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Abstract. In revenue maximization of selling a digital product in a so-
cial network, the utility of an agent is often considered to have two parts:
a private valuation, and linearly additive influences from other agents.
We study the incomplete information case where agents know a common
distribution about others’ private valuations, and make decisions simul-
taneously. The “rational behavior” of agents in this case is captured by
the well-known Bayesian Nash equilibrium.
Two challenging questions arise: how to compute an equilibrium and
how to optimize a pricing strategy accordingly to maximize the revenue
assuming agents follow the equilibrium? In this paper, we mainly focus
on the natural model where the private valuation of each agent is sampled
from a uniform distribution, which turns out to be already challenging.
Our main result is a polynomial-time algorithm that can exactly compute
the equilibrium and the optimal price, when pairwise influences are non-
negative. If negative influences are allowed, computing any equilibrium
even approximately is PPAD-hard. Our algorithm can also be used to
design an FPTAS for optimizing discriminative price profile.

1 Introduction

In this paper, we study the problem of selling a digital product to agents in a
social network. To incorporate social influence, we assume each agent’s utility of
having the product is the summation of two parts: the private intrinsic valuation
and the overall influence from her friends who also have the product. In this
paper, we study the linear influence case, i.e., the overall influence is simply the
summation of influence values from her friends who have the product.

Given such assumption, the purchasing decision of one agent is not solely
made based on her own valuation, but also on information about her friends’
purchasing decisions. However, a typical agent does not have complete informa-
tion about others’ private valuations, and thus might make the decision based
on her belief of other agents’ valuations.

? Part of this work was done while the authors were visiting Microsoft Research Asia.
?? A preliminary version of this work has appeared as a part of the B.Sci thesis of this

author [18].



We study the case when this belief forms a public distribution, and rely on
the solution concept of Bayesian Nash equilibrium [8]. Specifically, each agent
knows her own private valuation (also referred to as her type); in addition, there
is a distribution of this private valuation, publicly known by everyone in the
network as well as the seller. We assume that the joint distribution is a product
of uniform distributions, and the valuations for all agents are sampled from it.

Computing the Equilibria. Usually, there exist multiple equilibria in this game.
We first study the case when all influences are non-negative. We show that there
exist two special ones: the pessimistic equilibrium and the optimistic equilibrium,
and all other equilibria are between these two. We then design a polynomial time
algorithm to compute the pessimistic (resp. optimistic) equilibrium exactly.

The overall idea is to utilize the fact that the pessimistic (resp. optimistic)
equilibrium is “monotonically increasing” when the price increases. However, the
iterative method requires exponential number of steps to converge, just like many
potential games which may well be PLS-hard. Our algorithm is based on the line
sweep paradigms, by increasing the price p and computing the equilibrium on
the way. There are several challenges we have to address to implement the line
sweep algorithm. See Section 3.1 for more discussions on the difficulties.

On the negative side, when there exist negative influences among agents,
the monotone property of the equilibria does not hold. In fact, we show that
computing an approximate equilibrium is PPAD-hard for a given price, by a
reduction from the two player Nash equilibrium problem.

Optimal Pricing Strategy. When the seller considers offering a uniform price,
our proposed line sweep algorithm calculates the equilibrium as a function of
the price. This closed form allows us to find the price for the optimal revenue.

We also discuss the extensions to discriminative pricing setting: agents are
partitioned into k groups and the seller can offer different prices to different
groups. Depending on whether the algorithm can choose the partition or not, we
discuss the hardness and approximation algorithms of these extensions.

1.1 Related Work

Pricing with equilibrium models. When there is social influence, a large stream
of literature is focusing on simultaneous games. This is also known as the “two-
stage” game where the seller sets the price in the first stage, and agents play
a one-shot game in their purchasing decisions. Agents’ rational behavior in this
case is captured by Nash equilibrium (or Bayesian Nash equilibrium).

The concept and existence of pessimistic and optimistic equilibria is not new.
For instance, in analogous problems with externalities, Milgrom and Roberts [12]
and Vives [17] have witnessed the existence of such equilibria in the complete
information setting. Notice that our pricing problem, when restricted to complete
information, can be trivially solved by an iterative method.

