
Supplementary Material for “Combinatorial Partial Monitoring Game with Linear Feedback
and Its Application”.

A. Full proof for Theorems 4.1 and 4.2
If the reader will recall, we have the following problem-specific constants in the main text: the size of the global observer set
|σ|, parameter L > 0 from the continuity assumption, error bound βσ = max ‖(Mᵀ

σMσ)−1
∑|σ|
i=1M

ᵀ
xiMxi(νi − ν0)‖2,

where the max is taken from ν0,ν1, · · · ,ν|σ| ∈ [0, 1]n, and the maximum difference in the expected reward Rmax =
maxx1,x2∈X,ν∈[0,1]n |r(x1,ν)− r(x2,ν)|.

For technical reasons, we also defined φ(ν) = max(min(ν, ~1), ~0) to adjust ν to the nearest vector in [0, 1]n, and r(x,ν) =
r(x, φ(ν)),∀ν ∈ Rn \ [0, 1]n to preserve the Lipschitz continuity throughout Rn.

To make our proof clearer, we define v(t) as the state of any variable v by the end of time step t. Our analysis is based on
the snapshot of all variables just before the statement t ← t + 1 (Line 14 and 30). One batch processing in exploration
phase is called one round, and then nσ is increased by 1. Denote ν̂(j) as the estimated mean of outcomes after j rounds
of exploration. For example, at time t, the estimated mean of outcomes is ν̂(t) and the exploration counter is nσ(t), so
we have ν̂(nσ(t)) = ν̂(t). And for time step t + 1 , the player will use the previous knowledge of ν̂(t) to get x̂(t + 1) =
argmaxx∈X r(x, ν̂(t)) and x̂−(t+ 1) = argmaxx∈X\{x̂(t+1)} r(x, ν̂(t)).

In the following analysis, the frequency function is set to fX (t) = ln t + 2 ln |X |. Note that by using fX (t), we can

construct the confidence interval
√

αfX (t)
nσ

to eliminate failures with high probability. Define N(t) = |X |2t, which will be

frequently used in our analysis, then exp{−fX (t)} = N(t)−1. Let α =
8L2β2

σ

a2 , where a > 0 is a parameter to be tuned
later.

The symbols used in the proof are listed in Table 1, and to facilitate the understanding of our proof, each lemma is briefly
summarized in Table 2. Below we give an outline of the complete proof, which consists of three main parts:

• First, we introduce some general insights, present the preliminaries, and prove basic properties of our model and the
Algorithm GCB, which is shared by the proofs of both distribution-independent and distribution-dependent regret
bounds. Next, we obtain the concentration property of the empirical mean of outcomes via Azuma-Hoeffding In-
equality (Fact A.2) in Lemma A.3. Lemma A.13 shows that our algorithm bounds the number of exploration rounds
by O(T 2/3 log T ), which implies that our algorithm will not play exploration for too long. In Lemma A.14, we prove
that when the gap between the estimated optimal action x̂ and the second optimal x̂− is large (i.e. the first condition
in Line 8), with low probability the estimated optimal action is sub-optimal. This means that our global confidence
bound will exclude sub-optimal actions effectively.

• In Section A.1, we prove the distribution-independent regret bound ofO(T
2
3 log T ) (Theorem 4.1 in the main text). In

Lemma A.15, we show that the gap between the estimated optimal action x̂ and the real one x∗ decays exponentially
with the number of exploration rounds. Thus, the penalty in exploitation phase can be derived in Lemma A.16. Then,
we use Lemmas A.13 and A.16 to prove Theorem 4.1 in the main text. Hence the distribution-independent bound
O(T

2
3 log T ) is achieved.

• In Section A.2, we prove the distribution-dependent bound of O(log T ) related to the predetermined distribution
p, assuming that the optimal action x∗ is unique (Theorem 4.2 in the main text). First, we show in Lemma A.17
that, when the algorithm plays Ω

(
ln t+2 ln |X |

∆2
min

)
rounds of exploration, the probability of the estimated optimal ac-

tion x̂ being sub-optimal is low. Then, in Lemma A.18, we combine the results of Lemmas A.14 and A.17 and
show that with a low probability the algorithm exploits with a sub-optimal action. Thus, Lemma A.18 is enough to
bound the regret of exploitation. Next, we bound the regret of exploration by bounding the number of exploration
rounds to O

(
lnT+2 ln |X |

∆2
min

)
in Lemma A.22. This is done by showing that whenever the algorithm has conducted

Θ
(

ln t+2 ln |X |
∆2

min

)
rounds of exploration, with high probability it switches to exploitation (Lemma A.19), and then ag-

gregating multiple switches between exploration and exploitation in the proof of Lemma A.22. Finally, we combine
Lemmas A.18 and A.22 to prove Theorem 4.2 in the main text.

Fact A.1. The following probability laws will be used in the analysis.



