
Why Did My PC Suddenly Slow Down?

Sumit Basu
sumitb@microsoft.com

John Dunagan

jdunagan@microsoft.com
Greg Smith

gregsmi@microsoft.com

Microsoft Research, One Microsoft Way, Redmond, WA 98052

ABSTRACT

Users are often frustrated when they encounter a sudden
decrease in the responsiveness of their personal
computers. However, it is often difficult to pinpoint a
particular offending process and the resource it is over-
consuming, even when such a simple explanation does
exist. We present preliminary results from several weeks
of PC usage showing that user-perceived
unresponsiveness often has such a simple explanation and
that simple statistical models often suffice to pinpoint the
problem. The statistical models we build use all the
performance counters for all running processes. When
the user expresses frustration at a given time point, we
can use these models to determine which processes are
acting most anomalously, and in turn which features of
those processes are most anomalous. We present an
investigative tool that ranks processes and features
according to their degree of anomaly, and allows the user
to interactively examine the relevant time series.

KEYWORDS: performance instrumentation, machine
management, statistical modeling, anomaly detection.

1. INTRODUCTION

Nearly everyone who has used a computer has
encountered a situation where an application or the entire
machine seems to slow down dramatically: all of a
sudden, windows are not as responsive, actions are taking
longer than they should, and so on. At this point,
although the user might like to investigate what’s wrong,
he has a limited set of options. He may open up
Windows’ Task Manager or use UNIX’s “ps” command
to view the running processes, and then check to see
which ones are taking the most CPU, I/O, or memory, but
he will generally not know whether the values he sees are
typical or surprising. In other words, while he can view
instantaneous values of some system features, he has no
model of what their typical values are; furthermore, even
if he could view all possible features, it would be difficult
to glean insights from the resulting deluge of data.

One plausible hypothesis is that most slowdowns are the
result of one process consuming an abnormally high
amount of one resource (e.g., CPU, disk, network, OS
handles or file descriptors, system threads, etc.) from a
large set of possible resources. However, presenting the

consumption of every resource for every process directly
would likely be too much information for a user to digest.
We built a system based on these assumptions, and found
it to be remarkably effective. Our system collects data and
builds a model for each process. The model allows us to
determine the level of anomaly for any process, and
furthermore for any feature within a process. This allows
us to use all possible features, since only the anomalous
ones will float to the top. We have also developed a
visualization tool that allows interactive investigation of
the processes and their features with respect to these
models. When a user experiences a slowdown at a given
point, he can see the processes ranked by their relative
level of anomaly, and for each process, the features
ranked by anomaly. In addition, the user can see the time
series for the feature of interest.

Once a user has identified a high-likelihood offender
(perhaps an antivirus product or a desktop search
application), he has numerous options to improve the
situation. He might start shopping for a new antivirus
product, switch to a competing desktop search
application, or just stop using something that is more
trouble that its worth. Additionally, because many
developers also use the software they write, this tool may
help them catch transient resource usage issues that are
significantly slowing down the system as a whole.

The primary question raised by our approach is its
effectiveness: how often does user-perceived machine
slowness have such a simple explanation? Beyond this,
there were also significant questions about how best to
represent features that would only be available
sporadically (i.e., when the relevant processes were
running). In the remainder of this paper, we address these
questions and show preliminary results from using our
investigative tool.

2. RELATED WORK

There has been a significant amount of work using
statistical models to detect and/or diagnose faults and
performance problems [A+03, Ba+04, Bo+05, Ch+02,
F+04, G+05, KF05, R+04, R05, X+04]. Researchers have
investigated many different sources of data (e.g.,
performance counters [Co+04], request paths [Ch+03,
Ch+04]), as well as many different statistical models.
Most of this work has focused on a server environment:

an environment where a large number of machines serve
an even larger number of user requests. In addition to
their obvious economic importance, the high request
volume of server environments makes them particularly
well-suited to analysis using statistical models. The
consumers of this analysis are either operations personnel
(sometimes viewed as datacenter system administrators)
or developers.