In incomplete information setting, Vives and Van Zandt [16] prove a simi-
lar existential result using iterative methods. However, they do not provide any
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convergence guarantee. In our setting, such type of iterative methods may take
exponential time to converge. (See the full version of this paper for an example.)
Our proposed algorithm instead exactly computes the equilibrium, through a
much move involved (but constructive) method. In parallel to this work, Sun-
dararajan [15] also discover the monotonicity of the equilibria, but for symmetry
and limited knowledge of the structure (only the degree distribution is known).

It is worth noting that those works above have considered non-linear influ-
ences. Though our paper focuses on linear influences, our monotonicity results
for equilibria do easily extend to non-linear ones. See Section 2.

When the influence is linear, Candogan, Bimpikis and Ozdaglar [4] study
the problem with (uniform) pricing model for a divisible good on sale. It differs
from our paper in the model: they are in complete information and divisible
good setting; more over, they have relied on a diagonal dominant assumption,
which simplifies the problem and ensures the uniqueness of the equilibrium.

Another paper for linear influence is by Bloch and Querou [3], which also
studies the uniform pricing model. When the influence is small, they approxi-
mate the influence matrix by taking the first 3 layers of influence, and then an
equilibrium can be easily computed. They also provide experiments to show that
the approximation is numerically good for random inputs.

Pricing with cascading models. In contrast to the simultaneous-move game con-
sidered by us (and many others), another stream of work focuses on the cascading
models with social influence.

Hartline, Mirrokni and Sundararajan [9] study the explore and exploit frame-
work. In their model the seller offers the product to the agents in a sequential
manner, and assumes all agents are myopic, i.e., each agent is making the de-
cision based on the known results of the previous agents in the sequence. As
they have pointed out, if the pricing strategy of the seller and the private value
distributions of the subsequent agents are publicly known, the agents can make
more “informed” decisions than the myopic ones. In contrast to them, we con-
sider “perfect rational” agents in the simultaneous-move game, where agents
make decisions in anticipation of what others may do given their beliefs to other
agents’ valuations.

Arthur et al. [2] also use the explore and exploit framework, and study a
similar problem; potential buyers do not arrive sequentially as in [9], but can
choose to buy the product with some probability only if being recommended by
friends.

Recently, Akhlaghpour et al. [1] consider the multi-stage model that the seller
sets different prices for each stage. In contrast to [9], within each stage, agents
are “perfectly rational”, which is characterized by the pessimistic equilibrium in
our setting with complete information. As mentioned in [1], they did not consider
the case where a rational agent may defer her decision to later stages in order
to improve the utility.

Other works. Another notable body of work in computer science is the optimal
seeding problem (e.g. Kempe et al. [11] and Chen et al. [5]), in which a set of k
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seeds are selected to maximize the total influence according to some stochastic
propagation model. If the value of the product does not exhibit social influence,
the seller can maximize the revenue following the optimal auction process by
the seminal work of Myerson [13]. Truthful auction mechanisms have also been
studied for digital goods, where one can achieve constant ratio of the profit with
optimal fixed price [7,10]. On computing equilibria for problems that guarantees
to find an equilibrium through iterative methods, most of them, for instance the
famous congestion game, is proved to be PLS-hard [6].

2 Model and Solution Concept

We consider the sale of one digital product by a seller with zero cost, to the set
of agents V = [n] = {1, 2, . . . , n} in a social network. The network is modeled as
a simple directed graphs G = (V,E) with no self-loops.

– Valuation: Agent i has a private value vi ≥ 0 for the product. We assume vi
is sampled from a uniform distribution with interval [ai, bi] for 0 ≤ ai < bi,
which we denote as U(ai, bi). The values ai and bi are common knowledge.

– Price: We consider the seller offering the product at a uniform price p.
– Revenue: Let d = {d1, . . . , dn} ∈ {0, 1}n be the decision vector the agents

make, i.e., di = 1 if agent i buys the product and 0 otherwise. The revenue
of the seller is defined as

∑
i p ·di. When the decisions are random variables,

the revenue is defined as the expected payments received from the users.
– Influence: Let matrix T = (Tj,i) with Tj,i ∈ R and i, j ∈ V represent the

influences among agents, with Tj,i = 0 for all (j, i) /∈ E. In particular, Tj,i

is the utility that agent i receives from agent j, if both of them buy the
product. Except for the hardness result, we consider Tj,i to be non-negative.

