
Keeping Information Safe from Social Networking Apps

Bimal Viswanath
MPI-SWS
Germany

bviswana@mpi-sws.org

Emre Kıcıman
Microsoft Research
Redmond, WA, USA

emrek@microsoft.com

Stefan Saroiu
Microsoft Research
Redmond, WA, USA

ssaroiu@microsoft.com

ABSTRACT

The ability of third-party applications to aggregate and re-
purpose personal data is a fundamental privacy weakness
in today’s social networking platforms. Prior work has pro-
posed sandboxing in a hosted cloud infrastructure to prevent
leakage of user information [22]. In this paper, we extend
simple sandboxing to allow sharing of information among
friends in a social network, and to help application devel-
opers securely aggregate user data according to differential
privacy properties. Enabling these two key features requires
preventing, among other subtleties, a new“Kevin Bacon”at-
tack aimed at aggregating private data through a social net-
work graph. We describe the significant architectural and
security implications for the application framework in the
Web (JavaScript) application, backend cloud, and user data
handling.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Information flow con-
trols

Keywords

online social networks, social apps, data privacy, differential
privacy, information flow control, Facebook

1. INTRODUCTION
Social network users trust online social network (OSN) sites,
such as Facebook, with their most personal data. Many are
unaware of the degree to which their privacy also depends on
3rd party applications and their developers. For example,
even the simplest third-party applications on Facebook com-
monly require access to information such as message post-
ings, interests, photo albums, and birthdays. Today’s archi-
tectures not only allow this information to be replicated on
third-party application servers, but some actually require it.
These servers are outside of the OSN’s control, and many are
hosted in countries that lack privacy laws, exposing private

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSN’12, August 17, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1480-0/12/08 ...$15.00.

information to misuse. To date, some applications have un-
intentionally leaked personal information to advertisers and
exposed private profiles publicly [6, 7]. Other applications
have purposefully sold private user data to marketers and
advertisers [24,29].

The issue is not that applications have access to private
data, i.e., users expect that the application will access pri-
vate data (only) as necessary to do its job. The fundamental
problem is that applications can hoard, transfer to others
and otherwise abuse this access in violation of user expecta-
tions.

One approach to limiting privacy leakage through 3rd
party applications is to perform application sandboxing on
both the server and client side. An existing framework us-
ing this technique is called xBook [22]. This framework as-
sumes a trusted application-hosting platform that includes
trusted storage components. The xBook platform confines
untrusted application code on both the server and client side
and explicitly mediates information flow within and from the
app according to predefined security policies.

Inspired by the xBook framework, we began to develop a
system that sandboxes social networking applications while
it mediates their information flow to limit privacy leaks. In
our journey to realize this system, we encountered two ob-
stacles that led to serious modifications to our original de-
sign. This paper describes these varied challenges as they
are likely common to other sandboxing mechanisms for so-
cial applications. While presenting the techniques we used
to overcome the obstacles, we believe there is much room left
to more deeply examine these problems and their solutions.

The first obstacle stems from the social network nature
of these applications. Each instance of an application run-
ning on behalf of a user needs to communicate (i.e., share
data) with another instance running on behalf of a friend.
Any sandboxing architecture of social networking applica-
tions must therefore allow such basic channels of communi-
cation. Unfortunately, such systems are vulnerable to a new
form of attack we call the Kevin Bacon attack. Developers
can now stealthily siphon personal data through the social
network itself. To stop such an attack, we need more sophis-
ticated information flow control mechanisms on both server
and client sides. This paper presents one such mechanism.

The second problem stems from the need of app devel-
opers to debug and extract large-scale analytics from their
applications. How can the system distinguish personal data
from debugging data to prevent information leaks of the
former while allowing the latter? Our current design pro-
poses leveraging differential privacy [4] to limit information

leakage for such information flow. Our design also handles
additional challenges: providing differential privacy to a dy-
namic stream of data (as is the case with debugging informa-
tion), allowing prolonged queries on such dynamic data, and
avoiding vulnerabilities due to dependences among multiple
pieces of social network data.