In contrast to this previous line of research, our work
focuses on end-user desktops, and the consumer of the
analysis is the end-user himself. End-user desktops are a
significantly different environment from servers. Perhaps
most importantly, we have much less expectation of the
workload being repetitive. Because of this, we might find
it quite difficult to duplicate the success that statistical
models have had detecting request failures in server
environments. Luckily, we can sidestep this issue because
the consumer of the analysis is the frustrated user – the
user will himself indicate that the system is slow
(detection), and the statistical model is only responsible
for narrowing down the reason for this slowness
(diagnosis).

Like our work, statistical debugging [Z+04, Z+05, Z+06],
Strider [Wa+03], Chronus [Wh+04] and Peer-Pressure
[Wa+04] target end-user applications, but they are
otherwise radically different. Statistical debugging
focuses on helping developers understand why a
particular application occasionally fails. To this end,
statistical debugging requires an external mechanism to
determine which process is failing (in contrast to our goal
of determining which process is at fault), and it requires a
large number of differently-instrumented binaries (in
contrast to our goal of working on a single machine
without some external correlation mechanism and without
instrumentation). Strider, Chronus and Peer-Pressure aim
to diagnose problems due to bad persistent state (i.e., file
contents and registry settings). Strider and Peer-Pressure
presume that the failing process is known a-priori, while
Chronus requires the user to specify a probe determining
if the failure is present. In contrast, our analysis is not
restricted to persistent state changes (some other input or
change in workload may have triggered resource over-
consumption), and we require significantly less expertise
from the user (he just pushes the “why is my machine
slow” button).

There has also been a significant amount of previous
work on helping developers or sophisticated system
administrators understand performance of individual
components on a single machine, which may be either a
server or an end-user’s desktop. For example, profilers
and other instrumentation or logging systems allow a
developer or sophisticated system administrator to
understand where the time/memory/etc. is spent in an
application or OS, thereby guiding refinements to the
application or OS [Ca+04, HC+01]. Our work relies on

Windows performance counters (one such logging
system) to gather the low-level performance metrics; our
contribution is to present more useful analysis of this data
to the end-user. We are not aware of previous work trying
to make the analysis done by these systems useful to an
end-user.

A final distinction with previous work is our focus on the
user’s perception of slowness. In contrast, most previous
work has looked at more directly measureable quantities,
like the latency of a particular machine operation.

3. DATA COLLECTION AND MODELING

To evaluate our approach, we collected data over the
course of several weeks on two machines running
Windows XP. Every time a user of either machine was
frustrated at the slowness of the system, he would press
the “why is my machine slow” button (Scroll Lock in our
implementation), which we refer to as a “frustration
event”. During this time, there was approximately one
frustration event per day per machine.

Instead of carefully choosing which features should be
used for the analysis, we gathered all available
performance counters for all processes. This included
items such as total number of threads in the process, I/O
bytes read per second, percentage of CPU used, page
faults, and so on. Our reasoning was that more data
could only help us, since we would be prioritizing
features to show the user the ones that were most relevant
– as such, if we included uninteresting or constant
features, they would simply sink to the bottom of the list.

These features were written to a file for all running
processes once every 60 seconds. Every four hours, the
resulting file was compressed and copied to a fileserver.
We found the overhead of this logging to be negligible (in
particular, on a 3Ghz Xeon PC, less than 0.15% of the
CPU on average).

The nature of the data is complex – not only are there
dozens of features for each of dozens of processes; at any
given time only some processes are running. Figure 1
below illustrates this aspect of the data.

Figure 1: Process lifetimes shown against time. At the
query time, only a subset of the processes are running.

Time

Process
3

2

1

0

Query

Figure 2: The Investigative Tool. The left pane shows per process average likelihoods; the upper right pane shows
the non-constant features for that process ranked by anomaly; the lower right pane shows the time series.

Our dataset is thus tree-structured: the first level nodes
are processes, whose children are the features for that
process; each of those features contains a time series
which may have large gaps and may not match up with
other features/processes, as illustrated in Figure 3.

Figure 3: Tree-Structured Dataset. Each process has
multiple features, and each feature has a time series
which may be non-contiguous in time.

When the user makes a query at a particular point in time,
only some of the processes are running. This results in an
instantaneous sample which is also tree-structured. In
order to extract this sample, we traverse the dataset and
see if there is a value in the time series for each feature
(leaf node) that is within a window of the query time, and
then keep the closest such value.