– Utility: Let d−i be the decision vector of the agents other than agent i. For
convenience, we denote 〈d′i,d−i〉 the vector by replacing the i-th entry of d
by d′i. In particular, given the influence matrix T, the utility is defined as:

ui(〈di,d−i〉, vi, p) =

{
vi − p+

∑
j∈[n] dj · Tj,i, if di = 1

0, if di = 0
(1)

Remark 2.1. In our algorithm later, the requirement ai < bi is only for ease of
presentation. It can be relaxed to ai ≤ bi to handle fixed value case as well.

We study the agents’ rational behavior using the concept Bayesian Nash
equilibrium (BNE).5

Definition 2.2. The probability vector q = (q1, q2, ..., qn) ∈ [0, 1]n is an equi-
librium at price p, if for all i ∈ [n]: (where med is the median function)

qi = Pr
vi∼U(ai,bi)

[
vi − p +

∑
j∈[n]

Tj,i · qj ≥ 0
]

= med

{
0, 1,

bi − p +
∑

j∈[n] Tj,iqj

bi − ai

}
. (2)

5 Given equilibrium q in our definition, the strategy profile that each agent i “buys
the product iff her valuation vi ≥ p−

∑
j 6=i Tj,iqj” is a BNE. See the full version of

this paper for details.
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Eq.(2) can be also defined in the language of a transfer function, which we
will extensively reply on in the rest of the paper.

Definition 2.3 (Transfer function). Given price p, we define the transfer
function fp : [0, 1]n → [0, 1]n as

[fp(q)]i = med{0, 1, [gp(q)]i} (3)

in which

[gp(q)]i =
bi − p +

∑
j∈[n] Tj,iqj

bi − ai
.

Notice that q is an equilibrium at price p if and only fp(q) = q.

Using Brouwer fixed point theorem, the existence of BNE is not surprising,
even when influences are negative. However, we will show in Section 4 that
computing BNE will be PPAD-hard with negative influences. We now define the
pessimistic and optimistic equilibria based on the transfer function.

Definition 2.4. Let f
(1)
p = fp, and f

(m)
p (q) = fp(f

(m−1)
p (q)) for m ≥ 2. When

all influences are non-negative, we define

– Pessimistic equilibrium: q(p) = limm→∞ f
(m)
p (0);

– Optimistic equilibrium: q(p) = limm→∞ f
(m)
p (1).

We remark that both limits exist by monotonicity of f (see Fact 2.5 below),
when all influences are non-negative. In addition, q(p) and q(p) are both equi-
libria themselves, because fp(q(p)) = q(p) and fp(q(p)) = q(p). We later show
that q(p) and q(p) are the lower bound and upper bound for any equilibrium at
price p respectively. Now we state some properties of equilibria, which we will
use extensively later. See the full version of this paper for proofs.

For two vectors v1,v2 ∈ Rn, we write v1 ≥ v2 if ∀i ∈ [n], [v1]i ≥ [v2]i and
we write v1 > v2 if v1 ≥ v2 and v1 6= v2.

Fact 2.5. When all influences are non-negative, given p1 ≤ p2,q
1 ≤ q2, the

transfer function satisfies fp2
(q1) ≤ fp1

(q1) ≤ fp1
(q2).

Lemma 2.6. When all influences are non-negative, equilibria satisfy the follow-
ing properties:

a) For any equilibrium q at price p, we have q(p) ≤ q ≤ q(p).

b) Given price p, for any vector q ≤ q(p), we have f
(∞)
p (0) = q(p) = f

(∞)
p (q).

c) Given price p1 ≤ p2, we have q(p1) ≥ q(p2) and q(p1) ≥ q(p2).

d) q(p) = limε→0+ q(p+ ε) and q(p) = limε→0− q(p+ ε).

In this paper, we consider the problem that whether we can exactly calculate
the pessimistic (resp. optimistic) equilibrium, and whether we can maximize the
revenue. The latter is formally defined as follows:
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Definition 2.7 (Revenue maximization problem).
Assume the value of agent i is sampled from U(ai, bi) and the influence matrix
T is given. The revenue maximization problem is to compute an optimal price
with respect to the pessimistic equilibrium (resp. optimistic equilibrium ):

arg max
p>0

∑
i∈[n]

p · [q(p)]i (resp. arg max
p>0

∑
i∈[n]

p · [q(p)]i ).

