
Server Farms
and

XML Web Services

Jorgen Thelin, CapeConnect Chief Architect

PJ Murray, Product Manager
Cape Clear Software

LinuxWorld Conference & Expo

Objectives

What aspects must a developer be aware of
when a Web Services will be run in clustered
environment such as a server farm?

Do Web Services implementations need to be
"cluster aware", or can this be handled
transparently by the runtime platform?

We revisit the subject of why keeping Web
Services implementations as stateless as
possible really helps in these circumstances,
and the effect of using session-based
facilities on scalability.

Basic Definitions

Server Farms are loosely coupled clusters of
hardware, networks, and software

Web Services are software components with a
well defined XML interface that can be
incorporated in a distributed application – Based
on Standards

Why cluster?

High Availability

Transparent backup and failover, redundancy of
systems

Cheaper than tightly coupled multiprocessor
system

Parallel processing/Performance

E.g. Beowulf

Server Integration

Different servers perform different tasks

For example, WAS – Web Application Server

Why cluster?

Scalability
More scalable than multiprocessor systems

Capacity on demand possible

Automated cross-platform system management

Failover and back-up

Load Balancing

E.g. Linux Virtual Server project

Determining Requirements

Downtime has a cost

Typically expressed as a cost per hour

Makes it easy to calculate ROI on clustering
projects

Reduces other costs – disaster recovery

Five 9s

Currently considered the industry standard for
highly-available distributed systems

Means less than 6 minutes of annual downtime

What are critical factors?

Size: CPU speed, memory speed, memory size, cache
size, disk speed, disk size, network bandwidth?

Too many interdependent factors

Benchmark, find bottleneck, fix it. Repeat.

For Web Services, the bottleneck is usually the
network rather than the CPU

Many general guidelines: dual CPU machines scales
better – application runs uninterrupted on one CPU
while the other CPU handles all network interrupts

Linux Virtual Server Project

The Linux virtual server is a highly scalable
and highly available server built on a cluster
of real servers.

The architecture of the cluster is transparent
to end users, and the users see only a single
virtual server.

http://www.linuxvirtualserver.org

http://www.linuxvirtualserver.org/

Virtual Server Architecture

Load Balancing Algorithms

Basic round robin

Weighted round robin

Good for servers with different capacity

Least-Connection

Use least busy server

Weighted Least-Connection

Percentage share of active connections is ratio to
its weights

Web Services Defined (Again)

Self-describing, self-contained modular entities:

Platform and language independent

Implementation neutral

Open standards based

Loosely coupled

Programmatically connect business processes

Typically requiring integration with existing systems

Web Services

Web Services are software components:

Defined in WSDL.

Remotely accessible via SOAP.

Registered in a UDDI.

WSDL

WSDL:

The Web Services Description Language.

Describes the methods & parameters.

Like a “users manual” for the Web Service.

Is based on XML.

SOAP

SOAP:

The Simple Object Access Protocol.

Defines the message contents and processing.

Like a “transport” for calling Web Services.

Is based on XML and runs on HTTP(S).

UDDI

UDDI:

The Universal Discovery, Description, & Integration.

Stores Web Services descriptions and endpoints.

Like a “Yellow Pages” for Web Services.

Ultimately will require advanced DNS type features
Round robin endpoint allocation

Web Services Example

Web Services Standards

Web Services standards look familiar:

WSDL  Java interfaces, CORBA IDL

SOAP  Java RMI, CORBA IIOP

UDDI  JNDI, CosNaming, CosTrader

But they…

Abstract Java, CORBA and .NET technologies.

Are being added to many packaged applications.

EAI via Web Services

Why Clustering and Web Services?

