £. ranges from
only one to about 2,400, depending on the number of namesakes
in the people knowledge base.

To obtain the ground-truth entity labels, we manually examined
each web document and applied exhaustive search to determine
whether a matching entity exists in the confined entity set £.. The
detailed procedure is described as follows. First, by reading through
a web document, we determine whether it is actually about any per-
son with the specific name. There are occasions that the first name



and the last name happen to co-occur in a web document without
actually referring to any person with the specific name. Once we
recognize such a situation, we determine that the web document
refers to no entity in &, or equivalently an unknown entity for our
purpose. When the web document mentions some person with the
specific name, we try to understand the information about the per-
son by inspecting the content in the document. Then, we look for
entities that matched the features on the web document from the
people knowledge base. We declare a matching entity if we can
find one from the inspection. Otherwise, we continue looking for
the entity from the social networking site from which the knowl-
edge base is built. Eventually, if a matching people entity still
cannot be found, we declare that the web document mentions an
unknown entity.

4.3 Baseline Methods

Our proposed approach for entity linking utilizes the lexical fea-
tures in the documents as well as the knowledge base. Meanwhile,
the people entity knowledge base in our experiment contains no
direct relationships or interconnections among the people entities.
Thus, it is impractical to compare with previous methods such as
discussed in [9, 30, 29] due to their dependence on the structures
and the interlinks in Wikipedia pages. Since lexical features are ar-
guably the most important building block for text information pro-
cessing tasks, we employ three baseline methods for entity linking
that are all based on lexical features. Note that the confined entity
set & is also employed by the baseline methods.

Cosine similarity with tf-idf weights (tf-idf). The vector space
representation of the web document and the people entity profiles
are formed using the tf-idf weights. The cosine similarity is cal-
culated to determine the best matching people entity. To determine
the unknown people entity, we preset a threshold on the cosine sim-
ilarity. If the people entity with the highest cosine similarity does
not exceed the threshold, an unknown entity will be claimed. This
baseline method represents the lexical-features-based algorithmic
component applied across a series of entity disambiguation tech-
niques [2, 5, 9, 20].

Naive Bayes (NB). A Naive Bayes classifier with the additional
unknown entity is constructed. The entity with the maximum pos-
terior probability is linked to the people mention in the web docu-
ment. The pre-defined parameter is the total number of unknown
population M, which equivalently specifies the prior probabilities
of the entities. This baseline method essentially reproduces the
state-of-the-art technique developed in [18] without the name vari-
ation model, which has to be learned with information beyond lex-
ical features.

Lasso based entity linking (Lasso). This method also exploits the
sparsity in entity linking using sparse signal recovery. It is an in-
stance of the joint recovery algorithms. It differs from PPP in three
important aspects. First, it employs the Lasso algorithm to jointly
select the discriminative features. Second, it adopts the Euclidean
distance for measuring the closeness between the web document
and entity profiles. Finally, it has to work with phrases by algo-
rithmic nature: a phrase corresponds to a dictionary item, i.e., a
columns of the matrix A. There are two parameters, one being A
in (2), another being a threshold on the Euclidean distance for de-
termining unknown entity. Note that the Lasso algorithm has been
adopted to build the state-of-the-art web information processing ap-
plications [22].

4.4 Definitions of Precision and Recall

We define the performance metrics. Since an entity search appli-
cation can only utilize the web documents with known entities, the

performance metrics should emphasize the importance of the cor-
rect discovery of known entities over the correct claim of unknown,
out-of-knowledge-base entities. By slightly abusing the terminolo-
gies in traditional information retrieval, we define the precision and
recall as follows.

First, we define the following auxiliary quantities:

n1: the number of documents for which the algorithm correctly
determines the matching people entity in the knowledge base.

n2: the number of documents which the algorithm determines as
mentioning some people entity in the knowledge base.

n3: the number of documents which have a matching people
entity in the knowledge base, i.e., n3 = 185 in this experiment.