Notice that the optimal revenue with respect to the pessimistic equilibrium
is robust against equilibrium selection. By Lemma 2.6(a), no matter which equi-
librium the agents choose, this revenue is a minimal guarantee from the seller’s
perspective. The revenue guarantees for pessimistic and optimistic equilibria is
an important objective to study; see for instance the price of anarchy and the
price of stability in [14] for details.

3 The Main Algorithm

When all influences are non-negative, can we calculate q(p) and q(p) in poly-
nomial time? We answer this question positively in this section by providing
an efficient algorithm. Notice that it is possible to iteratively apply the transfer
function Eq.(3) to reach the equilibria, but this may take exponential time. See
the full version of this paper for a counter example.

3.1 Outline of our line sweep algorithm

We start to introduce our algorithm with the easy case where valuations of
agents are fixed. Consider the pessimistic decision vector as a function of p.
By monotonicity, there are at most O(n) different such vectors when p varies
from +∞ to 0. In particular, at each price p, if we decrease p gradually to some
threshold value, one more agent would change his decision to buy the product.
Such kind of process can be casted in the “line sweep algorithm” paradigm.

When the private valuations of the agents are sampled from uniform distribu-
tions, the line sweep algorithm is much more complicated. We now introduce the
algorithm to obtain the pessimistic equilibrium q(p), while the method to obtain

q(p) is similar.6 The essence of the line sweep algorithm is processing the events
corresponding to some structural changes. We define the possible structures of
a probability vector as follows.

Definition 3.1. Given q ∈ [0, 1]n, we define the structure function S : [0, 1]n →
{0, ?, 1}n satisfying:

[S(q)]i =


0, qi = 0
?, qi ∈ (0, 1)
1, qi = 1.

(4)

6 We sweep the price from +∞ to 0 to compute the pessimistic equilibrium, but we
need to sweep from 0 to +∞ for the optimistic one.
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Our line sweep algorithm is based on the following fact: when p is sufficiently
large, obviously q(p) = 0; with the decreasing of p, at some point p = p1 the
pessimistic equilibrium q(p) becomes non-zero, and there exists some structural
change at this moment. Due to the monotonicity of q(p) in Lemma 2.6, such
structural changes can happen at most 2n times. (Each agent i can contribute
to at most two changes: 0 → ? and ? → 1.) Therefore, there exist threshold
prices p1 > p2 > · · · > pm for m ≤ 2n such that within two consecutive prices,
the structure of the pessimistic equilibrium remains unchanged and q(p) is a
linear function of p. This indicates that the total revenue, i.e., p ·

∑
i [q(p)]i, and

its maximum value is easy to obtain. If we can compute the threshold prices
and the corresponding pessimistic equilibrium q(p) as a function of p, it will be
straightforward to determine the optimal price p.

There are several difficulties to address in this line sweep algorithm.

– First, degeneracies, i.e., more than one structural changes in one event, are
intrinsic in our problem. Unlike geometric problems where degeneracies can
often be eliminated by perturbations, the degeneracies in our problem are
persistent to small perturbations.

– Second, to deal with degeneracies, we need to identify the next structural
change, which is related to the eigenvector corresponding to the largest eigen-
value of a linear operator. By a careful inspection, we avoid solving eigen
systems so that our algorithm can be implemented by pure algebraic com-
putations.

– Third, after the next change is identified, the usual method of pushing the
sweeping line further does not work directly in our case. Instead, we re-
cursively solve a subproblem and combine the solution of the subproblem
with the current one to a global solution. The polynomial complexity of our
algorithm is guaranteed by the monotonicity of the structures.

We first design a line sweep algorithm for the problem with a diagonal domi-
nant condition, which will not contain degenerate cases, in Section 3.2. Then we
describe techniques to deal with the unrestricted case in Section 3.3.

3.2 Diagonal dominant case

Definition 3.2 (Diagonal dominant condition).
Let Li,j = Tj,i/(bi−ai) and Li,i = Ti,i = 0. The matrix I−L is strictly diagonal
dominant, if

∑
j Li,j =

∑
j Tj,i/(bi − ai) < 1.