We further discuss a simple prototype implementation of
our new framework and the experience of building applica-
tions on our architecture. Finally to understand whether
existing Facebook apps could fit into our framework, we an-
alyze a sample of such apps as well as a benchmark quiz
application that we built.

2. PRIVACY PROBLEMS AND EXISTING

SOLUTIONS
This section presents background on how third-party social
networking applications are built on Facebook, presents the
threat model, and describes existing solutions.

There are several kinds of third-party Facebook applica-
tions: Web applications that run within Facebook’s own site
(embedded within an iframe HTML element), independent
Web applications, and mobile and desktop applications that
use non-Web front-ends. All of these applications access
user data via Facebook’s Web service APIs. The informa-
tion that the applications can request is limited by user per-
missions, but, once retrieved, applications have no technical
restrictions on how they store or use data.

Threat model. Our primary motivation is to prevent ap-
plication developers from purposefully or accidentally leak-
ing information about individual users. Our main focus is
on preventing large-scale leaks that could harm hundreds,
thousands or millions of users. Our system does not protect
against targeted attacks against individuals, such as social
engineering attacks.

In our threat model, we treat application developers as
our sole adversary. In addition to running application code
on our hosted platform, developers are assumed to have ad-
ditional compute resources not controlled by our system,
and normal user access to the OSN (e.g., they can create
new user identities on the OSN). We assume that a users’
friends, the OSN platform, and the hosting platform are not
malicious. Given this threat model, we cannot trust com-
pute resources not hosted on our platform, nor can we trust
strangers in the OSN; therefore, we must prevent personal
information from reaching them.

Existing systems already try to limit privacy leaks of social
networking applications by decentralizing the social network
and providing users more control over their data. Examples
include decentralized social services on personal mobile de-
vices [2] or personal servers [11]. Instead, our approach is
based on a centralized OSN model (similar to Facebook’s
current model) and our initial strawman system design was
inspired by a system called xBook [22]. In xBook, social
applications are hosted on trusted centralized xBook servers
which provides a privacy-preserving platform. xBook pri-
marily relies on confining (or sandboxing) application exe-
cution and mediating information flow between sandboxes.
Our initial strawman system design was inspired by the
xBook approach.

To protect user data, our strawman system lets informa-
tion flow from developers to users without restriction, but
any information flow from users to developers is restricted.

A user can send information to and receive information from
friends (i.e., a set of other users connected in a social net-
work). These information flow control restrictions are en-
forced by requiring 3rd party applications to be hosted on a
trusted infrastructure with the following components:

Sandboxed cloud compute and storage. The developer prin-
cipal executes in a sandbox that can communicate with the
open Internet and send information to users by writing to
a per-application global database; it cannot directly receive
information from users. The user principal executes in a
sandbox that can read and write to a per-user database,
which can be further shared with friends. The user principal
also has read access to the per-application global database
to fetch global, non-sensitive application data. The user
sandbox responds to an individual user’s HTTP requests.

Sandboxed Web layer. Often, significant parts of social
networking application functionality execute as a Web ap-
plication inside the client web browser. Like the design used
in the cloud, this architecture relies on sandboxing on the
client side or on the Web layer to enforce information flow
control. The goal here is to prevent communication with
untrusted servers. Several tools, such as Caja [9] and Web-
Sandbox [16], let you setup sandboxes using HTML iframe
elements to limit and control the functionality of JavaScript
programs. The Web application interacts with our trusted
hosting platform through the user sandbox in the cloud.

The following two sections define two key limitations of
approach and describe how we overcame them.

3. PROBLEM #1: THE KEVIN BACON

ATTACK
By analyzing the kind of sharing required by Facebook ap-
plications today, we observe that a majority of them re-
quire data sharing with friends of a user see Section 5.1).
This opens the possibility for a new kind of attack that can
circumvent restrictions on sharing with strangers and ulti-
mately leak information to an application developer with a
social network account. We call this new attack the Kevin
Bacon attack.

3.1 Method of Attack
In the Kevin Bacon attack, an application silently shares
personal information with a users’ friends. When a friend
runs the same application, that application silently receives
this information and forwards it to a new set of friends. This
process repeats, spreading the original personal information
throughout the social network until it reaches the OSN ac-
count of the application developer. Because this sharing
follows the social graph, it does not strictly violate our re-
striction of sharing information only with friends. But, be-
cause this sharing is done without the awareness of users,
and given the relatively small diameter of social graphs [17],
large amounts of personal data can be collected by the ap-
plication developer without user knowledge or permission.