For this initial study, we chose to model each feature
independently as a univariate Gaussian. Though we know
our features will not all be independent of each other (for
instance, I/O total bytes and I/O read bytes are far from
independent), this makes dealing with missing data far
easier. We trained the models independently over each 4-

hour window corresponding to a particular log file, and
then used this model for any frustration event in the same
4-hour window. Though this was sufficient for our
investigation of historical data, fully supporting the
interactive scenario outlined in the Introduction will
obviously require looking only at data gathered prior to a
frustration event – this is one of our tasks for future work.

To compute the log likelihood of a given process, we
could simply take the sum of the log likelihoods of the
individual features. Unfortunately, features that are
constant in a particular process lead to numerical
instability in this computation, as the empirical variance
will be zero. After excluding constant features, we need a
different method to compare different processes with
different numbers of features. We thus compute the
average likelihood per feature for each process that has
more than a minimal number of non-constant features (10
in our experiments).

4. THE INVESTIGATIVE TOOL

In order to make this data accessible to the user, we
developed an interface to help the user peruse the
performance data (see Figure 2 above). The left pane
shows a list of processes ranked by their level of anomaly;
the upper right pane shows the features for that process
along with the feature values as compared to the mean
and standard deviation, again ranked by anomaly. The
lower right pane shows a plot of the time series for that
feature, and the red crosshairs pinpoint the query time and
the feature value. We feel that it is important for the user
to be able to see the entire time series – this gives his
context about how atypical the value is, whether it was a
sudden transition or a slow climb/fall, whether this kind
of behavior occurs regularly, etc.

Root

Proc 0 Proc 1 Proc 2

F0 F1 F2 F0 F1 F2 F0 F1 F2

time

At present, the UI only consumes performance data that
has been logged to disk. We plan to remove this limitation
soon so that the UI can appear at the moment the user
presses the “why is my machine slow” button, completing
the scenario we described in the Introduction.

5. RESULTS

To investigate the effectiveness of our proposed approach,
we looked at the collection of time points at which the
user hit the “why is my machine slow” button. Over the
course of 53 machine-days of data from two users, there
were 36 such occasions, of which five were duplicates for
our purposes (the user pressed the button more than once
within a few seconds). For each of the remaining 31
cases, we examined the data point with respect to its four-
hour context in the investigative tool as described above.
Our first evaluation was determining the fraction of query
points for which the tool correctly identified the process
and features which were causing the slowness. Of course,
we cannot know for certain what the cause was, but the
presence of large spikes in CPU, I/O, memory, and/or
other resources made it very plausible in all but 3 cases
that a given process (or set of processes) was causing the
problem.

Table 1 below examines whether the top process
identified by our investigative tool was a plausible cause
of the slowness:

Top process is plausible
source of slowness

26 / 31 (83.9%)

One of top two processes
is plausible source

28 / 31 (90.3%)

Source of slowness
unclear from tool

3 / 31 (6.4%)

Table 1: Performance for identifying the process
causing slowness.

In two of the cases where the source of slowness was
unclear, no process that we could determine had unusual
features. It is possible that the user hit the frustration
button by accident, but since we currently do not have
user annotations of these events, we cannot be sure. The
third case is described in case study 3 below.

For the 26 cases in which the process was correctly
identified, Table 2 considers whether the top feature
identified by our tool was a plausible cause of the process
behavior:

Though these results are promising, we were curious
whether CPU load alone could determine the cause of
slowness. If so, Task Manager or ps would be sufficient
to find the answers. Our experience has led us to believe
CPU load is not always the answer, and with the data in
hand, we looked at what the plausible primary and

contributing factors for slowdown were in each case.
Table 3 below shows the results for the 25 cases where
we were able to identify highly plausible causes for the
slowness:

Top feature is plausible
source of slowness

25 / 26 (96.2%)

Source of slowness
unclear

1 / 26 (3.8%)

Table 2: Performance for identifying features causing
slowness.

 CPU Mem I/O Handle
Count

Page
Faults

Thread
Count

Most
anomalo

us
feature

8/
25

4/
25

11/
25

1/
25

1/
25

0/
25

Contribu
ting

feature

14/
25

7/
25

16/
25

2/
25

7/
25

1/
25

Table 3: Breakdown of primary and contributing
factors for slowness by CPU, Memory, IO, Handle
Count, Page Faults, and Thread Count.

