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Abstract
Although many previous research efforts have investi-
gated machine failure characteristics in distributed sys-
tems, availability research has reached a point where
properties beyond these initial findings become impor-
tant. In this paper, we analyze traces from three large
distributed systems to answer several subtle questions re-
garding machine failure characteristics. Based on our
findings, we derive a set of fundamental principles for
designing highly available distributed systems. Using
several case studies, we further show that our design
principles can significantly influence the availability de-
sign choices in existing systems.

1 Introduction
A key challenge in designing large, long running dis-
tributed systems is to mask the failures that arise among
the system components. This challenge becomes more
acute as the number of machines and the population of
users increase, i.e., precisely when the system becomes
more useful. In order to design systems resilient to the
machine failure characteristics in real deployments, it is
necessary to study these characteristics and develop de-
sign principles tailored to them.

In this paper, we analyze traces [1, 2, 12] from three
large distributed systems (PlanetLab, Domain Name Sys-
tem (DNS), and a collection of over 100 web servers) in
order to characterize machine failures in these systems.
Although many previous research efforts [2, 3, 5, 6, 13]
have also investigated machine failure characteristics,
our study focuses on important properties beyond these
initial findings, and suggests how these properties may
strongly influence the design of large distributed sys-
tems. In particular, we start by addressing the following
important—but perhaps subtle—questions not answered
by previous studies:

• Is high machine availability synonymous with high
machine MTTF (mean time to failure) and low ma-
chine MTTR (mean time to repair)? That is, in real
deployments does a machine that is up a high frac-
tion of the time (high availability) tend to have both
high MTTF and low MTTR?

• Given a machine in real deployments, can we pre-
dict its MTTF and MTTR with reasonable accuracy
based on its history? Moreover, given a machine,
can we predict a crash event or a recovery event with

reasonable accuracy based on its history? In other
words, can we (also) predict TTF (time to failure)
and TTR (time to repair)?

• What is the level of correlation among machine fail-
ures in a large-scale distributed system? Is the level
sufficiently high that we should take it into account
in system design?

The answers to these questions can significantly in-
fluence the design of large distributed systems targeting
high system availability. For example, both Total Re-
call [4] and CFS [7] determine the degree of replication
assuming failure independence. If the correlation level
is high, such designs need to be revisited. As another
example, consider End System Multicast (ESM) [9], an
overlay multicast system that utilizes well-provisioned
infrastructure nodes (calledwaypoints) to construct bet-
ter multicast trees. The failure of a waypoint will cause
temporary interruption of the service followed by the re-
pair of the multicast tree with new waypoints. Clearly,
the system availability of ESM is affected by the MTTF
rather than the availability of the machines selected as
waypoints. On the other hand, there are other systems
(see Section 3) that care more about the MTTR of its ma-
chines. If high availability of a machine does not always
imply good MTTF (or MTTR), then a system should not
simply favor the use of machines with high availability.

Based on the findings from our study of the afore-
mentioned questions, we derive four fundamental design
principles for highly available distributed systems:

P1. Good availability does not necessarily imply good
MTTF and MTTR, and, thus, distributed systems
should monitor these aspects separately and use
them accordingly.

P2. A machine’s MTTF and MTTR can be predicted
with reasonable accuracy and can, thus, be utilized
in a design.

P3. A design shouldnot expect to be able to predict
the individual failure and recovery events (TTF and
TTR) with reasonable accuracy based on the current
uptime, downtime, MTTF or MTTR.

P4. Large-scale correlated failures are common in real
systems and they significantly hurt the availability
of traditional fault tolerance mechanisms that as-
sume independent failures. As a result, correlation
should be taken into account in the design of highly
available distributed systems.



Using case studies, we further show that our design
principles may significantly influence availability de-
sign choices in systems such as CFS [7], Om [17],
RAMBO [10], ESM [9], and Majority Voting [14]. We
are also fully aware that the set of questions answered in
this paper is exemplary rather than exhaustive; our hope
is that our paper will motivate additional research in this
area.

