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ABSTRACT

This paper examines two statistical spoken dialog systems de-
ployed to the public, extending an earlier study on one system
[1]. Results across the two systems show that statistical tech-
niques improved performance in some cases, but degraded
performance in others. Investigating degradations, we find the
three main causes are (non-obviously) inaccurate parameter
estimates, poor confidence scores, and correlations in speech
recognition errors. We also find evidence for fundamental
weaknesses in the formulation of the model as a generative
process, and briefly show the potential of a discriminatively-
trained alternative.

1. INTRODUCTION

For more than a decade, researchers have worked to apply sta-
tistical techniques to spoken dialog systems. One of the main
aims is to improve robustness to errors in automatic speech
recognition by maintaining a distribution over many possible
hypotheses for the true state of the dialog [2]. In 2010, these
techniques were deployed to the general public for the first
time, in the first Spoken Dialog Challenge [3]. An analysis
found statistical techniques only sometimes improved accu-
racy, and suggested several improvements [1]. In 2011, these
changes were made and re-deployed to the public in a second
round of the Spoken Dialog Challenge.

This paper provides a critical analysis spanning these two
deployments. The contribution is not a new technique or al-
gorithm, but rather a thorough evaluation of state-of-the-art
technology in real-world use. New insights in this paper in-
clude: empirical data showing the relationship between ac-
curacy and the quality of model parameters; identification of
correlations in speech recognition errors as a major cause of
failures; and evidence for fundamental flaws in several com-
ponents of current models. Taken together, these findings sug-
gest several new research directions, and we briefly explore
the potential of one of these.

In this paper, Sections 2 and 3 cover background material
and the two dialog systems. Sections 4 and 5 then provide the
analysis, and Section 6 concludes and suggests several new
research directions.

2. STATISTICAL DIALOG SYSTEMS

Statistical dialog systems maintain a distribution over a set of
hidden dialog states, such as the user’s overall goal in the dia-
log or the user’s true dialog act. For each dialog state s, a pos-
terior probability of correctness called a belief is maintained
b(s). The set of hidden dialog states and their beliefs is col-
lectively called the belief state, and updating the belief state
is called belief tracking. Here we will present belief track-
ing at a level sufficient for our purposes; for a more general
treatment, see [2].

At the start of the dialog, the belief state is initialized
to a prior distribution by(s). The system then takes an ac-
tion a, and the user takes an action in response. The auto-
matic speech recognizer and spoken language understanding
(collectively called “ASR” in this paper) then produces a
ranked list of N hypotheses for the user’s action, uq, . .., uy,
called an N-best list. For each N-best list the ASR also pro-
duces a distribution P, (u) which assigns a local, context-
independent probability of correctness to each item, often
called a confidence score. The belief state is then updated:

b(s)=k- Z Pog (1) Pacr(u] s, a)b(s) (1)

where Py (u|s,a) is the probability of the user taking action
u given the dialog is in hidden state s and the system takes ac-
tion a. k is a normalizing constant. In this paper, we’ll assess
whether the top belief state s* = arg max b(s) computed by
Eq 1 yielded an improvement in accuracy compared to the top
ASR result 1 in two real-world dialog systems.

3. DIALOG SYSTEMS UNDER STUDY

The two systems under study in this paper — DS1 and DS2 —
provide bus timetable information for Pittsburgh, USA. They
were fielded to the public as a part of the Spoken Dialog Chal-
lenge [3]. They followed a highly directed flow, collecting
one slot at a time. There are five slots: route, from, to,
day, and time. These systems could only recognize values
for the slot being queried, plus a handful of global commands
(“repeat”, “go back”, “start over”, “goodbye”, etc.) — mixed
initiative was not supported. The systems themselves were

fielded by AT&T [4], and the analysis here is based on the



system recordings and logs, publically available from the Di-
alog Research Center at Carnegie Mellon University.

Each system opened by asking the user to say a bus route,
or to say “I’m not sure.” The systems could recognize any of
the ~100 routes in Pittsburgh, but could only provide times
for a covered subset of routes. If an uncovered route was
recognized, the system explained that it only had information
for certain routes. Otherwise, the system next asked for the
from and to slots. The system then asked if the caller wants
times for the “next few buses”. For the (few) callers who said
“no”, the system asked for the day then time in two separate
questions. Finally bus times were read out. Users could say
“start over” at any time.