To protect against this Kevin Bacon attack, we refine our
sharing restrictions to state that users cannot forward infor-
mation shared by one friend to other friends. We discuss the
architectural implications of this restriction in Section 3.2.

3.2 Our current solution
To prevent the Kevin Bacon attack, we need to restrict in-
formation flow to within the users’ 1-hop social network. To

!"#$%&'

!"#$%&(
!"#$

)*+*

,-./0-1

2$/3%2$4#-1"

'0+./0-1

+/%2$4#-1"

Figure 1: Information flow control at the server is
enforced through two user sandboxes to prevent the
Kevin Bacon attack.

enforce this, we need to make architectural changes to both
the server and client sides. Instead of executing the user
principal in a single sandbox, we split it into two sandboxes
– user read-only and user read-write, as shown in Figure 1.
To restrict sharing to 1-hop friends, the user read-only sand-
box can read information shared from friends, but it cannot
write to the user database or share to other friends. Further,
the user read-write sandbox can write to the user database
and share with friends, but it cannot read data shared from
friends.

There are many possible techniques for information flow
control, including runtime systems, such as [10,27] and static
compiler techniques [23,28]. However, information flow con-
trol technologies are an active area of research, and no state-
of-the-art technology is yet ideal for all situations. In the
cloud, we chose coarse-grained sandboxing to reduce the
programming and runtime burden of fine-grained checks on
information flows.

On the client side, we need to set up a more sophisticated
system that allows communication back to our servers de-
pendent on the provenance of the data being communicated.
That is, whether a call back to a server to store or share data
is allowed depends on whether the data originates from other
friends or if it were originally the user’s own data.

Our server-side implementation simply uses two separate
sandboxes to achieve similar functionality; coarse-grained
sandboxing on the client-side, however, is dependent on HTML
iframe elements to enforce sandbox boundaries. For a web
application to mix the display of data from different sources
in the same HTML interface would have required a large
number of iframe elements with their individual sandboxes
throughout the HTML DOM tree, thus limiting the struc-
ture of the UI. Therefore, we elect to use static checking of
information flow control in the client-side program. (Note
that the server-side code is not restricted by such user inter-
face considerations).

JavaScript as a dynamic language is known to be difficult
to analyze [1]. Instead of verifying JavaScript directly, our
system requires developers to write their client-side code in
the Fine language [23] because Fine can express and verify
information flow control policies. Once verified, the Fine
language can be compiled into JavaScript and executed in
browsers. The verifiable language can preserve our desired
properties in the resulting JavaScript code.

Fine is a functional language and a variant of F# that
supports static verification of various properties, including

information flow control. Described in [23], Fine uses a
type system that combines dependent and refinement types
to express authorization policies and affine types to model
changes in policy state. The Fine language has already been
used to build different Web applications [8].

In addition to requiring that client-side code be verified to
respect an information-flow control policy, our system must
also ensure that other resources sent to the client, such as
HTML and images do not enable an information leak. For
this reason, HTML and other content are served statically
as a global resource. All user-specific or social data must
be retrieved from the server-side sandboxes. This communi-
cation between client-side code and server-side code takes
place over two separate channels. One channel connects
the client with the user read-only sandbox, and the other
connects the client with the user read-write sandbox. The
information flow control policies ensure that data from the
read-only sandbox (i.e., data from friends) is not sent to the
user read-write sandbox where it could be shared to other
friends.

4. PROBLEM #2: GRANTING

DEVELOPERS AGGREGATE ACCESS
Developers require access to aggregate app data for both app
monitoring or debugging and for creating application func-
tionality. To monitor applications, developers often gather
aggregate statistics. Current OSNs (e.g., Facebook) offer
an application usage dashboard (with statistics such as the
number of new app installs, active users, etc...) and an ap-
plication performance dashboard (with statistics such as the
number of daily API calls, average API call time etc...). Ag-
gregate data is also needed to build new application func-
tionality such as recommendation features. For example,
a movie recommendation application may want to provide
average movie rating scores to each user query for a movie.
This computation requires computing over all users’ records.