2 Findings and Implications

2.1 Methodology

Our study is based on traces from three large distributed
systems: PlanetLab, DNS, and a collection of over
100 web servers. We call the three tracesPL trace ,
DNStrace , andWStrace respectively. The DNS and
web server traces are intended to be representative of
public-access machines that are maintained by differ-
ent administrative domains, while thePL trace poten-
tially describes the behavior of a centrally administered
distributed system that is used mainly for research pur-
poses. There are also many other failure traces avail-
able, such as for P2P systems [3, 13] and for campus-
wide networks [5]. In this paper, we intentionally focus
on machine failure characteristics in non-P2P wide-area
distributed systems.

All three traces are probe traces rather than node
up/down logs. The nature of these probe traces requires
us to carefully address the effects of network failures that
demonstrate themselves as node failures. Also, we are
unable to detect short-duration failures or recoveries be-
tween probes. On the other hand, using probe traces en-
able us to study public/commercial systems that typically
do not publish up/down logs.

PL trace [1] contains probes between all pairs of
nodes (277 on average) in PlanetLab from March 2003
to June 2004. Each probe consists of 10 pings, and we
say that a probefails if and only if all 10 pings fail. We
refer to a complete cycle of all pair-probes as a probein-
terval, which is around 15 to 20 minutes inPL trace .
We consider a node to beunavailableor downduring a
particular probe interval if and only ifnoneof the nodes
from other domains can ping it. We consider two nodes
to be in the same domain if they share the first 24 bits
of their 32-bit IP addresses. In this study, we do not dis-
tinguish between whether a node has failed or has sim-
ply been partitioned from all other nodes not in the local
domain—in either case it is unavailable to the system.
A node isavailableor up if it is not down. Other more
stringent definitions of availability could be used instead.
For example, we could consider a node to be available
only if it can be pinged from a threshold fraction of other
nodes. See [15] for discussions on these other possible
definitions.

WStrace [2] contains logs of HTTPGET requests
from a single source node at CMU to 130 Web servers
from September to December 2001. As inPL trace , we
call a complete cycle of all HTTP requests a probein-
terval, which is around 10 minutes inWStrace . In this
trace, near-source network partitions make it appear as
if all the web servers have failed. To mitigate this ef-
fect, we use the following simple filtering. If four or
more consecutive HTTP requests to different servers fail,
we assume that the probing node has become discon-
nected from the Internet and thus ignore all those con-
secutive failures. All other failed probes are considered
web server failures. We choose four as the threshold be-
cause if we used a lower threshold, we would view the
client (on Internet2) as experiencing near-source failures
around4% of the time, which is rather unlikely. Note
that this heuristic may still not perfectly classify source
and server failures, but the error is likely to be well con-
trolled.

DNStrace [12] contains probes from a single ma-
chine to over 231,000 DNS servers for two weeks. Each
server was probed at an exponentially distributed period
with a mean of 1 hour. Near-source failures have al-
ready been addressed [12] in this trace, thus filtering (as
used forWStrace ) is not needed and all failed probes
are treated as DNS server failures. Our study analyzes
a subset of around 25,000 servers that had at least one
failure during the measurement period.

We measure Time-to-Failure (TTF) and Time-to-
Repair (TTR) of a node as the contiguous time periods
for which that node is available and unavailable respec-
tively. Theavailability of a node is the fraction of time
for which the node is available. We report availability in
terms of itsnumber of nines(i.e., log10(

1
1−a) wherea is

the availability).

2.2 Does good availability always imply
good MTTF and good MTTR?

Intuitively, a highly available machine should also have
good MTTF and good MTTR. The reason is that a
highly available machine is generally well maintained,
and hence should not fail very often and should re-
cover more quickly. Under this assumption, it suffices
to consider only node availability, rather than MTTF and
MTTR separately. But is this intuition correct?