Symbols in the main text Definition
v(t) state any variable v by the end of time step t
v ∈ [0, 1]n outcomes of the environment
ṽ ∈ [0, 1]n estimation of outcomes through inversion
ν mean of outcomes
ν̂ empirical mean of outcomes
x ∈ X action x in action set X
r(x,v), r(x,ν) ∈ R reward function taking x and v, and expected reward function taking x and ν
Mx ∈ Rmx×n transformation matrix of action x where mx depends on x
y(t) ∈ Rmx(t) feedback vector under the choice of x(t)
~y vector that stacks feedbacks from different times
∆x,∆max,∆min reward gap of action x, of the maximum, of the (positive) minimum
σ ⊂ X global observer set of actions
L Lipschitz constant
βσ distribution-independent error bound from σ
Rmax distribution-independent largest gap of expected reward
fX (t) frequency function
x∗ real optimal action
x̂(t) estimated optimal action at time t
x̂−(t) estimated second optimal action at time t
Symbols in the proof Definition
nσ exploration counter
µ(t), η(t) threshold functions
XGood,X Bad ⊂ X good action set, and bad action set
FGood,FBad event of choosing good action set, and bad action set
LCI ,LcCI event of occurring gap being larger than confidence interval and its complement
EExplore, E InExplore, EFinExplore event of doing exploration, being in the middle of it, and being at its end
EExploit event of exploitation
δxi,xj , δ̂xi,xj (t) ∈ R reward gap of action xi and xj , and its estimated value at time t
Gk the event indicating the first occurrence of k rounds of exploration

Table 1. List of symbols in the proof.

Succinct interpretation of the results Dependence
Lemma A.3 Estimate of outcomes concentrates around the mean. Fact A.2
Lemma A.7 Difference of real and estimated gap is bounded.
Lemma A.8 Estimated error of outcomes is small compared to the confidence interval. Lemma A.3
Lemma A.13 The counter of exploration is bounded within O(T 2/3 log T ).
Lemma A.14 Finding a bad action to fail confidence interval occurs rarely. Lemma A.8
Lemma A.15 Incurring a large penalty for current optimal action is rare. Lemma A.3
Lemma A.16 The penalty in the exploitation phase is bounded. Lemmas A.14, A.15
Theorem 4.1 Distribution-independent bound: O(T 2/3 log T ). Lemmas A.13, A.16
Lemma A.17 With enough exploration, finding a bad action is rare. Lemma A.3
Lemma A.18 Finding a bad action and exploiting it become rare as time elapses. Lemmas A.14, A.17
Lemma A.19 With enough exploration, finding a good action but yet exploring becomes rare. Lemmas A.3, A.7, A.13
Lemma A.20 Once the algorithm performs enough exploration, it switches to exploitation. Lemmas A.17, A.19
Lemma A.22 Exploration rounds are bounded. Lemma A.20
Theorem 4.2 Distribution-dependent bound: O(log T ). Lemmas A.18, A.22

Table 2. List of lemmas and their dependencies in the proof.



• Law of Conditional Probability: Pr [A ∧ B] = Pr [A | B] · Pr [B].

• Law of Total Probability: if {Bn : n = 1, 2, · · · } is a set of disjoint events whose union is the entire sample space,
then

Pr [A] =
∑
n

Pr [A ∧ Bn].

Fact A.2 (Azuma-Hoeffding Inequality in Euclidean Space (Theorem 1.8 of (Hayes, 2003))). Let X = (X0, · · · , Xn) be
a very-weak martingale, which is defined for every i, E [Xi | Xi−1] = Xi−1, and it takes values in Euclidean Space, such
that for every i, Xi ∈ Rd. Suppose X0 = 0, and for i = 1, · · · , n, ‖Xi −Xi−1‖2 ≤ 1. Then, for every ε > 0,

Pr [‖Xn‖2 ≥ ε] < 2e1− (ε−1)2

2n < 2e2e−
ε2

2n . (1)

We can use the preceding fact to obtain the concentration property of outcomes during exploration.

Lemma A.3 (Concentration during exploration). After the exploration round i = 1, 2, · · · , j at t1, t2, · · · , tj respectively,
we use the inverse to get ṽi = I(Mσ, ~y(ti)) = M+

σ ~yi and their mean is ν̂(j) = 1
j

∑j
i=1 ṽi. Then, ∀γ > 0:

Pr
[
‖ν − ν̂(j)‖2 ≥ γ

]
≤ 2e2 exp{− γ

2j

2β2
σ

}. (2)

Proof. For each i, let Xi be the sequence sum satisfying Xi =
∑i
`=1

ν−ṽ`
βσ

, where E
[
ν−ṽi
βσ

]
= 0, and ‖ν−ṽiβσ

‖2 ≤ 1. So

Xi−Xi−1 = ν−ṽi
βσ

implies ‖Xi−Xi−1‖2 ≤ 1. And we know that ṽi is independent of the previous inverse ṽ1, · · · , ṽi−1,
so it holds that

E [Xi | Xi−1]−Xi−1 =E [Xi −Xi−1 | Xi−1] (3)

=E
[
ν − ṽi
βσ

∣∣∣∣ Xi−1

]
(4)

=E
[
ν − ṽi
βσ

]
= 0. (5)

Therefore, X = (X0, · · · , Xn) satisfies the definition of a very-weak martingale. Apply Fact A.2, and it will achieve the

bound ∀ε > 0,Pr [‖Xj‖2 ≥ ε] < 2e2e−
ε2

2j . Let γ = εβσj , as ν − ν̂(j) = βσ
j Xj , we will get:

∀γ > 0, Pr
[
‖ν − ν̂(j)‖2 ≥ γ

]
< 2e2 exp{− γ

2j

2β2
σ

}. (6)

Under a predetermined outcome distribution p with mean outcome vector ν and x∗ = argmaxx∈X r(x,ν), in the main
text we define the gap:

∆x =r(x∗,ν)− r(x,ν), (7)
∆max = max{∆x : x ∈ X}, (8)
∆min = min{∆x : x ∈ X ,∆x > 0}. (9)

Definition A.4 (Good actions / bad actions). Based on the distance to the optimal action, define good actions and bad
actions as:

XGood ,{x : ∀x ∈ X ,∆x = 0} (10)

X Bad ,{x : ∀x ∈ X ,∆x > 0}. (11)

Therefore, X = XGood ∪ X Bad. Moreover, x∗ ∈ XGood. (x∗ is unique if and only if |XGood| = 1.)