On the back-end (producer)

Expose - business logic

Integrate - lightweight EAI – technology
integration

On the front-end (consumer)

“Single Point of Access” for disparate client types

HTTP-enabled client interfaces

Inter-application communication interface

Process inbound XML

Private Directory Systems (UDDI)

Standalone Web Services Platform

Single instance of CapeConnect server

Single server host

Several points of failure

Web Services Platform
with clustering IP router

CapeConnect + IP Router

Multiple CapeConnect server instances

Multiple Linux server hosts

Router provides single endpoint IP address to
the outside world

Each server instance runs on a host with its
own IP address

CapeConnect + IP Router

Router provides failover among server hosts

Router can provide load balancing among
server hosts

BUT - requires completely stateless Web Services

Router is the only single point of failure

A Web Services Gateway

Application level message router

Receives and forwards SOAP messages across network topology
boundaries

Can be used to bridge between different transport schemes
For example: HTTP in, JMS out

Usually placed in the DMZ for securely connecting Internet
SOAP traffic into a corporate network

Provides a very convenient place to build clustering and
failover into the service hosting architecture for Web
Services

Also allows load balancing to be used across a cluster of
Web Services platforms, thereby avoiding operational
hotspots.

Web Services Platform
with Web Services Gateway

CapeConnect + Gateway

Functionally equivalent to using a Clustering
IP Router

Allows use of other transport types such as
JMS between the Gateway and XML Engines

Some processing (such as security checks)
can be handled by the Gateway

Gateway can provide “application failover”
facilities such as when upgrading a service

If the web services are not stateless, some
state data needs to be shared between XML
Engine instances – either by the middleware
or application itself

Gateway still provides a single point of
failure

CapeConnect + Gateway

The Ultimate Web Services Cluster

The Ultimate Web Services Cluster

Only single point of failure is the IP router
which are generally very reliable

CapeConnect Gateway makes “cluster
management” tasks such as service
upgrades easier due to the application level
failover facilities

Any number of CapeConnect XML Engines
can be deployed to handle the required
service load

Two Gateway instances should be sufficient
to handle most scenarios, but more can be
added if required

The Ultimate Web Services Cluster

Service Development Considerations

Issues that Web Service developers
need to consider for making their

applications “cluster friendly”

The Need for Stateless Services

The stateful-ness of a Web Services
implementation is the main determinant of
the ease of deployment into a cluster
environment

Stateless services deliver the maximum
performance as there are no additional
“overheads” on each call

Stateless Service Architectures

If service components are completely
stateless:

a wide range of configuration options can be used
to create a completely fault tolerant deployment
architecture

Scalability can be increased by simply adding more
processing nodes

Service processors can easily be moved from node
to node for load balancing purposes

Stateful Service Architectures

If service components are stateful:

Failover has to be explicitly handled by either the
service or the server hosting the service

Load balancing incurs a cost as service instance
state needs to be reconstructed on the new node

Service applications have to be “cluster aware” to
ensure any relevant state information is preserved
in persisted data after each request

Preserving state information will add an overhead
to all calls, which will ultimately reduce
performance (response time and scalability)

Service Instance configuration

Any configuration information required by the Web
Services needs to be available to all nodes the service
is deployed onto

To use a single set of config data for all instances,
needs to be stored in:

Config file on a shared file system drive accessible from
all nodes

Database accessible to all nodes

The Web Services will still need to be deployed into
each node in the cluster

Service Upgrades

One of the hardest part of managing a
cluster / server farm is how to perform
upgrades on individual applications

Upgrade each processing node in the cluster
in turn (see next slide)

Requires “application level” router such as
CapeConnect Gateway (IP Routers can’t
handle this)

How To Handle Service Upgrades

General approach is:

For each processing node in the cluster:
1. Disable an application on one processing node at a time

2. CapeConnect Gateway will route requests for that
application to other nodes in the cluster

3. Redeploy the application on the “offline” node

4. Other applications on the ”offline” node can still be active –
only the application being upgraded is actually unavailable

5. Bring the new application version back on line

6. Gateway will start routing requests to that node again

Proceed with the next node in the cluster until all
service instances have been upgraded

Sessions

Any use of “sessions” makes service
invocations stateful

Requests need to be routed to the same processor
node as the previous requests in this session –
“affinity”.

Or, session state will need to be reconstructed if a
request is sent to a different processing node from
the last request in this session

Load balancing algorithm needs to be session
aware – often referred to as “sticky sessions”
or “session affinity”

Conclusions

The main aspect Web Services developers
need to consider is the stateless-ness of their
services

Many deployment options are available for
creating Web Services clusters

Stateless services can be scaled more easily
simply by adding more processing nodes

Stateless services deliver higher performance