In these preliminary results, IO-related features most
often appeared as the most anomalous feature, though
CPU was close behind. Furthermore, in a handful of
cases, handle counts, page faults, and thread counts
appeared to be primary factors or contributors to the
slowness. This is particularly interesting in that tools like
Task Manager and ps are typically used only to examine
CPU consumption.

To give the reader a better sense for the results, we now
go into three case studies that describe three different
modes of behavior: a case with an obvious single process
causing slowness, a case with multiple processes
interacting to cause slowness, and a case where our
method completely fails to identify the source of the
problem (but we have a good guess as to what happened).

Figure 4: Average per-feature log-likelihood for the
top ten processes in case study 1.

Case Study 1: One Process Causing Slowness

In this instance, the WindowsSearchFilter
(“WindowsSea” in the figure) process has a far lower
average log-likelihood than the other processes, as we can
see in Figure 4 above. In this case, then, it is clear in the
tool which process is likely to be at fault. The top feature
(i.e., the one with the lowest likelihood) for this process is
“IO Data Bytes/sec,” and we show the time series in
Figure 5 below.

Figure 5: The top ranked feature, IO Data Bytes/sec,
for process WindowsSearchFilter in case study 1. The
star marks value at the user query time.

In this case, not only does the feature have a peak at the
query time, it is also the highest value in the four hour
contextual window. As such, the investigation tool has
showcased the plausible cause of the slowness via its top-
ranked process and feature; without any further clicking
the user would have a good guess of what’s going wrong.

Case Study 2: Multiple Processes Involved

The second case is more complex. We can see this when
we look at the likelihood distribution over the top ten
processes in Figure 6 below:

Figure 6: Per-process average likelihoods for case
study 2.

Both WINWORD and InoRT (an anti-virus program) are
strongly anomalous in this case. When we examine the
features in detail, we find that both are jumping in terms
of memory usage. It seems plausible that the virus
checker is intercepting and checking a large file as Word
tries to open it; this is causing both to increase their
memory footprint dramatically.

Case Study 3: A Failure Mode

For our final example, we look at a case where things did
not work so well. The distribution of process likelihoods
implies that something might be amiss (see Figure 7
below), since many processes seem to be anomalous:

Figure 7: Per-process average likelihoods for case
study 3.

This puzzled us initially, but once we examined the
features, we saw that the frustration point was at the
beginning of each time series, and that all the features for
each process quickly ramped up to their usual states.
Thus this first point in the time series seemed anomalous
to our model, since all of the values were far below usual.
What seems likely to have happened in this case is that
the machine had just restarted, and the user was frustrated
waiting for the system to become responsive. We
consider this a failure for our method, since none of our
indicators help explain why the system is being slow
during startup (e.g.., is it paging in code, spending CPU
running a startup script, or something else entirely?) or
even identify which process (if any) is causing the most
problems. We hope that incorporating system-level
features may help diagnose this kind of situation in our
future work.

6. DISCUSSION AND FUTURE WORK

Our initial experimental results are quite promising. Our
immediate work plan is to make the interactive version of
our tool fully functional. Beyond this, there are many
interesting open questions.

First, we have not yet been able to validate the causal
relationships we believe we have uncovered. In cases
where a process that the user is not actively engaged with
causes the rest of the system to slow down, simply rate-
limiting the aggressive process may be enough to
maintain the user’s perception of overall system
responsiveness. If such a technique were successful, it
would provide empirical validation that the process and
resource identified as anomalous were indeed at fault (in
addition to improving the overall user experience). The
case where the process at fault is one that the user is
actively engaged with seems harder, and it may be
necessary in this case to involve a developer for the
relevant application to validate the diagnosis (and
possibly to fix the problem as well). Developing and
evaluating some validation strategy is one of our areas for
future work.

Second, there are obvious opportunities to employ more
sophisticated models and additional data sources. One we
are particularly excited about is allowing the user to
optionally annotate frustration events at the time they
occur. Mapping such annotations to the machine-level
symptoms might reveal interesting new connections and
allow more detailed analyses.

Third, we have not yet undertaken a user study with the
tool. In the future we would like to evaluate whether
particular classes of users consider the tool to be useful,
whether they decide to make changes in their software
usage because of the tool’s output, and whether these
changes result in fewer incidents of sudden system
slowdown.