Definition A.5 (Events of finding a good action / bad action). Define x̂(t) , argmaxx∈X r(x, ν̂(t − 1)) as the current
optimal action at time t. Let FBad(t) be the event that fails to choose the optimal action at time t. Formally, FBad(t) and
its complement event are:

FBad(t) ,
{
x̂(t) ∈ X Bad} (12)

FGood(t) ,
{
x̂(t) ∈ XGood} . (13)

To build the connection with the exploration round j, we define the time-invariant event FBad
(j) as the event in which the

algorithm fails to choose the optimal action after j rounds of exploration:

FBad
(j) ,

{
x̂(j) ∈ X Bad

}
(14)

FGood
(j) ,

{
x̂(j) ∈ XGood

}
, (15)

where x̂(j) = argmaxx∈X r(x, ν̂
(j)).

By definition, it is always true that FBad
(nσ(t−1)) = FBad(t) and FGood

(nσ(t−1)) = FGood(t).

Definition A.6 (Estimated gap and real gap). For any pair of action xi, xj ∈ X , defined the gap of estimated reward
between xi, xj as

δ̂xi,xj (t) , r(xi, ν̂(t− 1))− r(xj , ν̂(t− 1)),

and the gap of real reward between them as

δxi,xj , r(xi,ν)− r(xj ,ν).

Lemma A.7 (Bound of the gap). For any pair of action xi, xj ∈ X , we establish the inequality over time t as:

|δ̂xi,xj (t)− δxi,xj | ≤ 2L‖ν − ν̂(t− 1)‖2. (16)

Proof.

|δ̂xi,xj (t)− δxi,xj | =|(r(xi, ν̂(t− 1))− r(xi,ν))− (r(xj , ν̂(t− 1))− r(xj ,ν))| (17)
≤|r(xi, ν̂(t− 1))− r(xi,ν)|+ |r(xj , ν̂(t− 1))− r(xj ,ν)| (18)
≤L‖ν − ν̂(t− 1)‖2 + L‖ν − ν̂(t− 1)‖2 (19)
=2L‖ν − ν̂(t− 1)‖2. (20)

Lemma A.8 (Small error in estimation). Given time t, for fX (t) = ln t+ 2 ln |X |, α =
8L2β2

σ

a2 , and a > 0,

∀γ > 0, Pr

[
‖ν − ν̂(t− 1)‖2 ≥ γ

√
αfX (t)

nσ(t− 1)

]
≤ 2e2

|X |2
N(t)1− 4γ2L2

a2 . (21)



Proof. As the time of exploration equals to the counter nσ(t− 1) and ν̂(t− 1) = ν̂(nσ(t−1)), we have:

Pr

[
‖ν − ν̂(t− 1)‖2 ≥ γ ·

√
αfX (t)

nσ(t− 1)

]
(22)

=

t−1∑
j=1

Pr

[
‖ν − ν̂(nσ(t−1))‖2 ≥ γ ·

√
αfX (t)

nσ(t− 1)
∧ nσ(t− 1) = j

]
(23)

=

t−1∑
j=1

Pr

[
‖ν − ν̂(j)‖2 ≥ γ ·

√
αfX (t)

j
∧ nσ(t− 1) = j

]
(24)

≤
t−1∑
j=1

Pr

[
‖ν − ν̂(j)‖2 ≥ γ ·

√
αfX (t)

j

]
(25)

≤
t−1∑
j=1

2e2 exp

−
(
γ ·

√
αfX (t)

j

)2

j

2β2
σ

 {Lemma A.3} (26)

≤
t−1∑
j=1

2e2 exp

{
−γ

2αfX (t)

2β2
σ

}
(27)

≤
t−1∑
j=1

2e2N(t)
− γ

2α

2β2σ . (28)

As α =
8L2β2

σ

a2 and a > 0, the probability is:

Pr

[
‖ν − ν̂(t− 1)‖2 ≥ γ

√
αfX (t)

nσ(t− 1)

]
≤ 2e2(t− 1) ·N(t)

− γ
2α

2β2σ ≤ 2e2

|X |2
N(t)1− 4γ2L2

a2 . (29)

Definition A.9 (Events of exploration or exploitation). In Algorithm GCB, for any time t, we can define three events,
namely the beginning of exploration EExplore(t), in the process of exploration E InExplore(t) and exploitation EExploit(t). They
are mutually exclusive, and EExplore(t) ∨ E InExplore(t) ∨ EExploit(t) is always true. Formally, it is:

EExplore(t) , {state(t) = begin exploration} (30)

E InExplore(t) , {state(t) = in exploration} (31)

EExploit(t) , {state(t) = exploitation} . (32)

Definition A.10 (Events related to confidence interval). In Line 8 of Algorithm GCB, we can define the event for the first
condition where the gap of estimated optimal action and other actions is larger than confidence interval as LCI(t) at time
t, i.e.,

LCI(t) =

{
∀x ∈ X \ {x̂(t)}, δ̂x̂(t),x(t) >

√
αfX (t)

nσ(t− 1)

}
. (33)

And its complement event is:

LcCI(t) =

{
∃x ∈ X \ {x̂(t)}, δ̂x̂(t),x(t) ≤

√
αfX (t)

nσ(t− 1)

}
. (34)

Remark 1. In Algorithm GCB, we know that the first condition of Line 8 is true, if and only if LCI(t) ={
∀x ∈ X \ {x̂(t)}, δ̂x̂(t),x(t) >

√
αfX (t)
nσ(t−1)

}
occurs. Thus, we use the equivalent event in the following proof to make

it clearer.