Then, we define the performance metrics as

SN ] a N1
precision = —,  recall = —.
n2 n3

To understand the metrics, consider the following examples. Sup-
pose an additional web document mentions no entity in the knowl-
edge base but the algorithm incorrectly determines a matching en-
tity in the knowledge base. Then, it decreases the precision due to
an increased n2. As another example, suppose the algorithm cor-
rectly identifies an additional web document as mentioning an un-
known entity. Then, n1,n2 stay unchanged so that both precision
and recall are unaffected. This behavior reflects the downstream
applications’ need for web document with known entities, since
their correct identifications can provide actual useful information
to enrich the entity search experience.

Since different entity centric applications require different preci-
sion and recall in entity linking, it is incomplete and improper to
use a single best performance metric (such as F1) for evaluation.
Instead, we compare the precision-recall tradeoffs offered by an al-
gorithm. This methodology provides a comprehensive view of all
the operational points of an algorithm.

4.5 Results

We first pivot the performance comparison on different perspec-
tives to understand how the entity linking system requirements are
met. The overall result is presented together in Fig.5 at the end of
the section.

4.5.1 Usefulness of Sparsity

We examine the usefulness of exploiting the sparsity nature of
entity linking. In this section, we employ the bag of phrases model
for all algorithms. First, we compare two baseline methods, tf-idf
and Lasso. Their distance metrics are both based on the cosine sim-
ilarity defined in the sense of Euclidean distance. The difference is
that while the tf-idf approach uses all the lexical features, the Lasso
based approach only uses a sparse subset of lexical features. Fig.1
shows the results. We see that the performance tradeoff of Lasso is
relatively insensitive to the parameter o (or, A). Obviously, at the
same recall, the Lasso based approach achieves much higher pre-
cision than the tf-idf approach. The entire range of precision score
for the tf-idf approach stays rather low. By enforcing sparsity in the
selection of lexical features, Lasso achieves much more favorable
performance.

Next, we compare PPP to the NB classifier. They are both devel-
oped under the Bayesian framework and equipped with posterior
probability as the distance metric. The difference is that PPP works
with only a few features whereas NB utilizes all of them. The re-
sults are presented in Table 2.

Note that varying the parameters M and ¢ in the PPP algorithm
delivers a tradeoff between precision (P) and recall (R). For a fixed
M, NB can be viewed as a special case of PPP by using all the
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Figure 1: Sparsity helps: tf-idf (non-sparse) vs. Lasso (sparse).
For tf-idf, different points on the curve are obtained using dif-
ferent thresholds (from O to 1) on the cosine similarity for de-
termining unknown entity. For Lasso, the value in the paren-
thesis indicates the parameter « (as used in the regularization
parameter A = «||ATy||~ [13]). Different points on a Lasso
curve correspond to different thresholds (from O to 1) for de-
termining unknown entity.

PPP NB

M [[t%]1 [3 [5 [7 [9 [u

Lo¢ || P [0-62]0.76 [ 0.82 [ 0.87[ 0.87] 0.87[[ 0.83
R | 0.79 ]| 0.78 | 0.77 | 0.76| 0.73| 0.73|| 0.70

o0 || P | 0-77 [ 086 [ 0.93 ] 0.94 [ 0.94 | 0.96][ 0.96
R | 0.66 | 0.65 | 0.65 | 0.63 | 0.62 | 0.62] 0.58

Loz || P [087[0.95 [ 0.97 [ 0.97 [ 0.99] 0.99] 0.99
R | 0.57 | 0.56 | 0.54 | 0.52 | 0.52| 0.52| 0.48

o | P06 [0s8 oo [T [T [T |1
R | 047 ] 0.44 | 0.44 | 0.43] 0.43] 0.42] 0.38

Table 2: Sparsity helps: NB (non-sparse) vs. PPP (sparse). For
PPP,t =1 — 10" '.

lexical features, which is algorithmically achieved by setting ¢t = 1
(or, tg = o0) and K = oo in PPP. From the P-R scores in boldface,
PPP improves the recall at precisions no lower than its NB counter-
part when ¢ is close to, but surely less than, one. Clearly, properly
exploiting the sparsity nature enables performance improvement.

