
Proceedingsof the3rd IEEEWorkshoponMobile ComputingSystems

andApplications,Monterey, CA, December2000

Using History to Impr oveMobile Application Adaptation

DushyanthNarayanan,JasonFlinn, andM. Satyanarayanan
Schoolof ComputerScience
Carnegie Mellon University�

bumba,jflinn,satya� @cs.cmu.edu

Abstract

Prior work has shownthe value of changingapplica-
tion fidelity to adaptto varyingresource levelsin a mobile
environment.Choosingtheright fidelity requiresusto pre-
dict its effect on resource consumption.In this paper, we
describea history-basedmechanismfor such predictions.
Our approach generatespredictors that are specializedto
thehardwareonwhich theapplicationruns,andto thespe-
cific inputdataon which it operates.We are ableto predict
the CPU consumptionof a complex graphicsapplication
to within 20%andtheenergy consumptionof fetching and
renderingwebimagesto within 15%.

1. Intr oduction

A key strategy in mobilecomputingis adaptingapplica-
tionbehavior to resourceavailability andusergoals.Chang-
ing applicationfidelity— thequalityof resultspresentedto
theuser— hasbeenshown to be effective in adaptingap-
plication resourceconsumptionto varying resourceavail-
ability [7, 11, 12]. Fidelity is anapplication-specificnotion
of the “goodness”of a computedresultor dataobject: for
example,theJPEGQuality Factorof a lossily compressed
image,or the precisionboundof a floating point compu-
tation. Naturally, thereis a tradeoff betweenfidelity and
resourceconsumption:a lowerfidelity resultsin a lowerre-
sourceconsumption,but at the cost of presentinga more
degradedresultto the user. Fidelity is not alwaysa single
realnumber:therecouldbemultiple fidelity metrics,each
of whichcouldbediscreteor continuous.

The ultimategoal of fidelity adaptationis to improve a
mobile user’s computingexperienceby delivering results
quickly, with low batterydrain andlittle distractionof the

This researchwassupportedby the NationalScienceFoundation(NSF) undercon-
tractCCR-9901696,theDefenseAdvancedProjectsResearchAgency (DARPA) and
the U.S. Navy (USN) undercontractN660019928918,and the IBM Corporation.
Theviewsandconclusionscontainedin thisdocumentarethoseof theauthor(s)and
shouldnot beinterpretedasrepresentingtheofficial policies,eitherexpressedor im-
plied,of theNSF, DARPA, USN,IBM, or theU.S.government.

user. Considera graphicscomputationthat operateson a
3-D modelin a mobileaugmentedreality application.The
latency of the computationdependsbothon the CPU con-
sumedby the computationandthe CPU demandsof other
applications.TheCPUconsumptiondependsonthefidelity
— theresolutionof themodel.If wecouldpredicttheCPU
consumptionasafunctionof fidelity, wecouldcombinethis
with CPUload informationto predictlatency. This lets us
characterizethetradeoff betweenfidelity andlatency, andto
pick goodoperatingpoints: for goodinteractive response,
we might alwayspick thehighestfidelity thatkeepsthela-
tency below 200ms.

In this paperwe show how history-basedpredictionen-
ables the systemto learn an application’s behavior and
predict its resourceconsumption. We have augmented
Odyssey [11], anoperatingsystemplatformfor adaptation,
with a history-basedpredictionsystemthatmonitors,logs,
andpredictsapplicationresourceconsumptionasafunction
of thefidelity. Our initial experiencesuggeststhathistory-
basedpredictionis feasible.We canpredictto within 20%
the CPU consumptionof a 3-D graphicscomputation—
typical of thosefoundat theheartof augmentedreality ap-
plications. We canalsopredicttheenergy consumptionof
fetchinglossilycompressedwebimagestowithin 15%.Our
currentprototypehasa CPUoverheadof 0.22%for a typi-
cal application;we expecttheoverheadto beevenlower in
aproductionversionof thecode.

2. DesignRationale

Our approachto predictingresourceconsumptionas a
function of fidelity is an empirical one: we samplethe fi-
delity spaceby runningtheapplicationatdifferentfidelities;
then we recordthe resourceconsumptionat eachsample
point; finally we usemachinelearningalgorithmsto make
predictionsbasedon thesetof samples.

One could imagine an analytic approachto the same
problem. Algorithmic complexity analysis[4] givesCPU
consumptionasanasymptoticfunctionof theinput param-
eters.In therealworld,however, constantsmatter, andthese

1

constantsvary from onehardwareplatformto another. We
could attempta more detailedanalysis,basedon proces-
sor specsheets.With modernprocessors,this is virtually
impossible:we would needto accountfor super-scalarex-
ecution,branchmisprediction,TLB misses,andothercom-
plicating factors. Further, this will only give us CPU con-
sumption,andnot memory, network bandwidth,or battery
energy consumption.

In our system,we usealgorithmiccomplexity asa start-
ingpoint: to providehintsthatguidethelearningalgorithms
that processhistory logs. This allows us to specializea
generalasymptoticfunctionalform to thespecifichardware
on which the applicationruns. We canalsospecializeour
predictionsto thespecificinput dataon which theapplica-
tion operates,insteadof alwayspredictinga worst-caseor
average-casescenario.

By building andevaluatingaloggingandlearninginfras-
tructure,we hopeto answertwo questions:

� Is theoverheadof loggingandpredictionacceptable?