This aggregate data information flow from users to de-
velopers should be privacy preserving. To achieve this, our
architecture includes an additional component – called the
secure data aggregator – that uses differential privacy tech-
niques to give developers access to aggregate data. Develop-
ers can issue queries to the secure data aggregator to fetch
aggregate user data statistics.

4.1 Our current solution

4.1.1 Primer on differential privacy

While the math of differential privacy is complex [4, 5, 15],
the concept is straightforward. Differential privacy provides
an intuitive formalization of privacy – it measures the loss
of information when answering a given query over a given
dataset with a given privacy budget. In particular, it mea-
sures the degree by which an attacker is more likely to guess
any row in the dataset knowing the result of the query. Dif-
ferential privacy injects “noise” in the answer. The use of
noise is a control knob: if set to “high”, the query answer
has little information loss, but it is also less precise (i.e.,
more inaccurate). When noise is set to “low”, a query an-
swer is more accurate but has more information loss; if the
information loss is higher than the privacy budget allocated
to the dataset, we abort the query.

Differential privacy queries are accompanied by a privacy
parameter. This parameter, ǫ, provides a tradeoff between

the accuracy of the output and the likelihood of leaking in-
formation about an individual record. For example, a low
value of ǫ shows that the issuer does not want to consume a
large portion of the privacy budget on answering this query,
i.e., the query answer will have stronger privacy guarantees
in exchange for weaker accuracy. In our experiments, we
set ǫ to 0.1, 1.0, or 10.0, values used in previous work as
well [13].

4.1.2 Querying aggregate user data

We must solve two challenges when using differential pri-
vacy to query user social networking data. First, new data
is always being generated in the system, and we need to re-
cast information loss in the context of a continuous stream
of new data. Second, differential privacy rests on a crucial
assumption, namely that the rows in the database are in-
dependent (i.e., there is no information that spans multiple
rows). The remainder of this section describes how we ad-
dress these challenges.

In our scenario, new data is generated each time an ap-
plication is used. Our user sandbox stores users’ data as a
collection of (key,value) pairs. This means that the under-
lying set of data records for a given key is not static, as it is
in previous systems that use differential privacy for query-
ing data [13,14,20]. To address this issue, we split the input
data records for a given user into independent chunks, called
epochs, and assign each epoch a separate privacy budget pre-
determined by our framework. The data is split into epochs
based on the timestamps associated with each data item. By
the parallel composition property of differential privacy [12],
querying these disjoint epochs preserves the privacy proper-
ties of differential privacy: the overall information loss of
all queries is proportional to the maximum loss of a single
query, not to the sum of losses for all queries.

Epochs help us address an important problem that faces
all systems that use differential privacy: what happens when
the privacy budget is exhausted? Because the system oper-
ates on a stream of data, we can always issue a query on a
new epoch whose privacy budget is still available. Our sys-
tem could help identify eligible epochs for a given query, i.e.,
which epochs have a big enough privacy budget to answer
the query. Once eligible epochs are identified, the applica-
tion can then specify the epoch it wants to run the query.
Identifying eligible epochs does not consume any privacy
budget because no query answers are returned. Also, we
could cache previous queries’ results (in case the applica-
tion issues the same query multiple times); caching query
answers does not lead to additional information loss.

A query issued by the developer sandbox specifies what
key should be selected from each user’s data. This query is
run in two phases. First, for each user, the system creates
one row from all (key,value) pairs selected from that par-
ticular user’s data. For example, if the key is ‘login time’,
then the values are all the different login times stored in
each user’s datastore. Our system allows further processing
of these values depending on the analyst’s needs.