This condition has some natural interpretation on the buying behavior of the
agents. It means that the decision of any agent cannot be solely determined by
the decisions of her friends. In particular, the following two situations cannot
occur simultaneously for any agent i and price p: a) agent i will not buy the
product regardless of her own valuation when none of her friends bought the
product(p ≥ bi), and b) agent i will always buy the product regardless of her
own valuation when all her friends bought the product (

∑
j Tj,i + ai ≥ p).
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In our line sweep algorithm, we maintain a partition Z ∪W ∪ O = V = [n],
and name Z the zero set, W the working set and O the one set. This corresponds
to the structure s ∈ {0, ?, 1}n as follows:

si = 0 (∀i ∈ Z), si = ? (∀i ∈W ), si = 1 (∀i ∈ O).

We use xW to denote the restriction of vector x on set W , and for simplicity we
write 〈xZ ,xW ,xO〉 = x. Let LW×W be the projection of matrix L to W ×W .

We start from the price p = +∞ where the structure of the pessimistic
equilibrium q(p) is s0 = 0, i.e., Z = [n] and W = O = ∅. The first event
happens when p drops to p1 = maxi bi and q(p) starts to become non-zero.

Assume now we have reached threshold price pt, the current pessimistic equi-
librium is qt = q(pt), and the structure in interval (pt, pt−1) (or (pt,+∞) if t = 1)

is st−1. We define

x =

(
b1 − pt
b1 − a1

,
b2 − pt
b2 − a2

, . . . ,
bn − pt
bn − an

)T

, and y =

(
1

b1 − a1
,

1

b2 − a2
, · · · , 1

bn − an

)T

.

To analyze the pessimistic equilibrium in the next price interval, for price
p = pt − ε where ε > 0, we write function gp(·) (recall Eq.(3)) as:

gpt−ε(q) = x + εy + Lq.

For p ∈ (pt, pt−1), let partition Z ∪ W ∪ O = [n] be consistent with the
structure st−1. According to Def. 3.1 and the right continuity qt = limp→pt+ q(p)
(see Lemma 2.6d), we have

∀i ∈ Z, [gpt
(qt)]i = [x + Lqt]i ≤ 0

∀i ∈W, [gpt
(qt)]i = [x + Lqt]i ∈ (0, 1]

∀i ∈ O, [gpt
(qt)]i = [x + Lqt]i ≥ 1

(5)

Step 1: For any i ∈ Z, if [x + Lqt]i = 0, move i from zero set Z to working set
W ; for any i ∈W , if [x + Lqt]i = 1, move i from working set W to one set O.

Notice that the structural changes we apply in Step 1 are exactly the changes
defining the threshold price pt. We will see in a moment that after the process
in Step 1, the new partition will be the next structure st for p ∈ (pt+1, pt). In
other words, there is no more structural change at price pt.

In the next two steps, we calculate the next threshold price pt+1. For notation
simplicity, we assume Z,W and O remain unchanged in these two steps. When
p decreases by ε, we show that the probability vector of agents in W , [q(p)]W ,
increases linearly with respect to ε. (See rW (ε) below.) However, this linearity
holds until we reach some point, where the next structural change takes place.

Step 2: Define the vector r(ε) ∈ Rn, and let:

rW (ε) = ε(I − LW×W )−1yW + qt
W

= ε(I − LW×W )−1yW + [x + Lqt]W
rZ(ε) = xZ + εyZ + LZ×W rW (ε) + LZ×O1O

= ε(yZ + LZ×W (I − LW×W )−1yW ) + [x + Lqt]Z
rO(ε) = xO + εyO + LO×W rW (ε) + LO×O1O

= ε(yO + LO×W (I − LW×W )−1yW ) + [x + Lqt]O

(6)
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Clearly, r(ε) is linear to ε and we write r(ε) = ε` + (x + Lqt) where ` =
〈`1, `2, . . . , `n〉 ∈ Rn is the linear coefficient derived from Eq.(6). When I − L is
strictly diagonal dominant, the largest eigenvalue of LW×W is smaller than 1.
Using this property one can verify (see full version) that ` is strictly positive.

Step 3:
εmin = min

{
min
i∈Z

{
0− [x + Lqt]i

`i

}
,min
i∈W

{
1− [x + Lqt]i

`i

}}
(7)

Using the positiveness of vector ` one can verify that εmin > 0. Also, the
next threshold price pt+1 = pt − εmin. (See full version for proofs.)