� Whatis theaccuracy of prediction?

Our approachis basedon two assumptions.We expect
theapplicationprogrammeror domainexpertto specifyall
thefidelity metricsonwhichapplicationresourceconsump-
tion depends.We believe this is a reasonableassumption:
attheheartof mostresource-hungrycomputationsis awell-
understoodalgorithmiccore,with asmallnumberof param-
etersthataffect its resourceconsumption.

We also expect the resource consumption to vary
smoothlywith thefidelity. This is becausewesamplethefi-
delity spaceuniformly, andtry to learnthefidelity-resource
function from thesesamples.This assumesthat the func-
tion is well-behavedbetweenany two nearbysamples.To
relax this assumption,we would needmore sophisticated
learningtechniquesthat increasethe densityof sampling
whereverthelocalbehavior of thefunctionis anomalousor
highly variable.

Our currentprototypehasthreedistinctphases:

� A logging/trainingphase, wherewerepeatedlyrunthe
applicationat variousfidelitiesandlog theresultsin a
historylog.

� A learning phase, wherewe feed the history log to
offline learning algorithms. These algorithms use
application-specifichintsto convertthehistorylog into
predictors that compactlyrepresentthe mappingbe-
tweenfidelity andresourceconsumption.

� An onlinephase, whereweruntheapplicationanduse
thefidelity-resourcefunctionsthatwehave learned,to
guideadaptation.Odyssey usesthe predictorsgener-
atedby the learningphaseto pick fidelities that will

bettermatchuserlatency requirements,desiredbattery
life, andotherresourceconstraints.

Ideally, wewouldcombineall threephases,sothatthere
is no needfor a separatelogging/trainingphase:the sys-
tem learnsas the user runs the application. However, it
is difficult to explore thefidelity spacecompletelywithout
annoying the user. During actualuse,we cannotsimply
choosefidelities to provide uswith morehistory— the fi-
delity valuesmustalsomatchtheuser’s latency, batterylife,
andotherresourceconstraints.

Henceour currentprototyperequiressomeamountof
loggingandlearningto bedoneoffline. In fact,loggingand
learningalsocontinueduringtheonlinephase.Theoffline
learningprovidesthesystemwith agoodstartingpoint,and
the online learningmodifiesthis startingpoint to track the
dynamicbehavior of theapplication.In this paperwe only
focuson theoffline loggingandlearningmechanisms.

3. Designand Implementation

Thissectiondescribeshow wecreateahistorylog of ap-
plicationbehavior, andhow weuseit to generatepredictors
of resourceconsumption. The history log is a collection
of log entries:eachentryassociatesa setof fidelity values
with a setof resourceconsumptionvalues. We feedthese
log entriesto learningalgorithmsthatlearntherelationship
betweenthefidelity metricsandtheresourceconsumption.

3.1. Application-specificlogging

We have implementeda single genericmechanismfor
logging application fidelity and resourceconsumption.
However, eachapplicationhasits own notion of what fi-
delity is,andhow many dimensionsit has.To bridgethegap
betweenapplication-specificfidelity metricsanda generic
logging mechanism,we use application-specificconfigu-
ration files or ACFs. An ACF capturesthe salient fea-
turesof an applicationwith respectto resourceconsump-
tion. Specifically, theACF lists thefidelity metricsandin-
put parameters for theapplication.An input parameteris a
featureof theinput datathataffectstheresourceconsump-
tion — thesizeof theinputdatais frequentlyausefulinput
parameter. Bothfidelity metricsandinputparametersaffect
resourceconsumption— thedifferenceis thatwecanadjust
thefidelity, whereaswe have no controlover input param-
eters. The fidelity metricsand input parameterstogether
form the input to a resourcepredictorfunction,whoseout-
put is theexpectedresourceconsumption.

Oncewe have generateda resourcepredictorusingof-
fline analysis,we encodethis in theACFasa resourcehint
function. During the online phase,Odyssey usesthis hint
as an initial guess,and updatesit as fresh log entriesare
generated.

2

Resource Units of consumption
LocalCPU millions of instructionsexecuted
Energy Joules
Latency seconds
Network I/O bytestransmitted/received
RemoteCPU millions of instructionsexecuted
Physicalmemory bytes
Disk I/O bytesread/written

Figure 1. Resour ces consumed by multi-
fidelity operations

3.1.1 Multi-fidelity operations

All resourceconsumptionis measuredwith respectto a
multi-fidelityoperation [12]. A multi-fidelity operation,or
just “operation” for brevity, is the unit of computationfor
which we candefinefidelity metrics,input parameters,and
resourceconstraints.It is anapplication-specificnotion—
for aninteractiveapplication,it is thecomputationdonebe-
tweena userrequestandtheresponse.For a webbrowser,
anoperationis fetchingandrenderingasinglepage.

At the beginning of each operation, the application
makes an Odyssey systemcall (�����	��
 �
������������� ���), and
passesin thevaluesof theinput parameters.Odyssey com-
putesandreturnstheappropriatefidelity valuesto usedur-
ing the operation. This stepusesthe predictive ability of
Odyssey to mapfidelity valuesto theexpectedresourcecon-
sumption.

When the operation completes, the application sig-
nals this to Odyssey by making another system call
(��
�� �
������������� ���). Odyssey thenlogs the fidelities, input
parameters,and resourceconsumptionof that operation.
This datais alsousedto updatethepredictorfunctionsand
improvefuturepredictions.