4.5.2  Effect of Distance Metric and Unknown Entity

For PPP (and NB), the posterior probability distance metric nat-
urally incorporates the probabilistic unknown entity model as an
entity class. For Lasso (and tf-idf), the Euclidean distance met-
ric directly works with a threshold on the distance metric to de-
termine unknown entities. The distance metric and the unknown
entity model require mutual compatibility and should not be paired
with arbitrary substitutes. Therefore, we examine their joint effect
by studying the performance comparison between PPP and Lasso
using the phrase language model. Fig.2 shows the performance.

Based on Fig.2, the precision-recall tradeoff of PPP over dif-
ferent M is relatively insensitive to the parameter ¢. Obviously,
the two sets of curves unveil the sharp difference between the per-
formance tradeofts of PPP and Lasso, respectively. PPP enjoys a
much better precision-recall tradeoff, in which the precision can be
greatly improved over the Lasso based approach at a given recall.

Next, we analyze the result from a different perspective. Note
that, in effect, a mechanism for modeling unknown entity controls
the degree of aggression in outputting unknown labels. Let us com-
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Figure 2: PPP outperforms Lasso. For PPP, each curve corre-
sponds to t = 1 — 10~ where t; is provided in the parenthesis;
different points on a curve represent different )/ (from 10° to
10'5), where higher precision corresponds to greater M.

pare the tradeoff between the entity linking accuracy on the web
documents mentioning a known people entity and the accuracy on
the web documents mentioning an unknown people entity for PPP
and Lasso, respectively, in Fig.3.
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Figure 3: How well an algorithm does in linking known entities
vs. determining unknown entities?

Note that within each set of curves (PPP and Lasso, respectively)
in Fig.3, the performance tradeoffs are similar. At a given linking
accuracy on the web documents mentioning known people entities,
PPP offers much better linking accuracy on the web documents
mentioning unknown people entities. From an algorithmic view-
point, PPP employs a principled unknown entity model which is
probabilistic in nature. In contrast, Lasso uses a simple threshold
on the similarity measure, which is mainly an engineering solu-
tion to determining unknown entities. Since there is a nontrivial
probability of encountering unknown entities (in this experiment,
about 67%) as in web-scale applications with many tail entities,
the unknown entity model introduced in Section 3.2 (adopted by
PPP) delivers a much greater capability for determining whether a
people entity is outside of the knowledge base.

Finally, we completely disable the unknown entity model by set-
ting M = 0 in PPP. The threshold ¢ on the posterior probability
is used to determine unknown entity. We found that the precision
stays at a very low level, 27% =+ 1%, at a recall of 84% =+ 1%, for
t € [0.5,1 — 107"]. (Similar results are also observed for NB
with M = 0.) Clearly, the unknown entity model is critical for
achieving high precision in entity linking.



4.5.3 Utility of Phrase Language Model

In this section, we examine the utility of the phrase unigram lan-
guage model for entity linking. For ease of illustration, only PPP
is considered. We plot the best precision-recall tradeoffs by using
phrases (labeled as “PPP (phrase)”) and using the traditional word
unigram (labeled as “PPP (word)”), respectively, in Fig.4.
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Figure 4: Phrase LM improves performance.

From Fig.4, we can clearly see a substantial improvement by
using the phrase unigram language model in PPP. Especially, by
including the phrases in the model, PPP can achieve much higher
recall at the high precision region.

4.5.4 Overall Result

Finally, the best precision-recall tradeoff of each algorithm is
shown in Fig.5. Overall, the sparsity-exploiting PPP algorithm with
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Figure 5: Overall performance comparison. Our system (PPP
with Phrase LM) achieves the best performance tradeoff.

the phrase unigram language model, which is employed in our en-
tity linking system, yields the best precision-recall tradeoff among
all approaches in comparison.