In the second phase, we perform a view transformation of
the user records in the database before applying the analyst-
specified differential privacy operators. Differential privacy
assumes that each data record is independent of the rest of
the records [13]. For example, this assumption excludes the
possibility of a single user’s data appearing multiple times
in the queried set of records. Such a scenario could de-

feat the guarantees of differential privacy because one user’s
data could occupy the majority of records in a dataset and
overcome the effects of noise injected by differential privacy.
Instead, our system maps each user’s data to a single record
using an arbitrary analyst-specified function, removing the
possibility of a single user’s data dominating the database.
We then apply the analyst-specified differential privacy op-
erators [12] across all the transformed user records. This
way of handling a query is critical to security because of the
assumptions differential privacy makes about the data being
queried.

5. PROTOTYPE IMPLEMENTATION
This section describes a prototype implementation of the
proposed system and evaluates the privacy-versus-accuracy
tradeoff of using differential privacy in the context of social
networking applications. Our implementation does not re-
quire tight integration with the host OSN (e.g., Facebook).
It does require API access to fetch user profile information
(e.g., lists of friends) and the ability to validate a user’s cre-
dentials. These features are available via the APIs of the
most popular social networks today.

Information flow control at server and client. In the
cloud, our system is implemented as an ASP.NET program
running within an IIS HTTP server. To implement server-
side sandboxing, we use .NET AppDomains [18], a sub-
process isolation mechanism that provides an isolated secure
boundary for executing managed code. Other lightweight
sandboxing technologies would also have provided accept-
able implementations, including pico-processes [3, 19] and
lightweight virtual machine technologies such as Denali [25].
Azure cloud storage [26] was used for storage of user and ap-
plication global data in semi-structured tables. The server-
side implementation mediates access to these storage sys-
tems, verifying that the various principals have appropriate
read and write privileges before granting access.

For static verification of Web application code, we use
Fine, a functional language and variant of F#, that has
support for static verification of various properties, including
information flow control [23]. Once verified, Fine code is
translated into JavaScript and sent to the client browser for
execution.

Secure data aggregator. Our secure aggregator is built
with the PINQ library [12], a language-integrated query API
for computing on sensitive data sets. In addition to the
core differential privacy functionality provided by PINQ, our
secure aggregator adds epoch management and integration
with storage of user data.

To further understand if executing differential privacy queries
over dynamic data by breaking data into epochs works well
in practice, we perform an analysis over real-world social
app data. We aim to evaluate the privacy-versus-accuracy
tradeoff of this technique.

We use the publicly available dataset of a real Facebook
application [21] called “The Streets”, a Facebook game in
which users can pick virtual fights with each other and ask
for the support of their friends. We use the PINQ [12] library
to run differential privacy queries on the application data.
PINQ uses a Laplace distribution to generate noise.

The dataset consists of all API calls made by the applica-
tion to the Facebook portal to retrieve users’ data. Each call
is timestamped, has a call type (there are only four types in
the entire dataset), and has the timestamp of the reply data

received from Facebook. A total of 83,067 calls were made
between November 8th, 2008 and January 1st, 2009.

We present the results for the performance statistic that
measures the number of API calls made over time. This
statistic is provided by using the noisy count operator in
differential privacy, and counting is representative of most
aggregate statistics operations.

Relative error

Epoch size t=30min t=1hour t=1day
2,962 epochs 1,481 epochs 63 epochs

ǫ=0.1 69% 24% 0.7%
ǫ=1.0 7.3% 2.6% 0.09%
ǫ=10.0 0.6% 0.2% 0.007%

Table 1: Relative error in count queries.

Table 1 presents the results of computing the daily num-
ber of API calls using three epoch sizes (1 day, 1 hour, and
30 minutes) for three ǫ values: 0.1, 1.0 and 10.0. We com-
pute the average relative error in each bucket between the
differential privacy counters and the true ones. For a strict
value of the privacy parameter (ǫ = 1.0), we notice that
the error is 7.3% for small epoch sizes (30min) and drops to
0.09% for larger epoch sizes. As the epoch sizes decrease,
each epoch contains less data amplifying the effects of noise,
and, thus, reducing accuracy. However, for an epoch size
of 1 day, the relative error is lower than 0.7% for all values
of ǫ; interestingly, the current Facebook app framework up-
dates app statistics mostly at a day’s granularity to provide
developers insight into the app’s health and popularity.