3.1.2 Data-specificlogging

Sometimes,it is not possibleto captureall therelevantfea-
turesof aninputdataobject— theremaybeeffectsthatare
toocomplex for usto expressor evento understand.Hence
we require the applicationto provide a unique label for
theinputdataobject,asanargumentto �����	��
 �
������������� ��� .
This label could be the nameof the file containingthe in-
put data. By logging this uniquelabel along with the in-
putparameters,wecanmakeamoreaccurate,data-specific
predictionwhenweseethesameobjectagain.

3.1.3 Resourcemonitors

The taskof measuringresourceconsumptionis doneby a
setof resource monitors in Odyssey. Eachmonitor is re-

sponsiblefor measuringa particularresource,andcomput-
ing theamountconsumedby eachmulti-fidelity operation.

Our currentprototypemonitorsCPU and energy con-
sumption.Figure1 lists the completesetof resourcesthat
weenvisionsupporting.To measureCPUconsumption,we
usethe Linux /proc file system,which reportsthe amount
of CPUtimeconsumedby eachprocess.We scaletheCPU
timeby thespeedof theprocessor1. Thisscalingmakesthe
measurementsomewhatindependentof thespecificCPUon
which we take themeasurements,thoughof coursewe can
neverhaveasinglenumberthatexactly representstheCPU
consumptionacrossdiverseprocessors.In this paper, all
measurementsweredoneon a singlemachine,andso we
reportCPUconsumptiondirectly in seconds.

To measure energy consumption, we use Power-
Scope[6]. PowerScopeallowsusto samplethepowercon-
sumptionof a laptop and attribute it to one of the many
processesrunning on the machine. We extendedPower-
Scopeto includea timestampwith eachsample. In post-
processing,we use thesetimestampsto correlatepower
sampleswith the operationsloggedby Odyssey. We com-
pute the total energy consumedduring an operation,sub-
tract out the known backgroundpower consumption,and
attribute the remainingenergy consumptionto that opera-
tion.

Our currentprototypemapseachapplicationto a single
operationat a time: we do not yet supportmultiple concur-
rentoperationsby thesameapplication.We alsomapeach
applicationto a uniquesetof processes.If therearemul-
tiple applicationsthat usea sharedservice(suchas the X
server),wedonotyetcomputewhatfractionof its resource
consumptionshouldbeattributedto eachapplication.

3.1.4 Training mode

In orderto acquiredataaboutanapplication’sbehavior over
theentirerangeof operatingparameters,werunOdyssey in
aspecialtrainingmode. Normally, Odyssey wouldpick the
fidelity for eachoperationto satisfylatency, batterylife, or
otherconstraints.In trainingmode,wedisregardthesecon-
straints,andchoosefidelities randomlyin orderto sample
the entirefidelity space.By runningthe multi-fidelity op-
erationmany times,we acquiresamplepointsall over the
fidelity space.In orderto exploretheinputparameterspace
aswell, we conductexperimentswith multiple input data
objects.

3.2. Linear-fit predictors

For our initial prototype,wewishedto build aprediction
mechanismthatwaseasyto understand,easyto implement,
andcomputationallycheap.Thesimplestsuchpredictoris a

1Weusethe“bogomips”valueprovidedby Linux in /proc/cpuinfo

3

linearone;givenasetof
 inputsand1 output,wecanruna
linearregressionon all our samplesto predicttheoutputas
somelinearcombinationof theinputs.Currently, choosing
the inputsto the linear regressionis left to the application
programmer. For example,if the applicationprogrammer
suspectsthat the CPU consumptionof her algorithmis of
the form �!#"$ �%��'&)(+*-,
./�'&102"3 �45� 4 & 4 , where � and & are
fidelities or input parameters,then shewould specify the
inputs�'&)(+*-,
./�'&10 and� 4 & 4 .

The coefficients �!-67 �%�6�898+8 computedduring the learning
phasearemaintainedasapplication-specificstateduringthe
onlinephase.Every timewe wish to makea prediction,the
application-specificpredictorcomputesthe functionrepre-
sentedby thesecoefficients. Every time we get a new log
entry, Odyssey updatesthe coefficients using incremental
gradientdescent[10]. Thus the systemimproves its pre-
diction accuracy asmoreoperationsareperformed,while
keepingthecomputationalexpenseof eachupdaterelatively
small.

3.3. The solver

Oncewehaveapredictionmechanism,weneedto useit
to make fidelity decisions.Givena predictorfor CPUcon-
sumptionand a CPU consumptionconstraint,we needto
pick thevaluesof fidelity for whichwewill satisfythecon-
straintwhile maximizingthefidelity. Wehaveimplemented
— but notyetevaluated— asimplegradient-descentsolver
which doesthis optimization. If therearemultiple fidelity
metrics,thenthe solver maximizesan application-specific
utility function that mapsa multi-dimensionalfidelity to a
singlenumberrepresentingusersatisfaction.

Thepredictorsgeneratedby offline learningareprovided
to thesolverasresourcehint functionsin theACF. TheACF
also containsthe utility function and an updatefunction.
Theupdatefunction is calledevery time we log a new op-
eration,andcanupdatethe internalstateof the hint func-
tion. In our prototypethesefunctionsareimplementedas
entry points into an object file that is dynamicallyloaded
into Odyssey whentheapplicationis started.

3.4. Applications

This section describesthe applicationsthat we have
modifiedsofar to usetheOdyssey API extensions.