Definition A.11. For simplicity, suppose α =
8L2β2

σ

a2 , constant a > 0 and θ > 0, then we can define two threshold
functions:

η(t) =t
2
3 fX (t) (35)

µ(t) =(1 + θa)2αfX (t)

∆2
min

. (36)

Note that η(t) and µ(t) are values, not random variables.

Proposition A.12. If t > T0 = (1+θa)3α
3
2

∆3
min

, then µ(t) < η(t). (It can be verified by the definition.)

Lemma A.13 (Exploration Ceiling). Let α ≥ 8L2β2
σ

a2 and a > 0. For any time t, if the exploration counter nσ(t−1) > η(t),
the algorithm will play exploitation surely, i.e.,

Pr
[
EExplore(t)

∣∣ nσ(t− 1) > η(t)
]

= 0. (37)

Proof. If nσ(t− 1) > η(t), then Line 8 of Algorithm GCB will be true because of its second condition. According to the
algorithm, it will not go to exploration phase, so we know that

Pr
[
EExplore(t)

∣∣ nσ(t− 1) > η(t)
]

= 0, (38)

which restricts nσ(t− 1) to no larger than bη(t)c+ 1 at any time t.

Lemma A.14 (Low failure probability of the confidence interval). Let fX (t) = ln t+2 ln |X |, α ≥ 8L2β2
σ

a2 and 0 < a ≤ 1√
3

.
For any time t, the probability that both choosing bad action and the gap is larger than confidence interval satisfies:

Pr
[
LCI(t) ∧ FBad(t)

]
≤ 2e2

|X |2
N(t)−2. (39)

Proof. The definition of FBad(t) = {x̂(t) ∈ X Bad} implies ∃x∗ ∈ X \ {x̂(t)}. Their gap is

δ̂x̂(t),x∗(t) =r(x̂(t), ν̂(t− 1))− r(x∗, ν̂(t− 1)) (40)
≤r(x̂(t), ν̂(t− 1))− r(x∗, ν̂(t− 1)) + r(x∗,ν)− r(x̂(t),ν) {Definition of x∗} (41)
≤|r(x̂(t), ν̂(t− 1))− r(x̂(t),ν)|+ |r(x∗,ν)− r(x∗, ν̂(t− 1))| (42)
≤2L · ‖ν − ν̂(t− 1)‖2. (43)

Thus, we can write the probability as:

Pr
[
LCI(t) ∧ FBad(t)

]
(44)

=Pr

[
∀x ∈ X \ {x̂(t)}, δ̂x̂(t),x ≥

√
αfX (t)

nσ(t− 1)
∧ FBad(t)

]
(45)

≤Pr

[
δ̂x̂(t),x∗ ≥

√
αfX (t)

nσ(t− 1)
∧ FBad(t)

]
(46)

≤Pr

[
δ̂x̂(t),x∗ ≥

√
αfX (t)

nσ(t− 1)

]
(47)

≤Pr

[
‖ν − ν̂(nσ(t−1))‖2 ≥

1

2L

√
αfX (t)

nσ(t− 1)

]
(48)

≤ 2e2

|X |2
N(t)1− 1

a2 {Lemma A.8 with γ =
1

2L
} (49)

≤ 2e2

|X |2
N(t)−2. {0 < a ≤ 1√

3
} (50)



A.1. Distribution-independent bound

Lemma A.15. For any ε > 0, ∀j = 1, 2, · · · , t− 1, when the algorithm has played nσ(t− 1) = j rounds’ exploitation at
time t, the probability of incurring penalty ε satisfies

Pr
[
∆x̂(t) ≥ ε ∧ nσ(t− 1) = j

]
≤ 2e2 exp

{
− j · ε2

8L2β2
σ

}
. (51)

Proof. ∆x̂(t) is the real gap of reward between x∗ and x̂(t):

∆x̂(t) =δx∗,x̂(t) (52)

≤δx∗,x̂(t) + δ̂x̂(t),x∗(t) {Definition of x̂(t)} (53)

≤δx∗,x̂(t) − δ̂x∗,x̂(t)(t) (54)
≤|r(x∗,ν)− r(x∗, ν̂(t− 1))|+ |r(x̂(t),ν)− r(x̂(t), ν̂(t− 1))| (55)

≤2L‖ν − ν̂(t− 1)‖2 = 2L‖ν − ν̂(nσ(t−1))‖2 (56)

When nσ(t− 1) = j, we can conclude that the probability of incurring a large penalty is:

Pr
[
∆x̂(t) ≥ ε ∧ nσ(t− 1) = j

]
≤Pr

[
2L‖ν − ν̂(nσ(t−1))‖2 ≥ ε ∧ nσ(t− 1) = j

]
(57)

≤Pr
[
‖ν − ν̂(j)‖2 ≥

ε

2L

]
(58)

≤2e2 exp

{
− j · ε2

8L2β2
σ

}
. {Lemma A.3} (59)

In Algorithm GCB, we know that the exploitation is penalized with respect to the regret only if it chooses a bad action and
exploits it simultaneously, i.e., FBad(t) and EExploit(t) are both satisfied. When the algorithm chooses exploitation at time
t, the regret at that time will be E

[
∆x̂(t) · I

[
FBad(t) ∧ EExploit(t)

]]
.