Belief tracking was done with the AT&T Statistical Di-
alog Toolkit [5], and an independent belief state was main-
tained for each slot. After requesting the value of a slot, the
system received an ASR N-best list, assigned each item a con-
fidence score Py (u), and updated the belief in (only) that slot
using Eq 1. The top dialog hypothesis s* = arg max; b(s)
and its belief b(s*) were used to determine which action to
take next, following a hand-crafted policy. This is in contrast
to conventional dialog systems, in which the top ASR result
governs dialog flow.

Confidence scores P, (u) were assigned using a two-
stage model [6]. In the first stage, a maximum entropy
classifier assigned a probability to three classes, where the
classes indicate (1) that the top ASR result u; is correct; (2)
that one of the items in us . . . up is correct; and (3) that none
of the items on the ASR N-best list is correct. In the second
stage, a Beta distribution is used to allocate the probability
of class (2) across items us ... uy. The maximum entropy
classifier and Beta distribution were trained on data (details
in Section 4.1). The structure of the confidence score model
P,(u) made it possible for item n = 2 to be assigned a
higher confidence score than n = 1, although this wasn’t
necessarily desired.

The two systems were nearly identical, except that DS1
could provide timetables for 8 covered routes and DS2 could
provide timetables for ~40 covered routes; DS2 used differ-
ent priors by than DS1; and DS2 used different training data
to estimate P,g(u). Table 1 shows descriptive statistics of the
dialogs.

4. EVALUATION OF ACCURACY

To measure the performance within each slot, we will com-
pare the accuracy of the top belief state s* = arg max, b(s) to
the accuracy of the top ASR result u; (our baseline). We be-
gan by selecting utterances containing non-empty responses
to each of the five slots (counts in Table 1). A professional
transcriber (not the author) listened to each utterance, and
marked each hypothesis on the ASR N-best list u; ... uy
as correct if it was semantically consistent with the user’s
speech, or incorrect otherwise. Labels were checked by a

Table 1: Two dialog systems studied in this paper. Utterance
counts for each slot show the number of non-empty utterances
received in response to system requests for that slot.

DS1 DS2

Calls 779 1037
route utterances | 1495 2955
from utterances | 1197 1656
1o utterances 1148 1592
day utterances 175 128
time utterances | 155 237
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Fig. 1: Summary of accuracy. The tops and bottoms of each
bar show accuracy for s* and u;. Unshaded bars indicate that
the accuracy of s* is higher than w; (ie, s* corresponds to
the top of the bar, and u; to the bottom). Shaded bars indicate
that the accuracy of s* is lower than u;. Asterisk (*) indicates
the difference is statistically significant with p < 0.05 using
McNamara’s Test.

second professional transcriber.

We next determined the accuracy of the top belief state s*.
In these systems, each item in the belief state maps directly to
one or more ASR hypotheses. In addition, typically the user’s
goal remains fixed throughout the call, at least until the caller
says “start over”. Given this, the correctness of the top belief
state was set to the correctness of the most recent ASR hy-
pothesis it mapped to. However, if the user said “start over”,
the set of relevant ASR items was cleared. The accuracies for
uy and s* for each slot in each system are shown in Figure 1.
While belief tracking yielded an improvement in accuracy in
some cases, it caused a degradation in others.

We next sought to understand the causes of this varied per-
formance. Formally, differences between the top ASR result
uy and the top belief state s* are simply the result of evalu-
ating Eq 1. However, intuitively there are four mechanisms
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Fig. 2: Effects of each mechanism on each slot. Each bar shows (x — y)/z, where z is the number of utterances where the
mechanism occurred and the belief 1-best is correct, y is the number of utterances where the mechanism occurred and the ASR
1-best is correct, and z is the total number of utterances in that slot/system (regardless of whether the mechanism occurred).
Asterisk (*) indicates the difference is statistically significant with p < 0.05 using McNamara’s Test.

which cause differences [1]:

ASR re-ranking: Our confidence score Py (u) had the
ability to assign a higher confidence score to us than
u1; when this ASR re-ranking happens, this may cause
s* to differ from u;.

Prior re-ranking: Statistical techniques use a prior
probability for each possible dialog state — in our sys-
tem, each slot value — by(s). If an item recognized
lower-down on the N-best list has a high prior, it can
obtain the most belief, causing s* to differ from u;.

N-best synthesis: If an item appears in two N-best lists,
but is not in the top ASR N-best position in the latter
recognition, it may still obtain the highest belief, caus-
ing s* to differ from w4 .

Confidence aggregation: If the top belief state s* has
high belief, then subsequent low-confidence recogni-

tions which do not contain s* will not dislodge s* from
the top position, causing s* to differ from w;.

Figure 2 shows the improvement/degradation of each
mechanism on each slot/system. Although there are some
trends, there is no overall pattern. The next four sections
examine each mechanism in detail.