3.4.1 Radiosity

A radiosity[3] computationcolorsandshadesa 3-D scene
accordingto the light sourcespresentin the scene.A 3-D
sceneor model is a collectionof 3-D objects,eachrepre-
sentedasa setof polygonswhich make up the surfaceof
theobject.Every time we edit themodel,we needto run a

radiositycomputationin orderto capturethelighting effects
thatwe wouldseein therealworld.

Radiosityandother3-D graphicsalgorithmsarekey to
building realisticaugmentedreality environments.Imagine
anarchitectwho is commissionedto renovateanold build-
ing, andwishesto show her proposeddesignto the client.
With amobilecomputer, aheads-updisplay, andaugmented
reality software,a client canwalk aroundthebuilding, and
interactively view and edit the proposedrenovations. To
provide a realisticexperienceof this environment,we need
sophisticated(andresource-hungry)algorithmssuchasra-
diosity.

Two of the most commonlyusedradiosity algorithms
are hierarchical and progressiveradiosity. Both of these
arecomputationallyquiteexpensive.Thecomputationalre-
quirementgrowswith thenumberof polygons
 in theinput
data— as :;.�
<(+*-,=
>0 for hierarchicalandas :;.�
 4 0 for pro-
gressive radiosity. Thus, it often makessenseto simplify
the modelbeforerunningthe algorithm. This reducesthe
numberof polygonsin themodelat thecostof losingsome
detail— we geta cheaperandquicker radiosityresultat a
lowerfidelity. Thus,beforerunningradiosityon any scene,
weneedto chooseanalgorithm— eitherprogressiveor hi-
erarchical— anda resolution— a realnumberbetween0
and1, which specifieswhat fraction of the input polygons
to retain.Figure2 shows theACF for theradiosityapplica-
tion.

Radiator is an implementationof several commonra-
diosity algorithmswith a GUI front end. It allows us to
load a 3-D scenecontainingoneor more3-D objectsand
light sources,selecta radiosityalgorithmanda resolution,
and run the algorithm. We have modified radiatorto call
Odyssey beforeeachradiositycomputation,passingin the
numberof polygonsin the input data.Odyssey selectsand
returnsthealgorithmandresolutionto beusedfor thatcom-
putation.

3.4.2 Webbrowser

Our secondapplicationis a web browserthatdegradesthe
fidelity of GIF imagesfetchedover the web by converting
themto lossily compressedJPEG[13]. Previous research
hasshown thatsuchdegradationis effective in reducingthe
consumptionof network bandwidth[7, 11] andenergy [5].
In this paperwe focus on energy: we predict the energy
consumedto fetch an imageover a wirelessnetwork and
renderit.

Web imageshave onefeatureor input parameter— the
sizeof theoriginal image— andonefidelity metric— the
JPEGQuality Factor [2, 13], which representsthe quality
of the compressedimage. The JPEGQuality Factor can
take an integer value from 0–100; in our experimentswe
useonly the range5–80 sincethe compressionalgorithm

4

description radiator:radiosity # <application>:<computation>
logfile /usr/odyssey/etc/radiator.radiosity.log
mode training # sample fidelity space
param polygons 0-infinity # number of polygons in scene
fidelity resolution 0-1 # how much to scale down the scene complexity
fidelity algorithm progressive hierarchical # choice of algorithm
constraint lcpu 27721.8 # no more than 60 CPU seconds on a TP560X
hintfile /usr/odyssey/lib/rad_hints.so
hint lcpu rad_lcpu_hint # hint function
utility rad_utility # utility function
update rad_update # update function

TheACF for theradiositycomputation.Thecomputationhasoneinput parameter— thenumberof polygonsin theinput data— andtwo
fidelity metrics— thechoiceof radiosityalgorithm,andtheresolution.Thenumberof polygonsandresolutionareorderedandreal-valued.
The“algorithm” fidelity is unordered,andcantake oneof the two values“progressive” and“hierarchical”. ?�@�A B9C�D1E F1GIH�J , ?�@�A EKJLGLBMG+JLN ,
and ?�@�A E�DKA�@�J�O arethenamesof entrypointsinto themodule“rad hints.so”.

Figure 2. The configuration file (ACF) for the radiosity application.

behavesunreliablyoutsidethis range.
Our webbrowserapplicationis madeup of anunmodi-

fied Netscapebrowserandan HTTP proxy runningon the
samemachine.The proxy interceptsall web requestsand
transformstheminto Odyssey systemcalls. Odyssey then
fetchesa degradedversionof the imagefrom a distilling
proxy locatedon theothersideof thewirelesslink.

4. Validation

To validateour prototype,thereare two questionsthat
weneedto answer:

� Is theoverheadof loggingandpredictionacceptable?

� Whatis theaccuracy of prediction?

This sectiondescribesa setof experimentsthat answer
thesequestions.All our experimentswererun on an IBM
ThinkPad560Xwith a233MHz Mobile Pentiumprocessor
and96MB of RAM, runninga Linux 2.2 kernel. Thema-
chinewasequippedwith a 2Mbps,2.4GHz LucentWave-
LAN wirelessinterface.

4.1. Overheadof logging

In orderto measuretheoverheadof loggingapplication
behavior, we measuredtheperformanceof a null operation
— acall to begin fidelity op followedimmediatelyby acall
to endfidelity op.