Lemma A.16 (Penalty of exploitation). ∀ε > 0, Algorithm GCB with fX (t) = ln t + 2 ln |X |, α =
8L2β2

σ

a2 , 0 < a ≤ 1√
3

,

and η(t) = t
2
3 fX (t), the penalty in the exploitation phase at time t will be in expectation:

E
[
∆x̂(t) · I

[
FBad(t) ∧ EExploit(t)

]]
≤ ε+ ∆max ·

(
2e2

|X |2
N(t)−2 + 2e2 exp

{
−η(t) · ε2

8L2β2
σ

})
. (60)

Proof. ∀ε > 0, the expectation satisfies:

E
[
∆x̂(t) · I

[
FBad(t) ∧ EExploit(t)

]]
(61)

=E
[
∆x̂(t)

∣∣ FBad(t) ∧ EExploit(t)
]
· Pr

[
FBad(t) ∧ EExploit(t)

]
(62)

=E
[
∆x̂(t)

∣∣ ∆x̂(t) < ε ∧ FBad(t) ∧ EExploit(t)
]
· Pr

[
∆x̂(t) < ε ∧ FBad(t) ∧ EExploit(t)

]
+ E

[
∆x̂(t)

∣∣ ∆x̂(t) ≥ ε ∧ FBad(t) ∧ EExploit(t)
]
· Pr

[
∆x̂(t) ≥ ε ∧ FBad(t) ∧ EExploit(t)

]
(63)

≤ε · Pr
[
∆x̂(t) < ε ∧ FBad(t) ∧ EExploit(t)

]
+ ∆max · Pr

[
∆x̂(t) ≥ ε ∧ FBad(t) ∧ EExploit(t)

]
(64)

≤ε+ ∆max · Pr
[
∆x̂(t) ≥ ε ∧ FBad(t) ∧ EExploit(t)

]
. (65)

By definition, exploration event EExploit(t) = {LCI(t) ∨ nσ(t) > η(t)} happens when no other action is in the gap LCI(t)
or the counter nσ(t) > η(t). And we know that nσ(t) is no larger than bη(t)c + 1, because it is a hard constraint implied



by Lemma A.13. Therefore, the probability in the second term is the joint of these two events:

Pr
[
∆x̂(t) ≥ ε ∧ FBad(t) ∧ EExploit(t)

]
(66)

=Pr
[
∆x̂(t) ≥ ε ∧ FBad(t) ∧ (LCI(t) ∨ nσ(t− 1) > η(t))

]
(67)

=Pr
[
∆x̂(t) ≥ ε ∧ FBad(t) ∧ LCI(t) ∧ nσ(t− 1) ≤ η(t)

]
+ Pr

[
∆x̂(t) ≥ ε ∧ FBad(t) ∧ nσ(t− 1) > η(t)

]
(68)

≤Pr
[
FBad(t) ∧ LCI(t)

]
+ Pr

[
∆x̂(t) ≥ ε ∧ FBad(t) ∧ nσ(t− 1) = bη(t)c+ 1

]
(69)

≤ 2e2

|X |2
N(t)−2 + 2e2 exp

{
−η(t) · ε2

8L2β2
σ

}
. {Lemma A.14 and A.15} (70)

Therefore, we have

E
[
∆x̂(t) · I

[
FBad(t) ∧ EExploit(t)

]]
≤ ε+ ∆max ·

(
2e2

|X |2
N(t)−2 + 2e2 exp

{
−η(t) · ε2

8L2β2
σ

})
. (71)

Theorem 4.1 (in the main text): (Distribution-independent bound). Let fX (t) = ln t+ 2 ln |X |, and α = 24L2β2
σ . The

distribution-independent regret bound of Algorithm GCB is:

R(T ) ≤Rmax|σ| · T
2
3 (lnT + 2 ln |X |) +

8

3
LβσT

2
3 +Rmax

(
|σ|+ 4e2

|X |4

)
. (72)

Proof. From the algorithm, we know that it either plays actions in the exploration phase or in the exploitation phase. The
exploration phase will take time |σ| to finish, and its penalty is

∑
x∈σ ∆x. And the penalty of playing exploitation is ∆x̂(t)

at each time step t.

R(T ) =
∑
∀x∈σ

∆xE [nσ(T )] +

T∑
t=1

E
[
∆x̂(t) · I

[
FBad(t) ∧ EExploit(t)

]]
. (73)

From Lemma A.13, we can infer that if the exploration counter nσ(t) > η(t) = t
2
3 fX (t), it will no longer play exploration.