Figure 1 plots the relationship of availability to MTTF
and MTTR inPL trace . The results forWStrace and
DNStrace are similar [15]. Even though there is a gen-
eral trend toward better MTTR and MTTF (especially
for MTTR) when availability increases, notice that the
range on MTTF and MTTR is large for any given avail-
ability value. This means that if we need to choose be-
tween two machines, picking the one with better avail-
ability does not always give us the one with better MTTF
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Figure 1: MTTF and MTTR vs Availability forPL trace .
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Figure 2: MTTF vs MTTR for the three traces.

or MTTR. Indeed, our analysis shows that among 30%
(20%) of all possible pairs of machines inPL trace , the
one with higher availability doesnot have higher MTTF
(lower MTTR, respectively). ForWStrace , the numbers
are 15% and 26%, respectively, and forDNStrace , they
are 28% and 20%, respectively. Note that even when
choosing one node randomly out of a pair of nodes, the
probability of choosing the wrong node is just 50%.

Figure 2 plots the MTTR and MTTF of individual ma-
chines in the three traces. SinceDNStrace has a large
number of nodes, to improve clarity, we only plot 250
randomly chosen (out of around 25,000) nodes in the
graph. If good availability is synonymous with good
MTTF and good MTTR, it necessarily means that good
MTTF implies good MTTR as well. Under such an as-
sumption, the points in Figure 2 should roughly form a
monotonically decreasing trail. This is clearly not what
we see in Figure 2. Furthermore, the correlation coeffi-
cient r is very small in all three traces (r = −0.054 for
PL trace , r = −0.105 for WStrace , and r = −0.081
for DNStrace ), implying little correlation between the
MTTR and MTTF of a machine.

Design principle P1. Good availability of a machine
does not always imply good MTTR and good MTTF.
Given that different systems may care more about ei-
ther MTTF or MTTR (see Section 3), a system should
monitor MTTF and MTTR (instead of only availability)
separately when choosing which machines to use.
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Figure 3: TTR and TTF distributions inPL trace , to-
gether with exponential and Pareto distribution fits.

2.3 Can TTF, TTR, MTTF and MTTR be
predicted?

It is well known that the lifetime of Unix processes fol-
lows a Pareto distribution [8] (i.e., a process that has been
running for timeT will continue to run for timeT with
constant probability), and this property has been used in
dynamic load balancing [8]. Is it possible to similarly
predict how long a machine will remain up given how
long it has been up?

We analyze the TTF and TTR of all machines in
PL trace in a similar way as in [8]. We plot the TTF
and TTR distributions in Figure 3 along with best fitting
exponential (c·e−λT ) and Pareto (r ·Tk) distributions. An
exponential distribution is entirelymemoryless, meaning
that no information can be extracted based on how long
the machine has been up or down. Figure 3 shows that
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Figure 4: The conditional probability Prob[TTF (or
TTR) ≥ 2T | TTF (or TTR) ≥ T] computed from
PL trace , together with the probability calculated from
the exponential and Pareto fits in Figure 3.
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Figure 5: The coefficient of variance in TTR and TTF for
nodes inPL trace .

neither distribution fits the data perfectly, but the expo-
nential distribution fit is better.

To gain additional understanding, we compute the fol-
lowing conditional probability: Prob[a node continues
to be available (or unavailable) for timeT | it has been
available (or unavailable) for timeT]. For exponen-
tial and Pareto distributions, this conditional probability
is e−λT and 2k respectively. Figure 4 plots this condi-
tional probability computed fromPL trace , along with
the probabilities computed for exponential and Pareto
fits. Clearly the conditional probability from the trace
follows the exponential distribution more closely. We
observe similar behavior [15] for TTF inWStrace ; the
TTR in WStrace is close to neither the exponential
nor the Pareto distribution. InDNStrace , the time pe-
riod between two consecutive probes to the same DNS
server follows an exponential distribution with a mean
of 1 hour. This relatively large period between probes
(as compared to around 15 minutes inPL trace and
WStrace ) can cause inaccuracies in individual TTR and
TTF values, and, thus, we do not perform the above anal-
ysis forDNStrace . Overall, our analysis shows that the
TTF and TTR of a node are hard to predict based on how
long the node has been up or down.