The CPU overheadof Odyssey is 2.0ms for eachpair
of calls. The increasein applicationlatency is 2.2ms per
pair of calls. This overheadis higherthanwe would like,
but we areconfidentthat it canbe substantiallylower in a
productionversionof Odyssey. Evena 2.2ms overheadis

oftenacceptablefor aninteractiveoperationsuchastheweb
imagefetch — for a fetch that takes1 sec,the increasein
latency is only 0.22%.The2.2mslatency canbeattributed
to:

� 0.2ms for logging, including the cost (averagedover
many calls) of asynchronouslyflushinglog entriesto
disk.

� 1.4ms to measureapplicationCPU consumptionby
readingandparsingfiles from /proc. We couldreduce
this substantiallyby addinga moreefficient interface
to readCPUstatisticsfrom theLinux kernel.

� 0.5ms for two calls to the Odyssey user-spaceim-
plementation. A kernel implementationof Odyssey
wouldhavea muchsmalleroverhead.

� 0.1msof otheroverhead.

4.2. Accuracy of prediction

4.2.1 CPU usageof radiosity

To measurethe accuracy of history-basedprediction of
CPUconsumption,we usedthe radiosityapplication(Sec-
tion 3.4.1). We ran it on 7 different dataobjects,rang-
ing roughly in sizefrom 30,000polygonsto 200,000poly-
gons.Wecollectedatotalof 1578samplesin trainingmode.
Therewere3556trainingruns;1978of themfailedbecause
they exceededour resourcelimits. To preventexperiments
that ran forever, we seta CPU limit of 300secon eachra-
diosity computation.To avoid paging,which would distort
our measurements,we limited theapplicationto 64MB of
theavailable96MB of RAM.

Given our application-specifichints (Section3.4.1),we
ran linear regressionwith the inputs �'&P(+*-,��'& and � 4 & 4 —

5

Dataobject Polygons Hierarchicalradiosity Progressiveradiosity
Samples % error RMSerror Samples % error RMSerror

Enterprise 203880 75 10% 10.7sec 17 5% 0.3sec
Dragon 108590 106 17% 6.1sec 47 11% 0.5sec
Whale 101814 159 4% 1.8sec 68 5% 0.2sec
Bunny 69543 153 11% 4.3sec 87 6% 0.3sec
Car 56972 164 1% 1.2sec 0 n.a. n.a.
Polarbear 48963 147 8% 3.1sec 152 17% 0.7sec
Sherman 29450 170 7% 1.4sec 233 14% 0.4sec
All objects 974 80% 36.7sec 604 31% 1.8sec

‘RMS error” measurestheabsolutepredictionerror in CPUseconds.“% error” is the90thpercentileof relative error— a % errorof 4%
meansthat90%of thesampleshada relative errorof lessthan4%. Whenrunningprogressive radiosityon the“car” object,all 295training
runsexceededourCPUand/ormemorylimits andhadto bediscarded.

Figure 3. CPU prediction error for radiosity

0

50

100

150

200

250

300

0 20000 40000 60000 80000 100000 120000

C
P

U
 ti

m
e

in
 s

ec
on

ds

Q

Number of polygons after reduction

Enterprise
Dragon
Whale
Bunny

Car
Polar bear
Sherman

(a) Fit on all objects

0

50

100

150

200

250

300

0 20000 40000 60000 80000 100000 120000

C
P

U
 ti

m
e

in
 s

ec
on

ds

Q

Number of polygons after reduction

Enterprise

(b) Fit on the “Enter prise” object

Thex-axisis thereducednumberof polygons(D1?). They-axisis theCPUconsumptionin seconds.Thepointsrepresentmeasuredsamples;
theline is abestfit on thesepointsof theform C5RTS;C�U�D1?WVYX�Z	D1?[S;C]\^D \ ? \ . Theleft-handgraphshows thefit whensamplesfrom all 7 data
objectsarecombined;theright-handgraphshows thefit for theobject“Enterprise”alone.

Figure 4. CPU prediction for hierar chical radiosity

6

Image Size Netscape xv
(bytes) Samples % error RMSerror Samples % error RMSerror

nsh 1394081 118 10% 0.8J 103 3% 0.8J
apple 174650 124 22% 0.7J 94 9% 0.3J
radio 114816 130 25% 0.7J 105 8% 0.3J
castle 58223 130 38% 0.6J 105 11% 0.2J
circuit 19685 124 73% 0.6J 107 8% 0.1J
laserdt 8802 120 71% 0.6J 104 10% 0.1J
artban 971 130 93% 0.6J 100 14% 0.1J
redgem 110 127 94% 0.6J 101 9% 0.1J
All objects 1003 115% 1.1J 819 63% 1.0J

‘RMS error” measurestheabsolutepredictionerror in Joules.“% error” is the90thpercentileof relative error— a % errorof 50%means
that90%of thesampleshada relative errorof lessthan50%.

Figure 5. Energy prediction error for web image fetch

0

1

2

3

4

5

0 20 40 60 80 100

E
ne

rg
y

co
ns

um
pt

io
n

in
 J

ou
le

s

_

JPEQ Quality Factor

(a) Using Netscape

0

1

2

3

4

5

0 20 40 60 80 100

E
ne

rg
y

co
ns

um
pt

io
n

in
 J

ou
le

s

_

JPEQ Quality Factor

(b) Using xv

ThepointsaremeasuredsamplesthatcorrelatetheJPEGquality factor ` (x-axis)with theenergy consumptionin Joules(y-axis).Thelines
arebestfits on thesepointsof theform acbdC5R�S;C�U]efS;C]\�`Ke . For this image,thesize e is 58223bytes.