4.1. ASR re-ranking (Figure 2a)

Recall that the models that assigned (local) confidence scores
P, could — as an artifact of their two-stage design — assign
a higher confidence score to the n = 2 item than the n = 1
item. We call this re-ordering ASR re-ranking, and Figure 3
shows it consistently degraded ASR accuracy, with one ex-
ception (day in DS1).

DS1 and DS2 used different confidence models Py;.
When DS1 was launched, there was no same-system data
available, so a large corpus of data from a different dialog
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Fig. 3: Effect of ASR re-ranking on local accuracy. Bars show
(x — y)/z, where x is the number of correct u* where u* =
arg max, Py (u), y is the number of correct u, and z is the
total number of utterances in the system/slot.

system was used to train the models [7]. This mismatch
was one possible cause of the degradation for DS1, so Py
for DS2 was trained on data from DS1. However, as shown
in Figure 3, ASR re-ranking also reduced ASR accuracy in
DS2. This suggests that mis-matched training data is not the
primary cause. Rather, it seems a more sophisticated model
for P, is required — i.e., one which is explicitly aware of the
order of items on the N-best list.

4.2. Prior re-ranking (Figure 2b)

Non-uniform priors were used in only route, from, and to.
Figure 2b shows that prior re-ranking improved accuracy for
route, substantially for DS1 and marginally for DS2. It also
improved accuracy for from and to in DS2, but degraded ac-
curacy for these slots in DS1. The explanations for these re-
sults lay in key differences between DS1 and DS2.

The first key difference between DS1 and DS2 is how
priors were estimated. In DS1, an attempt was made to es-
timate priors using a heuristic that avoided collecting usage
data. The heuristic assigned a prior proportional to the num-
ber of bus stops the slot value referred to. For example, for
locations (from and to), “downtown” referred to many bus
stops, but “the airport” referred to just one. In DS2, priors
were estimated from actual usage observed in DS1.

For locations in DS1, this heuristic was a failure. The
problem is that the heuristic did not reflect the fact that certain
stops are more popular than others: for example, the airport
corresponded to a single bus stop, but it was very popular.
The net effect was that prior re-ranking for locations in DS1
degraded performance. In DS2, with priors estimated from
(transcribed) usage data rather than a heuristic, priors yielded
an improvement in accuracy for locations.

The second key difference is that DS2 covered many more
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Fig. 4: Discrete KL divergence between model prior and ob-
served data vs. the change in accuracy compared to the ASR
1-best. The y axis is computed as in Figure 2. Increasing KL
divergence (i.e., poorer model fit) degrades the accuracy of
belief tracking.

bus routes than DS1. Most requests were for covered routes,
which had high priors; uncovered routes had very low priors.
In DSI1, the result was that most recognitions of non-covered
routes were errors; the strong prior moved covered routes to
the top of the belief state, yielding a large improvement for
belief tracking for route in DS1. In DS2, a larger set of routes
were covered, so erroneous recognitions were no longer ob-
vious. As a result, prior re-ranking still helped for route in
DS2, but to a lesser extent.

The overall trend is that the effectiveness of prior re-
ranking depends on how well the prior matches real use.
Figure 4 shows the discrete Kullback-Leibler (KL) diver-
gence between the frequency of observation and the prior
used in deployment for each of these 3 slots across the 2
systems. Within each slot, as the KL divergence increases,
accuracy of belief tracking decreases.

4.3. N-best synthesis (Figure 2c)

Performance for N-best synthesis was quite varied. For
route, from, to, and time, there was generally a negative (or
marginal) effect. For day, there was a large improvement for
DS1, and a moderate degradation for DS2.

We manually examined each instance of a degradation and
found that 86% of failed instances of N-best synthesis were
caused by correlated ASR errors: i.e., the same recognition
error occurring repeatedly. Figure 5 shows an illustration of
ASR error correlation. The key problem is that the update
in Eq 1 — in particular P,;, — assumes that confusions are in-
dependent. Correlations cause repeated errors to be wrongly
assigned too much belief mass.

Looking at day in DS2, we found a secondary cause for
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Fig. 5: Semantically incorrect items appearing in any location
on the ASR N-best list when the user said twenty eight x. For
space on the x axis, every second item is shown. The skew of
the curve shows that confusions are highly correlated.

degradations. Here, most of the degradations were caused by
the user saying “no” in response to the system confirming the
correct item, even though the user subsequently asked for the
same item again. The user behavior model P, — which was
based on hand-crafted heuristics — assigned a zero probability
to this seemingly irrational behavior. As a result the correct
item was ranked very low in the belief state.