Although we cannot predict how long a machine will
remain up given how long it has been up, is it possi-
ble to predict TTF (or TTR) from MTTF (or MTTR)?
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Figure 6: The percentage change in MTTR and MTTF
for nodes inPL trace across two parts ofPL trace .

Specifically, if the variation in TTF (or TTR) were small,
we could indeed predict TTF (or TTR) based on the his-
torical MTTF (or MTTR). Figure 5 plots the coefficient
of variance (defined as the ratio of standard deviation
to mean) of TTR and TTF inPL trace . Most nodes
have a coefficient greater than 1.0 which implies quite
a wide probability distribution. Similar results [15] hold
for WStrace . Again, we do not analyzeDNStrace for
previously mentioned reasons.

Given that TTR and TTF cannot be accurately pre-
dicted, we turn to the predictability of MTTF and MTTR.
We split the traces into two parts and for each node com-
pare the MTTR and MTTF observed in one part with the
other. Figure 6 plots the percentage difference in MTTR
and MTTF between the first 8 months and the remaining
9 months ofPL trace . Clearly, the MTTR and MTTF
for most nodes do not vary significantly over the two pe-
riods. We also observe similar results [15] forWStrace .
We do not perform this study forDNStrace because of
its short duration.

Design principle P2.Given the predictability of MTTF
and MTTR, a system should monitor machine MTTF and
MTTR and use this knowledge to achieve better avail-
ability.

Design principle P3. Given that TTF and TTR cannot
be predicted with reasonable accuracy based on current
uptime, downtime, MTTF, or MTTR, a system should
not rely on such prediction.

2.4 Is correlation among failures so strong
that a system should explicitly consider
such effects?

Here we investigate how strong failure correlation is for
PlanetLab nodes and for the collection of web servers.
Since correlated failures tend to be rare, we need a long
trace to observe them; so, we do not studyDNStrace
because of its short duration. We are interested in the
distribution for the number of near-simultaneous failures.
In each probe interval, we determine the number of near-
simultaneous failures by counting the number of nodes
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Figure 7: Correlation distribution inPL trace , with
BBD and geometric distribution fits.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  10  20  30  40  50  60

P
ro

ba
bi

lit
y

Num Simultaneous Failures

Data
BBD (µ=0.005,θ=0.0025)

GEOMETRIC (ρ=0.5)

Figure 8: Correlation distribution inWStrace , with
BBD and geometric distribution fits.

that are unavailable in the interval but were available in
the previous interval.

Figures 7 and 8 plot the PDF for the number of near-
simultaneous failures inPL trace and WStrace , re-
spectively. We observe that large-scale correlated fail-
ures do happen:PL trace shows an event where 58
nodes failed near-simultaneously; whileWStrace has a
failure event of 42 web servers. Both graphs also show
the fitting of the beta-binomial distribution (BBD) and
geometric distribution to the measured data. BBD is
used in [11] to model correlated failures in different soft-
ware versions, and also by Bakkaloglu et al. [2] to model
correlation inWStrace . The geometric distribution is a
simple distribution where the probability of havingi si-
multaneous failures isc ·ρi , whereρ is a constant andc
is the normalization factor. Neither model seems to be
a good fit for our data, especially for large-scale corre-
lated failures. Finding a better fitting analytical model is
beyond the scope of this paper.

Design principle P4. The level of correlation among
machine failures is not trivial. Designs for high avail-
ability should explicitly take correlation into account.

3 Impact of Our Design Principles
on Existing Systems

This section uses multiple case studies to demon-
strate that our findings significantly influence the design
choices for highly-available systems.

Overlay Multicast (Principles applied: P1, P2). As
mentioned in Section 1, ESM [9] should focus on the
MTTF of the waypoints – just favoring waypoints with
good availability will result in a suboptimal design.

Distributed Storage Systems (Principles applied: P1,
P2). Almost all distributed storage systems (e.g.,
CFS [7]) use replication to ensure data availability. They
also incorporate repair mechanisms (calledregeneration)
to create new replicas when existing replicas fail. Such
replica creation typically takes a certain timet, depend-
ing on the amount of data to be transferred. If all the live
replicas fail within this window oft, the system becomes
unavailable and has to wait for at least one replica to re-
cover. We definesystem availabilityas the fraction of
time that at least one replica is available.