Therefore, the expected number of rounds of exploration satisfies E [nσ(T )] ≤ T 2
3 fX (T ) + 1, so the regret for exploration

is ∑
∀x∈σ

∆xE [nσ(T )] ≤
∑
∀x∈σ

∆x ·
(
T

2
3 fX (T ) + 1

)
. (74)

Let ε = 4Lβσt
− 1

3 , then η(t) = t
2
3 fX (t) and η(t)ε2

8L2β2
σ

= 2fX (t). Therefore, we can apply Lemma A.16 to get the regret of
exploitation part:

T∑
t=1

E
[
∆x̂(t) · I

[
FBad(t) ∧ EExploit(t)

]]
(75)

≤
T∑
t=1

[
ε+ ∆max ·

(
2e2

|X |2
N(t)−2 + 2e2 exp

{
−η(t) · ε2

8L2β2
σ

})]
(76)

≤
T∑
t=1

[
4Lβσt

− 1
3 + ∆max ·

(
2e2

|X |2
+ 2e2

)
N(t)−2

]
(77)

=
8

3
LβσT

2
3 + ∆max ·

(
2e2

|X |2
+ 2e2

)
1

|X |4
. (78)

Therefore, we will have

R(T ) ≤
∑
∀x∈σ

∆x · T
2
3 · (lnT + 2 ln |X |) +

8

3
LβσT

2
3 +

(∑
∀x∈σ

∆x +
4e2

|X |4
∆max

)
. (79)



As ∆x and ∆max is bounded by Rmax under any distribution, we conclude that:

R(T ) ≤ Rmax|σ| · T
2
3 · (lnT + 2 ln |X |) +

8

3
LβσT

2
3 +Rmax

(
|σ|+ 4e2

|X |4

)
. (80)

A.2. Distribution-dependent Bound

Under a predetermined outcome distribution p, the minimum gap between optimal action and sub-optimal action is ∆min.
It follows that:
Lemma A.17 (Condition of choosing optimal action). Suppose we have played exploration round j, at time t. If b ≥ 1,
∀j ≥ b · 8L2β2

σ

∆2
min

fX (t), Algorithm GCB will choose the optimal action with high probability:

∀j ≥ b · 8L2β2
σ

∆2
min

fX (t), Pr
[
FBad

(j)

]
≤ e2

t ·N(t)b−1
. (81)

Proof. According to the definition, FBad
(j) only occurs only if one sub-optimal action has the largest estimated reward.

Pr
[
FBad

(j)

]
(82)

≤Pr
[
∃xb ∈ X Bad,∀xg ∈ XGood, r(xg, ν̂(j)) ≤ r(xb, ν̂(j))

]
(83)

≤Pr
[
∃xb ∈ X Bad,∃xg ∈ XGood, r(xg, ν̂(j)) ≤ r(xb, ν̂(j))

]
(84)

≤
∑

xb∈X Bad

xg∈XGood

Pr
[
r(xg, ν̂(j))− r(xb, ν̂(j)) ≤ 0

]
{Union bound} (85)

≤
∑

xb∈X Bad

xg∈XGood

(
Pr

[
r(xg,ν)− r(xg, ν̂(j)) ≥ ∆min

2

]
+ Pr

[
r(xb,ν)− r(xb, ν̂(j)) < −∆min

2

])
(86)

≤
∑

xb∈X Bad

xg∈XGood

(
Pr

[
|r(xg,ν)− r(xg, ν̂(j))| ≥ ∆min

2

]
+ Pr

[
|r(xb,ν)− r(xb, ν̂(j))| > ∆min

2

])
(87)

≤
∑

xb∈X Bad

xg∈XGood

2Pr

[
L‖ν − ν̂(j)‖2 ≥

∆min

2

]
. (88)

Thus, by Lemma A.3, it is

Pr
[
FBad

(j)

]
≤

∑
xb∈X Bad,xg∈XGood

2Pr

[
L‖ν − ν̂(j)‖2 >

∆min

2

]
(89)

≤
∑

xb∈X Bad,xg∈XGood

4e2 exp{− j∆
2
min

8L2β2
σ

} (90)

≤4e2|X Bad| · |XGood| · exp{− j∆
2
min

8L2β2
σ

} (91)

≤e2|X |2 · exp{− j∆
2
min

8L2β2
σ

}. {|X Bad|+ |XGood| = |X |} (92)

Therefore, if j ≥ b · 8L2β2
σ

∆2
min

fX (t), b ≥ 1, we can conclude:

Pr
[
FBad

(j)

]
≤ e2|X |2

N(t)b
=

e2

tN(t)b−1
. (93)



Lemma A.18 (Exploit the Optimal Action). Let α ≥ 8L2β2
σ

a2 , 0 < a ≤ 1√
3

and θ ≥
√

3. For any time t > T0, the
probability of FBad(t) and playing exploitation in Algorithm GCB is:

Pr
[
EExploit(t) ∧ FBad(t)

]
≤3e2N(t)−2. (94)

Proof. If t > T0, and EExploit(t) = {LCI(t) ∨ nσ(t− 1) > η(t)}, we can write the probability of exploitation as:

Pr
[
EExploit(t) ∧ FBad(t)

]
(95)

=Pr
[
EExploit(t) ∧ FBad(t) ∧ nσ(t− 1) > η(t)

]
+ Pr

[
EExploit(t) ∧ FBad(t) ∧ nσ(t− 1) ≤ η(t)

]
(96)

≤Pr
[
FBad(t) ∧ nσ(t− 1) > η(t)

]
+ Pr

[
LCI(t) ∧ FBad(t) ∧ nσ(t− 1) ≤ η(t)

]
(97)

≤Pr
[
FBad(t) ∧ nσ(t− 1) > η(t)

]
+ Pr

[
LCI(t) ∧ FBad(t)

]
(98)

≤Pr
[
FBad(t) ∧ nσ(t− 1) > η(t)

]
+

2e2

|X |2
N(t)−2. {Lemma A.14}

(99)

Since we know that nσ(t− 1) > η(t), 0 < a ≤ 1√
3

and θ ≥ 1, then

nσ(t− 1) > η(t) > µ(t) =
(1 + θa)2

a2
· 8L2β2

σfX (t)

∆2
min

> 3 · 8L2β2
σfX (t)

∆2
min

.