Listening to these calls revealed that the confirmation
wording for day was creating confusion. For example, for
a call on Friday, one user said “today” but the system asked
“Did you say Friday?”. In addition to improving this con-
firmation strategy, it is clear that the user action model (like
the priors) can be difficult to predict and should be estimated
from real usage data.

4.4. Confidence aggregation (Figure 2d)

Figure 2d shows that confidence aggregation had an overall
positive effect, with day in DS1 being the most pronounced.
The one exception was time in DS2, where there was a neg-
ative effect. Confidence aggregation has more opportunity to
occur when questions are more often asked repeatedly. Fig-
ure 6 shows histograms of how many times each slot was re-
quested. In most cases, slots were most often requested once;
however, day in DS1 and time in DS2 were usually requested
more times.

Based on past investigation, we were aware that day in
DS1 had a bug that set priors to be an order of magnitude too
low [1]. As a result, more requests were required to obtain
belief values above the (manually-set) threshold required to
progress. This bug in day in DS1 was fixed in DS2. Unfor-
tunately we found that the same problem was inadvertently
introduced to time in DS2. Thus these questions were more
often asked repeatedly, illustrated by the disproportionately
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Fig. 6: Histogram of number of times each slot was requested
by the system. The y axis shows the percent of each mini-call,
where a mini-call is the same as a call except that “start over”
begins a new mini-call.

high counts of day utterances in DS1 and time utterances in
DS2 in Table 1.

But why was belief tracking accuracy for day in DS1 im-
proved, whereas time in DS2 was degraded? The underly-
ing cause was ASR re-ranking errors earlier in the dialogs.
For day in DS1, ASR re-ranking yielded a small (anomalous)
improvement to ASR accuracy; for time in DS2, ASR re-
ranking yielded a large degradation to ASR accuracy (Figure
3). Confidence aggregation amplifies these effects by carry-
ing them forward in the dialog.

5. EVALUATION OF DISCRIMINATION

The analysis in the preceding sections assessed the accuracy
of the top hypothesis in the belief state. In practice, a system
must decide whether to accept or reject a hypothesis, so it is
also important to evaluate the ability of the belief state to dis-
criminate between correct and incorrect hypotheses. We stud-
ied this by plotting receiver operating characteristic (ROC)
curves for each slot, in Figure 7. The ASR 1-best u; is shown
using the computed P, (u1 ), and the belief 1-best s* is shown
using its belief b(s*).

Where the belief state has higher accuracy — route and
day in DS1 — the belief state shows better ROC results, es-
pecially at higher false-accept rates. However, gains in ROC
performance appear to be due entirely to gains in accuracy:
in slots where accuracy is similar between belief tracking and
ASR, the belief state shows similar or worse performance.
time in DS2 was particularly affected, by the negative effect
of ASR re-ranking, further compounded by confidence aggre-
gation. Overall, the trend appears to be that if belief tracking
does not improve over ASR 1-best, then belief tracking does
not enable better accept/reject decision to be made.
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classifier trained on data from DS1, and described in Section 6.

6. CONCLUSION AND FUTURE DIRECTIONS

This paper has presented an analysis of 2 versions of one of
the first statistical dialog systems in public use. Overall, the
findings have underscored the importance (and difficulty!) of
correctly estimating each model component. Mismatches in
all 3 component models —i.e., the models of ASR errors Py,
user behavior P,., and goal priors by — caused degradations
compared to the top speech recognition hypothesis.

More fundamentally, the analysis here suggests crucial
weaknesses in the formulation of the model, not merely in
parameter estimates. For example, ASR error correlations
are not currently being modeled, and they are harming per-
formance. The lackluster discrimination in the belief state is
more troubling, suggesting that the formulation of the update
as a generative model (Eq 1) may be problematic. Discrimi-
native models for dialog tracking — which are trained directly
on the data and explicitly optimized for discrimination — are a
natural alternative [8]. To briefly highlight their potential, we
identified about 60 features, configured slot-specific discrim-
inative classifiers to predict b(s), trained on data from DSI,
and tested on data from DS2. Results are included in Figures
7e-Th. In most cases the discriminative method attains both
higher accuracy (a larger maximum value on y-axis) and bet-
ter discrimination than both the ASR 1-best and generative
belief state. To obtain a reliable comparison, the discrimi-
native models should also be tested in a public deployment;
however this preliminary result does suggest there is substan-
tial room for improvement over current methods.

Despite the issues identified in this paper, the first public
deployments have nonetheless shown that — when models are

properly estimated — statistical approaches can indeed achieve
their aim of increasing robustness to ASR errors.
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