4.6 Performance at Large-Scale

In this section, we analyze the time complexity of the system
and demonstrate its feasibility for web-scale entity linking. We di-
vide the system into three major stages and discuss their respective
complexities.

Phrase Discovery. As a preprocessing step, this stage extracts
phrases from free-style attribute values. Given an entity knowledge
base, the phrase breaker routine finds a phrase segmentation which
maximally reduces perplexity on a held-out portion of all free-style

values in the knowledge base. For a knowledge base with 100 mil-
lion entities, both of these procedures can be completed within one
day using a single machine with 16 cores.

Building Entity Feature Model. In this stage, the system builds
the phrase unigram language model, i.e., P(f|e), for every entity
(including the unknown entity) in the knowledge base. We can
build these models for 100 million entities in 20 minutes using a
MapReduce cluster with thousands of nodes.

Entity linking. This stage invokes the PPP algorithm on web
documents paired with the entity models. To obtain meaningful es-
timate of average complexity, we performed entity linking for more
than 20 million documents and calculated the number of documents
processed per node per second. On average, one node (with a single
core) can process about 750 documents per second. In practice, we
run thousands of nodes in parallel on a MapReduce cluster to pro-
cess 10 billion web documents. In conclusion, the system is highly
scalable for web-scale entity linking applications.

S. RELATED WORK

The major technique for disambiguating entity mentions in doc-
uments is to compare the contexts of both the mention in the docu-
ment and an entity. Lexical features have proven very useful in pre-
vious entity linking and disambiguation works. In cross-document
coreferencing, Bagga and Baldwin [2] compute the lexical simi-
larity between the sentences extracted for each pair of documents
based on a vector space model and threshold the similarity score
to determine if two documents refer to the same entity. In addi-
tion to lexical features, during the past decade there has been much
work that focused on the special structures available in an entity
knowledge base. A representative example is Wikipedia, which
not only contains texts describing the entities but also possesses
rich structures such as redirect pages, disambiguation pages, cat-
egories, anchor texts and hyperlinks. These structures establish
the relationships between entities, leading to systems built to ex-
ploit the correlations among entities [1, 5, 12, 25, 37, 30, 24, 19,
4]. Milne and Witten [30] consider the relatedness of the enti-
ties, which is measured in terms of the shared in-links to the en-
tities” Wikipedia pages, in building a feature representation of the
mentions to be revolved. Machine learning approaches are pro-
posed to determine the weight among commonness, relatedness
and context in the disambiguation module. The method reported
in Medelyan et al. [28] computes the average semantic similarity
between documents, which is also defined using the in-links struc-
ture in Wikipedia, and combine it with other features to resolve
entity mentions. In Bunescu and Pasca’s system [5], the context-
article similarity, which is basically measured in the cosine sim-
ilarity between the standard vector space models, and the taxon-
omy kernel, which essentially utilizes the Wikipedia categories to
build feature vectors, are jointly exploited for designing a super-
vised learning approach for entity disambiguation using SVM. Hof-
fart et al. [20] models the popularity prior of entities, the context
similarity between mentions and entities, and the coherence among
entities. Then, a mention-entity graph is constructed with the edges
representing the linear combination of the factors weighted by co-
efficients learned from a held-out data set. A dense subgraph is
computed with each mention exactly linking with one entity, hence
collectively disambiguate the entity mentions. These approaches
build supervised learning systems to disambiguate entity mentions.
However, unfortunately, it is infeasible to extend these supervised
approaches for web-scale entity linking due to the size and the fre-
quent updates of the knowledge bases, as well as the difficulty in
obtaining high quality labeled data in the presence of vast ambigu-
ity among entities.