Figure 6. Energy prediction for fetching image “castle”

7

for eachalgorithm, we computeda best fit of the form
 ! "g % �h&i(+*-,��'&<"j 4 � 4 & 4 . Figure3 shows the prediction
errorsof this linear-fit approach.For individualobjects,we
find a goodfit. On theotherhand,whenwe try to fit a sin-
gle function to all thedataobjects,we have a badfit. Fig-
ures4(a)and4(b) area visual illustrationof thedifference
betweendata-specificanddata-independentprediction.The
curvedoesnot fit thepointsverywell in Figure4(a),which
includesall the dataobjects. Figure4(b) shows the fit for
the “Enterprise”objectalone,which hasthe highestroot-
mean-squarepredictionerrorof any singleobject. Even in
this worst case,we seethatwe have a goodfit. This illus-
tratesthe importanceof learningfrom recenthistory, and
specificallyof data-specificpredictionfrom history.

4.2.2 Energy usageof the web browser

We measuredthe accuracy of predicting the energy con-
sumptionof fetchingandrenderingwebimagesoverawire-
lessnetwork (Section 3.4.2).We performed935trial runs,
eachof which consistedof oneoperation— fetchingand
renderinga single image. The 7 imageswe usedranged
in size from 110 bytesto 1.4MB, and for eachoperation
we picked a randomfidelity (JPEGQuality Factor) in the
range5–80. The imageswerefetchedover the WaveLAN
wirelesslink from an IBM ThinkPad570with a 366MHz
Mobile PentiumII processorand128MB of RAM.

We measuredtheenergy consumptionof eachoperation
by samplingthe power consumptionduring the operation
andsubtractingout thebackgroundor baselinepower con-
sumption.Thisbaselineis thepowerconsumptionwhenthe
CPUis idle, thescreenis backlit,andthewirelessinterface
is up but not in use.Our testmachinehada baselinepower
consumptionof 7.94Watts.

We expect the energy cost of fetching an imageto be
proportionalto its compressedsize,andthecostof render-
ing it to be proportionalto the uncompressedsize. Thus
we expectthe energy consumptionto be of the form �!k"
 �%�lm"n �4�lpo , where l is the uncompressedsize and lpo is
the compressedsize. If we further assumethat the com-
pressionratio &rqts�us is linearly relatedto theJPEGqual-
ity factor � , thenwe get a function for energy of the form
 �o! "v �o% lc"m �o4 �Tl .

The first 5 columnsof Figure 5 shows the prediction
error of fitting sucha functional form to the energy con-
sumptionof Netscape. We see extremely large predic-
tion errors,especiallyfor smallerobjects. We found that
this wascausedby a large amountof noisein the energy
consumptionof the Netscapeprocess. We suspectthat
schedulingeffects in Netscape’s threadingpackagecause
theamountof CPU consumption(andhenceenergy) to be
non-deterministic.

How accuratewouldourpredictionsbeif wehadawell-

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

C
op

m
pr

es
si

on
 r

at
io

w

JPEQ Quality Factor

nsh
apple
radio

castle
circuit

laserdt

For eachimage,thecompressionratio ? (y-axis)is a linearfunction
of theJPEGquality factor ` in therange5–80.Thegraphdoesnot
show theimages“artban”and“redgem”: theseimagesaresosmall
thatJPEGcompressionincreasestheir size. In practice,we would
never compresstheseimages,but alwaysusetheoriginal.

Figure 7. JPEG Compression ratio as a func-
tion of fidelity

behavedbrowser?To answerthis question,we constructed
a simple browser that sendsHTTP requests,readsimage
data,and displaysthe imageusing xv [1], a freely avail-
able imageeditor programfor X. We repeatedthe experi-
mentsusingthisbrowserinsteadof Netscape.Thelastthree
columnsof Figure5 show thatwe canactuallypredicten-
ergy consumptionquitewell (in theworst-case,our erroris
14%). Figures6(a) and6(b) visually depict the difference
betweenusingNetscapeandusingxv, for the “castle” ob-
ject.

Figure 7 shows us that the compressionratio for each
dataobject — and hencethe energy usage— is a linear
functionof fidelity in therange5–80.This is why we have
accurateper-objectprediction: however, thereis no single
functionthatwill fit all thedataobjects.Hanet al. [8] have
shown thattheinputbytesizeis notagoodpredictorof out-
put bytes,but that that theoutputbytesseemto bea linear
function of the numberof input pixels. Even in this case,
thereis a lot of noiseandpredictionerror acrossimages:
again, this illustratesthe importanceof data-specificpre-
diction.

4.3. Overheadof learning

Sincewe currentlydo learningoffline, the overheadof
thisphaseis notcritical. Ourcurrentimplementationin Perl
took lessthan10 seconds(on a 233MHz Pentium)to pro-
cess16 different datasetsfrom the radiosity application.
We expect that with an optimizedC implementation,the
overheadwill beevenlower.

8

5. Hybrid learning algorithm

Theresultsin theprecedingsectionsclearly indicatethe
valueof data-specificprediction. However, we cannotan-
ticipateeverypossibledataobjectthatanapplicationmight
see.This suggestsa hybrid learningapproach.We useof-
fline learningto learn a genericfunction that serves as a
startingpoint. In theonlinephase,whenever we seea new
dataobject,weadjustthecoefficientsto matchthebehavior
of thenew object. Thusat thecostof a few erroneouspre-
dictionsduring this calibration,we canaccuratelypredict
theresourceconsumptionof thenew dataobject.