7. REFERENCES
[A+03] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds,
and A. Muthitacharoen. “Performance debugging for distributed
systems of black boxes.” In SOSP 2003.

[Ba+04] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier.
“Using Magpie for request extraction and workload modelling.”
In OSDI 2004.

[Bo+05] P. Bodik, G. Friedman, L. Biewald, H. Levine, G.
Candea, K. Patel, G. Tolle, J. Hui, A. Fox, M. I. Jordan, and D.
Patterson. “Combining visualization and statistical analysis to
improve operator confidence and efficiency for failure detection
and localization.” In ICAC 2005.

[Ca+04] B. M. Cantrill, M. W. Shapiro and A. H. Leventhal.
“Dynamic Instrumentation of Production Systems.” In USENIX
Annual Technicla Conference 2004.

[Ch+02] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E.
Brewer. “Pinpoint: Problem Determination in Large, Dynamic
Internet Services.” In DSN 2002.

[Ch+03] M. Y. Chen, E. Kiciman, A. Accardi, A. Fox, and E.
Brewer. “Using Runtime Paths for Macro Analysis” In HotOS
2003.

[Ch+04] M. Y. Chen, A. Accardi, E. Kiciman, A. Fox, D.
Patterson, and E. Brewer. “Path-Based Failure and Evolution
Management.” In NSDI 2004.

[Co+04] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S.
Chase. “Correlating instrumentation data to system states: A
building block for automated diagnosis and control.” In OSDI
2004.

[F+04] A. Fox, E. Kiciman, D. Patterson, M. Jordan, and R.
Katz. “Combining Statistical Monitoring and Predictable
Recovery for Self-Management.” In 2004 Workshop on Self-
Managed Systems (WOSS'04) in conjunction with ACM
SIGSOFT FSE-12.

[G+05] M. Goldszmidt, I. Cohen, A. Fox, and S. Zhang. "Three
research challenges at the intersection of machine learning,
statistical induction, and systems." In HotOS 2005

[HC01] M. Hirzel and T. M. Chilimbi. “Bursty Tracing: A
Framework for Low-Overhead Temporal Profiling.”
In ACM Workshop on Feedback-Directed and Dynamic
Optimization (FDDO), 2001.

[KF05] E. Kiciman and A. Fox. “Detecting application-level
failures in component-based internet services.” In IEEE
Transactions on Neural Networks, Spring 2005.

[R+04] I. Rish, M. Brodie, N. Odintsova, S. Ma, and G.
Grabarnik. “Real-time Problem Determination in Distributed
Systems using Active Probing.” In NOMS 2004.

[R05] I. Rish. “Distributed Systems Diagnosis Using Belief
Propagation.” In Allerton Conference on Communication,
Control and Computing, 2005.

[Wa+03] Y. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J.
Wang, C. Yuan, and Z. Zhang. “STRIDER: A Black-box, State-
based Approach to Change and Configuration Management and
Support.” In LISA 2003.

[Wa+04] H. J. Wang, J. Platt, Y. Chen, R. Zhang, and Y. Wang.
“Automatic Misconfiguration Troubleshooting with
PeerPressure.” In OSDI 2004

[Wh+04] A. Whitaker, R. S. Cox, and S. D. Gribble.
“Configuration Debugging as Search: Finding the Needle in the
Haystack.” In OSDI 2004.

 [X+04] W. Xu, P. Bodik, and D. Patterson. “A Flexible
Architecture for Statistical Learning and Data Mining from
System Log Streams.” In workshop on Temporal Data Mining:
Algorithms, Theory and Applications at ICDM 2004.

[Z+04] A. X. Zheng, M. I. Jordan, B. Liblit, and A. Aiken.
“Statistical debugging of sampled programs.” In NIPS 2004.

[Z+05] S. Zhang, I. Cohen, J. Symons, and A. Fox. “Ensembles
of Models for Automated Diagnosis of System Performance
Problems.” In DSN 2005.

[Z+06] A. Zheng, M. I. Jordan, B. Liblit, M. Nayur, and A.
Aiken. “Statistical debugging: Simultaneous identification of
multiple bugs.” In ICML 2006.