5.1 Do existing apps fit our model?
To determine if we could support existing Facebook apps
in our framework, we analyzed 50 Facebook applications
(as ranked by www.appdata.com based on the number of
monthly active users), including the top 25 apps and a sam-
ple of 25 random apps from the list of the remaining top 1000
applications. For each application, we examined whether it
shares the data of a user with others. While some apps share
no data (e.g., horoscope apps or daily quotes), others share
it with third-party services (worst in terms of privacy), with
people other than just the user’s friends, or with the user’s
friends only (best in terms of privacy). Table 2 shows the
results.

During this experiment, we discovered that four applica-

Sharing Examples Apps %

None Daily quotes and horo-
scopes

17

w/friends Games and quizzes sharing
scores with friends

52

Indirectly
w/strangers

Aggregation and recom-
mendation services such as
Flixster

7

Directly
w/strangers

Dating applications 17

w/3rd-party
services

Apps that embed Google
Maps or other Web widgets

7

Table 2: The kind and distribution of data sharing
found in Facebook applications.

tions could not be analyzed. One was not working properly
and three were just wrappers to a third-party website and
not “true apps”. Looking at the results, we find 17% of the
apps require no data sharing. However, the majority of ap-
plications (52%) require share data with friends only, the
best behavior in terms of privacy for data sharing. In our
framework, these apps would stop further propagation of a
user’s data beyond the set of friends.

We found that 24% of apps share data with strangers; in-
specting the results a little closer, we discovered that 7%
were using the data as input to recommendation and aggre-
gation engines, which is arguably less of a privacy violation.
The remaining 17% share the user’s data directly with other
strangers.

Overall, 76% of the sampled applications can run within
our framework. The remaining 24% share data with strangers
in a direct manner (e.g., a dating app) or use 3rd party Web
services and widgets (e.g., map services), operations that
our framework explicitly disallows. The sharing model used
by these apps explicitly puts a user’s data in the hands of
strangers making it impossible to offer any privacy guaran-
tees.

5.2 Sample application
To demonstrate practicality, we built a benchmark quiz ap-
plication in our framework that exercises the Web layer, the
server layer, and the sharing mechanisms. Our quiz asks
users to answer various questions and, once a response is
entered, it shows the friends’ answers for comparison (Fig-
ure 2). Since this app needs data to be shared between
friends, we need to coordinate the answers entered by users
in their read-write sandbox with the answers entered by
their friends received in the user’s read-only sandbox. Al-
though Fine, due to its functional language nature, does re-
quire developers to use a different programming model than
JavaScript, an imperative language, our experience coding
in Fine was positive.

Our simple quiz app that coordinates across the user read-
only and read-write sandboxes was implemented in 328 lines
of C# code on the server side and just 123 lines of Fine
code on the client side. For comparison, we re-implemented
our quiz app without the sandboxing mechanisms of our
framework. We were able to replicate the behavior of the
app in 193 lines of C# code on the server side and only
67 lines of JavaScript code on the client side. This exper-
iment shows that the programming cost of adding privacy
protection could be significant.

Figure 2: Screenshot of a quiz application.

6. CONCLUSION
This paper identified two problems with current mechanisms
for sandboxing third-party social network applications to
stop privacy leakage. We presented our solutions to these
problems in an effort to initiate a discussion around these
problems and the “right” ways to overcome them.

In this context, we proposed a new architecture that was
designed to be resilient to these problems by leveraging var-
ied mechanisms, including functional languages, static veri-
fication, and differential privacy. We discussed a prototype
implementation and an example application built on our new
framework. Our analysis of a sample of Facebook apps re-
vealed that our new architecture can support a majority of
existing Facebook apps.

7. REFERENCES

[1] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner.
Staged Information Flow for Javascript. In Proceedings
of the Programming Languages Design and
Implementation (PLDI), 2009.

[2] B. Dodson, I. Vo, T. Purtell, A. Cannon, and M. Lam.
Musubi: Disintermediated Interactive Social Feeds for
Mobile Devices. In Proceedings of the International
Conference on World Wide Web (WWW), 2012.

[3] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch.
Leveraging Legacy Code to Deploy Desktop
Applications on the Web. In Proceedings of the Usenix
Symposium on Operating Systems Design and
Implementation (OSDI), 2008.