We envision usingthis hybrid approachin thefollowing
way. Whenwe have few samplesfor the input dataobject,
we pick fidelities conservatively. In most cases,this will
resultin a “quick-and-dirty” version— thefidelity is lower
thantheuserwants,andtheresourceconsumptionlessthan
shewas willing to spend. In suchcases,the usersimply
repeatsthe computation.This time, we have acquiredone
moresamplepoint, andcanafford to be lessconservative.
By being conservative initially, we have acquiredsample
pointscheaply, andimprovedour predictive capabilityat a
smallcostin resourceconsumption.

We have not yet evaluatedthis hybrid approach,but we
expect the overheadof eachupdateto be extremely low:
our incrementalgradientdescentcodedoesabout6 float-
ing point operationsper input on eachupdate. Of course,
there is also the memoryoverheadof keepingper-object
state.If thereis a largesetof dataobjects,wemighthaveto
usecachingmechanismsthatdiscardinformationon long-
unusedobjects,or save it to secondarystorage. Alterna-
tively, we could storethe digestedper-object information
in the object itself, asan extensionto the file format. An
Odyssey applicationwould be ableto readthis extension,
andwe would adda systemcall for theapplicationto pro-
vide this informationasahint to Odyssey.

6. Relatedwork

Adaptationandhistory-basedpredictionarewell-known
concepts;therearemany examplesof systemsthatuseone
or both techniques.To the bestof our knowledge,this is
the first pieceof work that learnsandpredictsapplication
resourceconsumptionas a function of fidelity in order to
improveadaptationin mobileapplications.We seeour pre-
dictive mechanismasa serviceto be usedby higher-level
adaptivesystems.

Weareawareof oneotherpieceof work thattriesto learn
resourceconsumptionfunctions: PUNCH [9] is a system
for learningthe CPU requirementsof an applicationas a
functionof theinput parameters.Theobjective of PUNCH
is to usepredictionsof CPUusageto decidehow andwhere

to executethe applicationin a distributedcomputingenvi-
ronment.

The Odyssey predictor, on the other hand,predictsre-
sourceconsumptionas a function of both fidelity and in-
put parameters.We useit in combinationwith thesolver to
pick thebestpossiblevaluesof fidelity for thatcomputation.
Odyssey is intendedto beusedwith interactiveapplications
in amobileenvironment,wherea “quick anddirty” answer
is oftenmorevaluableto theuserthana high-fidelity result
that wastestime, batteryenergy, network bandwidth,and
otherresources.

7. Future Work

Thereareseveraldirectionsin which we plan to extend
this work. Our immediatetask will be to expandthe set
of applicationsthat useour API extensions. This should
providevaluableexperiencewith usingtheAPI andindicate
how it canbeextendedor refined.Wealsointendto testour
adaptiveapplicationsunderrealisticscenarios,andmeasure
thebenefitto theuserof prediction-basedadaptation.This
would alsoallow us to evaluatethe hybrid online learning
mechanismdescribedin Section5.

We areworking on expandingthe numberof resources
supportedby our prototype,and especiallyon addingla-
tency (userwait time) andnetwork I/O. Userwait time is
a critical resourcefor any interactive application,sinceit
directly impactsusersatisfaction. Network I/O is impor-
tantsinceit affectsenergy consumptionaswell aslatency.
In factwe would expectenergy consumptionto be a func-
tion of CPU,network,anddiskactivity, becausetheseaffect
thepowerconsumptionof theCPU,network interface,and
disk respectively. Similarly, latency dependson CPU,net-
work anddisk consumption.We aredesigninga prediction
mechanismthatincorporatessuch“resourcedependencies”,
wherepredictionsfor oneresource(CPU)couldbeusedby
predictorsfor a higher-level resource(latency). We alsoin-
tend to extendour systemto allow multiple threadsin an
application,which couldbeperformingmulti-fidelity oper-
ationssimultaneously.

In the mediumandlong term, we would like to extend
our linearregressionmethodto moresophisticatedlearning
algorithms,andevaluatethesealgorithms— how accurate
they are,how quickly they converge,how goodthe initial
guessmustbe(for onlinemethods),andwhattheoverheads
are.We wouldalsolike to find asaferway to specifyappli-
cationhint functions:our currentapproachof dynamically
loadedobjectsis veryefficientbut notsafe.Weneedabetter
mechanism(possiblyan interpretedlanguage)that would
strike theright balancebetweenflexibility , safety, andper-
formance.

Our prototyperelies on the applicationprogrammerto
provide the utility function thatmapsfidelity to usersatis-

9

faction. This is very hard to do, especiallywith multiple
fidelity metricsandtime-varyinguserpreferences.We in-
tendto explore waysof usinguserfeedbackto updatethe
utility function. This is analogousto theway that feedback
onresourceconsumptionupdatesour resourcepredictors.

Currently, thesolver triesto find thebestutility thatsat-
isfiesasetof constraints.Often,wedonotwantto setahard
constraintonaresourcesuchaslatency — theusermightbe
willing to wait a smallamountof additionaltime, but only
if it resultedin a large increasein fidelity. In otherwords,
we want the highestfidelity that we can achieve cheaply.
This correspondsto finding a knee,or “sweetspot” on the
tradeoff curve betweenfidelity andresourceconsumption.
We would like to characterizethese“sweetspots”andhave
thesolverfind themautomatically.