By Lemma A.17, the following inequality holds:

Pr
[
FBad(t) ∧ nσ(t− 1) > η(t)

]
(100)

≤
t−1∑
j=η(t)

Pr
[
FBad(t) ∧ nσ(t− 1) = j

]
(101)

=

t∑
j=η(t)

Pr
[
FBad

(nσ(t−1)) ∧ nσ(t− 1) = j
]

(102)

≤
t−1∑
j=η(t)

Pr
[
FBad

(j)

]
(103)

≤
t−1∑
j=η(t)

e2

tN(t)2
{Lemma A.17 with b = 3} (104)

≤e2N(t)−2. (105)

Therefore, we can get:

Pr
[
EExploit(t) ∧ FBad(t)

]
≤ e2N(t)−2 +

2e2

|X |2
N(t)−2 ≤ 3e2N(t)−2. (106)

Lemma A.19 (The exploration probability will drop). Suppose the instance has unique optimal action under distribution
p, i.e., |XGood| = 1. Let α ≥ 8L2β2

σ

a2 , 0 < a ≤ 1√
3

. For any time t > T0, when nσ(t− 1) ≥ µ(t) = (1 + θa)2 αfX (t)
∆2

min
where

θ ≥
√

3, and the probability of FGood(t) and exploration happening simultaneously is:

Pr
[
EExplore(t) ∧ FGood(t) ∧ nσ(t− 1) ≥ µ(t)

]
≤ 2e2

|X |2
N(t)−2. (107)

Proof. By definition, the event that exploration happens at time t is EExplore(t) = {LcCI(t) ∧ nσ ≤ η(t)}. When t > T0,
it is true that η(t) > µ(t).



On one hand, if nσ(t− 1) > η(t), then by Lemma A.13, we know that

Pr
[
EExplore(t) ∧ nσ(t− 1) > η(t)

]
(108)

=Pr
[
EExplore(t)

∣∣ nσ(t− 1) > η(t)
]
· Pr [nσ(t− 1) > η(t)] (109)

=0. (110)

On the other hand, for µ(t) ≤ nσ(t − 1) ≤ η(t), whether to play exploration only depends on the event LcCI(t). If
FGood(t) =

{
x̂(t) ∈ XGood

}
and with the assumption that |XGood| = 1, we know that XGood ∩ (X \ {x̂(t)}) = ∅. So the

gap at time t is, ∀x ∈ X \ {x̂(t)},

δ̂x̂(t),x(t) = δ̂x∗,x(t) ≥δx∗,x − |δ̂x∗,x(t)− δx∗,x| (111)

≥∆min − |δ̂x∗,x(t)− δx∗,x| {∆min is the minimum gap} (112)
≥∆min − 2L · ‖ν − ν̂(t− 1)‖2. {Lemma A.7} (113)

And we also know that if nσ(t− 1) ≥ µ(t) = (1 + θa)2 αfX (t)
∆2

min
,√

αfX (t)

nσ(t− 1)
≤ ∆min

1 + θa
, (114)

thus we can get

Pr
[
EExplore(t) ∧ FGood(t) ∧ µ(t) ≤ nσ(t− 1) ≤ η(t)

]
(115)

=Pr

[
∃x ∈ X \ {x̂(t)}, δ̂x̂(t),x(t) ≤

√
αfX (t)

nσ(t− 1)
∧ FGood(t) ∧ µ(t) ≤ nσ(t− 1) ≤ η(t)

]
(116)

≤Pr

[
∆min − 2L · ‖ν − ν̂(t− 1)‖2 ≤

√
αfX (t)

nσ(t− 1)
∧ µ(t) ≤ nσ(t− 1) ≤ η(t)

]
(117)

≤Pr

[
∆min − 2L · ‖ν − ν̂(t− 1)‖2 ≤

∆min

1 + θa
∧ µ(t) ≤ nσ(t− 1) ≤ η(t)

]
(118)

=Pr

[
2L · ‖ν − ν̂(nσ(t−1))‖2 ≥

θa

1 + θa
∆min ∧ µ(t) ≤ nσ(t− 1) ≤ η(t)

]
(119)

=Pr

[
2L · ‖ν − ν̂(nσ(t−1))‖2 ≥

θa

1 + θa
∆min ∧ µ(t) ≤ nσ(t− 1) ≤ η(t)

]
(120)

=

η(t)∑
j=µ(t)

Pr

[
2L · ‖ν − ν̂(nσ(t−1))‖2 ≥

θa

1 + θa
∆min ∧ nσ(t− 1) = j

]
(121)

≤
η(t)∑
j=µ(t)

Pr

[
2L · ‖ν − ν̂(j)‖2 ≥

θa

1 + θa
∆min ∧ nσ(t− 1) = j

]
(122)