Cucerzan [9] proposed an approach to solve the named entity dis-
ambiguation problem by optimizing the agreement between each
of the mentions and the document in terms of contextual informa-
tion as well as all pairwise agreements between mentions in terms
of Wikipedia category information. Mihalcea and Csomai [29]
considered linking mentions to the Wikipedia entities. In the link
disambiguation process, they apply a knowledge-based approach
which computes the contextual overlap between the entity defi-
nitions and the words to be disambiguated, and an approach that
adopts features including part-of-speech, local contexts with spec-
ified locations, among others. A voting scheme is further devised
based on these two orthogonal approaches to filter out incorrect
predictions by seeking agreements between the two methods. Han
et al. [19] consider a collective approach for disambiguate multiple
entities in a web document using the Wikipedia knowledge base.
Global interdependence between different entity disambiguations
are modeled and a referent graph is constructed to jointly disam-
biguate the meanings of the entities in the web document by ex-
ploiting their semantic relatedness. Han and Sun [18] employs a
generative entity-mention model for linking entity mentions to a
knowledge base, which can incorporate the prior popularity of en-
tities, name variations, and the context of the entity in the knowl-
edge base. A Naive Bayes classifier is then employed based on
the generative model to determine the best matching entity in the
knowledge base. These techniques perform well on web documents
with decent editorial quality, such as news or Wikipedia articles.
However, for establishing entity mapping on the entire web, the
heterogeneous edit qualities, various writing styles, and arbitrary
content organizations present a new challenge beyond the capacity
of existing systems.

The increasing popularity of social networks has attracted a se-
ries of research on entity recognition and disambiguation on so-
cial network data. In particular, entity linking in tweets against
the Wikipedia entity knowledge base has become a fast growing
research area [34, 27, 14, 16, 35]. In this setting, the tweets are
viewed as very short and noisy “documents” unlike typical web
documents which are generally longer and richer in useful context
for disambiguating the entity mentions. To alleviate this problem, it
is shown useful to consider a collection of tweets from one user and
build a topical model that can draw the user’s past tweeting prefer-
ence to help understand new posts. Meanwhile, the relations among
the entities, especially the categorical structures in Wikipedia, are
commonly exploited to improve entity linking performance. Our
work, in contrast, considers the entity linking at the tail. We focus
on exploring the utility of lexical features only, since relations and
connections among entities in a tail entity knowledge base may not
exist or be poorly constructed.

Recently, web information processing has provided an emerging
opportunity for the theories and algorithms of sparse signal recov-
ery [6] to harness the large-scale data available on the web. In [22],
Kasiviswanathan et al. apply the technique for sparse signal recov-
ery to detect emerging topics in streaming user-generated contents.
The novelty of a document can be characterized by the quality of
a sparse representation. In [31], Min et al. utilize a low-rank and
sparse matrix decomposition technique to separate the background
topics from keywords on a set of documents. The topical back-
ground shared across multiple documents is modeled by a low-rank
matrix, whereas the keywords specifically related to each individual
document are captured by a sparse matrix. These works pioneered
the exciting application of sparse signal recovery techniques to the
web information processing. The techniques therein, however, are
all based on the Euclidean distance as the metric for model fitting,
which resides in the traditional sparse signal recovery regime. In

contrast, our system employs a probabilistic distance metric, which
is a highly innovative extension and a provably effective adaptation
of sparse signal recovery to web information processing.

6. CONCLUSIONS

We built a web-scale entity linking system for tail entities on
the web. At the core of the system is a posterior probability pur-
suit that exploits the sparse nature of entity linking, augmented by
an unknown entity model characterizing the presence of out-of-
knowledge-base entities, and the phrase unigram language model
that effectively captures high-order dependencies among words.
The system achieves the superior precision-recall tradeoff which
is desired by many entity centric web applications.

For the past decade, the availability of Wikipedia, Freebase and
other (head-focused) knowledge bases has enabled substantial ad-
vances in entity linking for popular, well-described entities. As
that challenge comes closer to resolution, and new, large-scale, tail-
focused knowledge bases — built from social networking and so-
cial media sites — become available, we believe focus will and
must shift to linking tail entities in order to satisfy the breadth of
requirements for next generation search and entity-centric applica-
tions. Our system is, to our knowledge, the first large-scale system
to be designed for and demonstrate high performance entity linking
at the tail.
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