Lemma 3.3. ∀0 < ε ≤ εmin, q(pt − ε) = 〈0Z , rW (ε),1O〉.

We remark here that the above lemma has confirmed that our structural ad-
justments in Step 1 are correct and complete. Now we let pt+1 = pt−εmin,q

t+1 =
〈0Z , rW (εmin),1O〉. The next structural change will take place at p = pt+1. This
is because according to the definition of εmin (Eq.(7)), there must be some

i ∈W ∧
[
x + εminy + Lqt+1

]
i

= 1, or i ∈ Z ∧
[
x + εminy + Lqt+1

]
i

= 0.

One can see that in the next iteration, this i will move to one set O or working
set W accordingly. Therefore, we can iteratively execute the above three steps
by sweeping the price further down.

The return value of our constrained line sweep method is a function q which
gives the pessimistic equilibrium for any price p ∈ R, and q(p) is a piecewise
linear function of p with no more than 2n + 1 pieces. All three steps in our
algorithm can be done in polynomial time. Since there are only O(n) threshold
prices, we have the following result.

Theorem 3.4. When the matrix I − L is strictly diagonal dominant, we can
calculate the pessimistic equilibrium q(p) (resp. q(p)) for any given price p in
polynomial time, together with the optimal revenue.

3.3 General case

After relaxing the diagonal dominance condition, the algorithm becomes more
complicated. This can be seen from this simple scenario. There are 2 agents, with
[a1, b1] = [a2, b2] = [0, 1], and T1,2 = T2,1 = 2. One can verify that q(p) = (0, 0)T

when p ≥ 1; q(p) = (1, 1)T when p < 1.
In this example, there is an equilibrium jump at price p = 1, i.e., q(1) 6=

limp→1− q(p). Our previous algorithm essentially requires that both the left and
the right continuity of q(p). However, only the right continuity is unconditional
by Lemma 2.6d. More importantly, degeneracies may occur: the new structure
st when p = pt cannot be determined all in once in Step 1. When p goes from
pt +ε to pt−ε, there might take place even two-stage jumps: some index i might
leave Z for O, without being in the intermediate state.
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Let ρ(L) be the largest norm of the eigenvalues in matrix L. The ultimate
reason for such degeneracies, is ρ(LW×W ) ≥ 1 and (I−LW×W )−1 6= limm→∞(I+
LW×W + · · · + Lm−1

W×W ). We will prove shortly in such cases, those structural
changes in Step 1 are incomplete, that is, as p sweeps across pt, at least one
more structural change will take place. We derive a method to identify one
pivot, i.e. an additional structural change, in polynomial time. Afterwards, we
recursively solve a subproblem with set O taken out, and combine the solution
from the subproblem with the current one. The follow lemma shows that whether
ρ(L) < 1 can be determined efficiently.

Lemma 3.5. Given non-negative matrix M , if I−M is reversible and (I−M)−1

is also non-negative, then ρ(M) < 1; on the contrary, if I −M is degenerate or
if (I −M)−1 contains negative entries, ρ(M) ≥ 1.

Finding the pivot. When ρ(LW×W ) < 1 for the new working set W , one can find
the next threshold price pt+1 following Step 2 and 3 in the previous subsection.
Now, we deal with the case that ρ(LW×W ) ≥ 1 by showing that there must
exists some additional agent i ∈W such that [q(p)]i = 1 for any p smaller than
the current price. We call such agent a pivot.

Since ρ(LW×W ) ≥ 1, we can always find a non-empty set W1 ⊂ W and
W2 = W1 ∪ {w} ⊂ W , satisfying ρ(LW1×W1) < 1 but ρ(LW2×W2) ≥ 1. The pair
(W1,W2) can be found by ordering the elements in W and add them to W1 one
by one. We now show that there is a pivot in W2.

As LW2×W2
is a non-negative matrix, based on knowledge from spectral the-

ory, exists a non-zero eigenvector uW2
≥ 0W2

such that LW2×W2
uW2

= λuW2
and

λ = ρ(LW2×W2
) ≥ 1. uW2

can be extended to [n] by defining u[n]\W2
= 0[n]\W2

.
Let

k = arg min
k∈W2,uk 6=0

1− qtk
uk

= arg min
k∈[n],uk 6=0

1− qtk
uk

(8)

Now we prove that k is a pivot. Intuitively, if we slightly increase the prob-
ability vector qt

W2
by δuW2

, where δ is a small constant, by performing the
transfer function only on agents in W m times, their probability will increase
by δ(1 + λ+ ..+ λm)uW2 , while λ ≥ 1. Therefore, after performing the transfer
function sufficiently many times, agent k ∈W2’s probability will hit 1 first.