[4] C. Dwork. Differential Privacy. In Proceedings of the
International Colloquium on Automata, Language and
Programming (ICALP), 2006.

[5] C. Dwork, F. Mcsherry, K. Nissim, and A. Smith.
Calibrating Noise to Sensitivity in Private Data
Analysis. In Proceedings of the Theory of
Cryptography Conference (TCC), 2006.

[6] Facebook leaks access tokens to advertisers.
http://tinyurl.com/3z7g3g7.

[7] Facebook privacy hole due to buggy app. http:
//news.cnet.com/8301-10784_3-9977762-7.html.

[8] Fine Project. http:
//research.microsoft.com/en-us/projects/fine/.

[9] Google Caja.
http://code.google.com/p/google-caja/.

[10] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F.
Kaashoek, E. Kohler, and R. Morris. Information
Flow Control for Standard OS Abstractions. In
Proceedings of the ACM SIGOPS symposium on
Operating systems principles (SOSP), 2007.

[11] D. Liu, A. Shakimov, Ramón Cáceres, A. Varshavsky,
and L. P. Cox. Confidant: Protecting OSN Data
without Locking it Up. In Proceedings of the
International Middleware Conference (Middleware),
2011.

[12] F. McSherry. Privacy Integrated Queries: An
Extensible Platform for Privacy-preserving Data
Analysis. In Proceedings of the ACM SIGMOD
International Conference on Management of Data
(SIGMOD), 2009.

[13] F. McSherry and R. Mahajan. Differentially-private
Network Trace Analysis. In Proceedings of the ACM

Special Interest Group on Data Communication
(SIGCOMM), 2010.

[14] F. McSherry and I. Mironov. Differentially Private
Recommender Systems: Building Privacy into the
Netflix Prize Contenders. In Proceedings of the ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 2009.

[15] F. McSherry and K. Talwar. Mechanism Design via
Differential Privacy. In Proceedings of the IEEE
Symposium on Foundations of Computer Science
(FOCS), 2007.

[16] Microsoft Web Sandbox.
http://www.websandbox.org/Default.aspx.

[17] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee. Measurement and Analysis of
Online Social Networks. In Proceedings of the ACM
SIGCOMM Conference on Internet Measurement
(IMC), 2007.

[18] .NET AppDomain. http://msdn.microsoft.com/
en-us/library/system.appdomain(v=vs.71).aspx.

[19] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky,
and G. C. Hunt. Rethinking the Library OS from the
Top Down. In Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2011.

[20] I. Roy, S. T. V. Setty, A. Kilzer, V. Shmatikov, and
E. Witchel. Airavat: Security and Privacy for
MapReduce. In Proceedings of the USENIX
Conference on Networked Systems Design and
Implementation(NSDI), 2010.

[21] RUBINET Data Sets.
http://www.ece.ucdavis.edu/rubinet/data.html.

[22] K. Singh, S. Bhola, and W. Lee. xBook: Redesigning
Privacy Control in Social Networking Platforms. In
Proceedings of the Conference on USENIX Security
Symposium (USENIX Security), 2009.

[23] N. Swamy, J. Chen, and R. Chugh. Enforcing Stateful
Authorization and Information Flow Policies in Fine.
In Proceedings of the European Symposium on
Programming (ESOP), 2010.

[24] Third-party apps sell private data.
http://tinyurl.com/27fnslp.

[25] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and
Performance in the Denali Isolation Kernel. In
Proceedings of the Usenix Symposium on Operating
Systems Design and Implementation (OSDI), 2002.

[26] Windows Azure Storage.
http://www.microsoft.com/windowsazure/storage/.

[27] N. Zeldovich, S. Boyd-wickizer, E. Kohler, and
D. Mazieres. Making Information Flow Explicit in
HiStar. In Proceedings of the Usenix Symposium on
Operating Systems Design and Implementation
(OSDI), 2006.

[28] L. Zheng and A. C. Myers. Dynamic security labels
and static information flow control. International
Journal of Information Security, 2007.

[29] Zynga Hit With Lawsuit Over Facebook Privacy
Breach. http://tinyurl.com/3qjcbll.