Acquiring history logs for eachhardwareplatform that
wemighteveruseis burdensome.Wewouldliketo uselogs
acquiredon onehardwareplatformto make predictionson
another. Our CPU measurementis alreadyscaledto CPU
performance;however, a simplelinearscalingusuallywill
not captureall thedifferencesbetweenprocessors.We will
needa mechanismthat useslog entriesacquiredon other
platforms,but givesthema smallerweight than thoseac-
quiredon thehostplatform.

Ideally, wewould likethesystemto startwith little or no
log informationandrefineits predictionsasit goesalong.
This requirestechniquesthatcanexplore thefidelity space
conservatively. For eachoperation,we needto pick a fi-
delity thatisnottoofarfrom theknownportionof thespace,
to avoid egregious mispredictions. At the sametime we
wish to extendtheknown space,sothatweeventuallylearn
aboutnew desirableoperatingpoints. It would be interest-
ing to investigatetechniquesthat strike a balancebetween
thesetwo conflictingrequirements.

8. Conclusion

Fidelity adaptationis essentialfor applicationsto main-
tain good interactive responseand low batterydrain in a
turbulentandresource-poormobileenvironment.However,
for mostapplications,theexacteffectof fidelity onresource
consumptionis not known a priori: it dependson thehard-
wareplatformandevenon theinputdatato theapplication.

History-basedpredictionoffers a way to measure,log,
andlearnthefidelity-resourcetradeoffs of any application.
This allows us to implementa variety of adaptationpoli-
ciesto pick goodoperatingpointson thesetradeoff curves.
Our initial resultsshow thatwecanlog andpredictresource
consumptionwith acceptableoverheadandgoodaccuracy.
Thereremainanumberof issuesto beaddressedin making
history-basedpredictioneasyto useand truly effective in
guidingadaptation.

Acknowledgements

The authorsthank Andrew Willmott for providing the
sourcecodeto radiator, and for being the domainexpert
for this application.We thankPeterDindafor many useful
discussionson resourceprediction. Feedbackfrom David
Petrou,SanjayRao,Mihai-DanBudiu,Mor Harchol-Balter
andAvrim Blum contributedsubstantiallyto improving this
paper.

References

[1] J.Bradley. xv: InteractiveImage Displayfor theX Window
System. ftp://ftp.cis.upenn.edu/pub/xv/docs/xvdocs.pdf.

[2] S. Chandraand C. S. Ellis. JPEGcompressionmetric as
a quality aware imagetranscoding. In 2nd Symposiumon
InternetTechnologiesandSystems, Boulder, CO,Oct.1999.

[3] M. F. CohenandJ.R. Wallace.RadiosityandRealisticIm-
age Synthesis. AcademicPressProfessional,Boston,MA,
1993.

[4] T. H. Cormen,C. E. Leiserson,andR. L. Rivest. Introduc-
tion to Algorithms. TheMIT Press,Boston,MA, 1990.

[5] J. Flinn andM. Satyanarayanan.Energy-awareadaptation
for mobileapplication.In SeventeenthACM Symposiumon
Operating SystemsPrinciples(SOSP’99), pages48–63,Ki-
awahIsland,SC,Dec.1999.

[6] J. Flinn and M. Satyanarayanan.PowerScope:a tool for
profiling theenergy usageof mobileapplications.In Second
IEEE Workshopon Mobile ComputingSystemsand Appli-
cations, pages2–10,New Orleans,LA, Feb. 1999.

[7] A. Fox, S. D. Gribble,E. A. Brewer, andE. Amir. Adapt-
ing to network andclientvariability via on-demanddynamic
distillation. In SeventhInternationalConferenceon Archi-
tectural Supportfor ProgrammingLanguagesand Operat-
ing Systems, pages160–170,Cambridge,MA, Oct.1996.

[8] R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Peret,
andJ. Rubas.Dynamicadaptationin animagetranscoding
proxy for mobilewebbrowsing. IEEE PersonalCommuni-
cationsMagazine, 5(6):30–44,Dec.1998.

[9] N. H. Kapadia,J. A. B. Fortes,andC. E. Brodley. Predic-
tive application-performancemodelingin a computational
grid environment.In EighthIEEEInternationalSymposium
on High PerformanceDistributedComputing(HPDC), Los
Angeles,CA, Aug. 1999.

[10] T. M. Mitchell. MachineLearning. McGraw-Hill, 1997.
[11] B. D. Noble,M. Satyanarayanan,D. Narayanan,J.E.Tilton,

J.Flinn, andK. R. Walker. Agile application-awareadapta-
tion for mobility. In SixteenthACM Symposiumon Oper-
ating SystemsPrinciples(SOSP’97), pages276–287,Saint
Malo, France,Oct.1997.

[12] M. SatyanarayananandD. Narayanan.Multi-fidelity algo-
rithms for interactive mobile applications. In Third Inter-
nationalWorkshopon DiscreteAlgorithmsandMethodsin
MobileComputingandCommunications, Seattle,WA, Aug.
1999.

[13] G.K. Wallace.TheJPEGstill picturecompressionstandard.
Communicationsof theACM, 34(4):30–44,Apr. 1991.

10