Lemma 3.6. ∀W2 ⊂W s.t. ρ(LW2×W2
) ≥ 1, we have ∀ε > 0, [q(pt − ε)]k = 1.

We remark that if we can exactly estimate the eigenvector (which may be
irrational), then the above lemma has already determined that the k defined
in Eq.(8) is a pivot. To avoid the eigenvalue computation, we find a quasi-
eigenvector u in the following manner.

u =


uW1

= (I − LW1×W1
)−1LW1×{w};

uw = 1;

uZ∪O∪W\W2
= 0Z∪O∪W\W2

.

(9)
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The meaning of the above vector is as follows. If we raise agent w’s probability
by δ, those probabilities of agents in W1 increase proportionally to LW1×{w}δ.
Assuming that we ignore the probability changes outside W2 (which will even
increase the probabilities in W2), the probability of agents in W1 will eventually
converge to (I+LW1×W1

+L2
W1×W1

+...)LW1×{w}δ = (I−LW1×W1
)−1LW1×{w}δ.

We will see that the real probability vector increases at least “as much as if
we increase in the direction of u”. In other words, we pick a pivot in the same
way as Eq.(8). The following is the critical lemma to support our result.

Lemma 3.7. For u in Eq.(9) and k in Eq.(8), we have ∀ε > 0, [q(pt−ε)]k = 1.

Recursion on the subproblem. Let W ′ = W \{k}, O′ = O∪{k}, and we consider
a subproblem with n′ = n−|O′| < n agents, where k is the pivot identified in the
previous section. This subproblem is a projection of the original one, assuming
that the agents in O′ always tend to buy the product.

∀i ∈ Z ∪W ′, [a′i, b
′
i] = [ai +

∑
j∈O′ Tj,i, bi +

∑
j∈O′ Tj,i]. (10)

By recursively solving this new instance, we can solve the pessimistic equilibrium
of the subproblem for any given price p. This recursive procedure will eventually
terminate because every invocation reduces the number of agents by at least 1.
The following lemma tells us that for any p < pt, the pessimistic equilibrium of
the original problem and the subproblem are one-to-one.

Lemma 3.8. Let q′(p) be the pessimistic equilibrium function in the subprob-
lem. We have:

∀p < pt,q(p) = 〈q′(p),1O′〉.

At this moment we have solved the pessimistic equilibrium q(p) for p < pt,
and thus solved the original problem. Again q(p) is a piecewise linear function
of p with no more than 2n+ 1 pieces.

Theorem 3.9. For matrix T satisfying Ti,i = 0 and Ti,j ≥ 0, in polynomial
time we can calculate the pessimistic equilibrium q(p) (resp. q(p)) at any price
p, together with the optimal revenue.

4 Extensions

In the full version of this paper, we also prove the following theorems. When the
influence values can be negative, it is actually PPAD-hard to compute an ap-
proximate equilibrium. We define a probability vector q to be an ε-approximate
equilibrium for price p if:

qi ∈ (q′i − ε, q′i + ε),

where q′i = med
{

0, 1,
bi−p+

∑
j∈[n] Tj,iqj

bi−ai

}
. We have the following theorem:

Theorem 4.1. It is PPAD-hard to compute an n−c-approximate equilibrium of
our pricing system for any c > 1 when influences can be negative.
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In discriminative pricing setting, we study the revenue maximization problem
in two natural models. We assume the agents are partitioned into k groups. The
seller can offer different prices to different groups. The first model we consider is
the fixed partition model, i.e., the partition is predefined. In the second model,
we allow the seller to partition the agents into k groups and offer prices to the
groups respectively. We have the following two theorems:

Theorem 4.2. There is an FPTAS for the discriminative pricing problem in
the fixed partition case with constant k.

Theorem 4.3. It is NP-hard to compute the optimal pessimistic discriminative
pricing equilibrium in the choosing partition case.
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