Now let us consider a set of replicas with the same
MTTF, MTTR and availability. A simple analysis will
show that system availability is determined by the ratios
amongt, MTTF and MTTR. Specifically, the effect of
doubling both MTTF and MTTR (and hence keeping the
replica availability unchanged) on system availability is
the same as halvingt. Smallert, in turn, yields better sys-
tem availability. Thus, system availability is not uniquely
determined by replica availability, rather it increases with
replica MTTF and MTTR even though replica availabil-
ity remains the same. As a result, when determining
the number of replicas needed to achieve a target system
availability, considering only the availability of individ-
ual replicas is not sufficient.

An Oracle for Repair (Principle applied: P3). In the
evaluation of Total Recall [4], Bhagwan et al. use an Ora-
cle with exact knowledge about when failures will occur.
This Oracle repairs an objectjust before the last remain-
ing replica fails. Their results show that the Oracle is
about an order of magnitude better than the actual design
in Total Recall. A natural question to ask is whether we
can approximate the Oracle by predicting failures based
on history. Our findings show that we are unlikely to be
able to accurately predict individual failure events, and a
design along these lines is unlikely to be effective.

Regeneration Systems with Strong Consistency (Prin-
ciples applied: P1, P2).Regeneration systems (systems
that repair failed replicas by creating new ones) support-
ing strong data consistency, such as RAMBO [10] and
Om [17], need to ensure that regeneration is performed
in a consistent fashion. Otherwise if multiple replicas
regenerate simultaneously, the system may end up with
multiple disjoint replica groups. To avoid this problem,
such systems typically use majority voting for mutual ex-
clusion. To achieve better fault tolerance, such voting
can be done on nodes outside the replica group [17].

In this case study, we focus on the nodes forming the
voting system for regeneration. We say that the voting
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same availability but different MTTF and MTTR. White
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ation window isw.
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system isdownif we lose a majority, otherwise it isup.
Thus, this voting system also has its own MTTF and
MTTR, which increases monotonically with node MTTF
and MTTR. We will show that even when the availabil-
ity of the voting system is kept constant, a smaller MTTR
will yield better system availability for the replica group.
This can be best explained using Figure 9. Regeneration
starts whenever a replica fails and must complete before
all remaining replicas fail, otherwise the overall system
becomes unavailable. This provides a windoww of op-
portunity to regenerate. Because of this window, we can
mask considerable durations of unavailability of the vot-
ing system. If the downtime of the voting system is al-
ways smaller than this window (as in system(b) in Fig-
ure 9), then the overall system is always available. This
means that we should favor nodes with small MTTR in
constructing the voting system.

Majority Voting Systems (Principle applied: P4).
Correlation in failures can significantly affect the be-
havior of traditional fault-tolerant designs such as ma-
jority voting [14]. Figure 10 shows the unavailability
of a simulated majority voting system with nodes hav-
ing the MTTF(≈ 9.9 days) and MTTR(≈ 1.8 days) that
we found for PlanetLab machines. We model the corre-
lated failures using the geometric distribution mentioned
in Section 2.4 withρ = 0.56. As the graph shows, major-
ity voting is significantly worse under correlated failures.
In real systems where we observe higher correlation than
modeled by the geometric distribution, we expect further
decay in availability. This implies that correlation in to-
day’s real systems has reached such a level that it has

to be considered explicitly in system design. For exam-
ple, signed quorum systems [16] may potentially be used
in place of majority voting to provide better protection
against correlated failures.

4 Conclusions
In this paper, we extend the state-of-the-art in under-
standing machine availability by investigating machine
failure characteristics using traces from three large dis-
tributed systems. Based on our findings (many of which
are perhaps counter-intuitive), we derive a number of
fundamental principles for designing highly available
distributed systems. We further show with several case
studies that our design principles can significantly influ-
ence the availability design choices in real systems.
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