≤
η(t)∑
j=µ(t)

Pr

[
2L · ‖ν − ν̂(j)‖2 ≥

θa

1 + θa
∆min

]
. (123)

Let α ≥ 8L2β2
σ

a2 , 0 < a ≤ 1√
3

. For j = µ(t), · · · , η(t) and µ(t) = (1 + θa)2 αfX (t)
∆2

min
, recall Lemma A.3, then we have:

Pr

[
‖ν − ν̂(j)‖2 ≥

1

2L
· θa

1 + θa
∆min

]
(124)

≤2e2 exp

{
− (θa)2∆2

min

(1 + θa)2

j

8L2βσ
2

}
{Lemma A.3} (125)

≤2e2 exp
{
−θ2fX (t)

}
{j ≥ µ(t)} (126)

≤2e2N(t)−θ
2

. (127)



Therefore, we have:

Pr
[
EExplore(t) ∧ FGood(t) ∧ nσ(t− 1) ≥ µ(t)

]
(128)

=Pr
[
EExplore(t) ∧ FGood(t) ∧ nσ(t− 1) > η(t)

]
+ Pr

[
EExplore(t) ∧ FGood(t) ∧ µ(t) ≤ nσ(t− 1) ≤ η(t)

]
(129)

≤0 +

η(t)∑
j=µ(t)

2e2N(t)−θ
2

(130)

≤2e2t ·N(t)−θ
2

(131)

≤ 2e2

|X |2
N(t)1−θ2 (132)

≤ 2e2

|X |2
N(t)−2. {Let θ ≥

√
3} (133)

When the instance has a unique optimal action x∗ under distribution p, the following lemmata ensures that exploration will
not continue endlessly, thus it will switch to exploitation gradually. For simplicity, we consider the case that the exploration
round has already reached µ(T ) at given time T .

Lemma A.20 (Switch to exploitation gradually). Suppose the instance has a unique optimal action x∗ under distribution
p. Given time T , if for time i ≤ T the exploration rounds nσ(i) = µ(T ) has already been satisfied, where µ(T ) =

(1 + θa)2 αfX (T )
∆2

min
, 0 < a ≤ 1√

3
. θ ≥

√
3. Then ∀t,max{i+ 1, T0} ≤ t ≤ T , the probability of playing exploration is:

Pr
[
EExplore(t) ∧ nσ(i) = µ(T )

]
≤ 4e2N(t)−2. (134)

Proof. As nσ(i) = µ(T ), we know that

nσ(i) = µ(T )⇒nσ(t− 1) ≥ nσ(i) = µ(T ), (135)

which implies that the event nσ(i) = µ(T ) is the subset of the event nσ(t− 1) ≥ µ(T ).

Pr
[
EExplore(t) ∧ nσ(i) = µ(T )

]
(136)

≤Pr
[
EExplore(t) ∧ nσ(t− 1) ≥ µ(T )

]
(137)

=Pr
[
EExplore(t) ∧ FGood(t) ∧ nσ(t− 1) ≥ µ(T )

]
+ Pr

[
EExplore(t) ∧ FBad(t) ∧ nσ(t− 1) ≥ µ(T )

]
(138)

≤Pr
[
EExplore(t) ∧ FGood(t) ∧ nσ(t− 1) ≥ µ(T )

]
(139)

+ Pr
[
FBad(t) ∧ nσ(t− 1) ≥ µ(T )

]
. (140)

From Lemma A.19, the first part is

Pr
[
EExplore(t) ∧ FGood(t) ∧ nσ(t− 1) ≥ µ(T )

]
(141)

≤Pr
[
EExplore(t) ∧ FGood(t) ∧ nσ(t− 1) ≥ µ(t)

]
(142)

≤ 2e2

|X |2
·N(t)−2. (143)

For the second part, as 0 < a ≤ 1√
3

and θ ≥
√

3, we can get

µ(T ) = (1 + θa)2αfX (T )

∆2
min

≥ (1 + θa)2αfX (t)

∆2
min

≥ (1 + θa)2

a2
· 8L2β2

σfX (t)

∆2
min

> 3 · 8L2β2
σfX (t)

∆2
min

. (144)



Thus, by using Lemma A.17, it is

Pr
[
FBad(t) ∧ nσ(t− 1) ≥ µ(T )

]
(145)

=

t−1∑
j=µ(T )

Pr
[
FBad(t) ∧ nσ(t− 1) = j

]
(146)

=

t−1∑
j=µ(T )

Pr
[
FBad

(nσ(t−1)) ∧ nσ(t− 1) = j
]

(147)

=

t−1∑
j=µ(T )

Pr
[
FBad

(j) ∧ nσ(t− 1) = j
]

(148)

≤
t−1∑

j=µ(T )

Pr
[
FBad

(j)

]
(149)

≤t · 2e2

tN(t)2
{Lemma A.17 with b = 3} (150)

≤2e2N(t)−2. (151)

Therefore, we can get

Pr
[
EExplore(t) ∧ nσ(i) = µ(T )

]
≤ 2e2

|X |2
N−2 + 2e2N−2 ≤ 4e2N−2. (152)

For counter nσ , the following definition characterizes its first occurrence to be k.

Definition A.21. Given k, for any t, we define the event that nσ(t) = k and nσ(t− 1) = k − 1 as Gk(t), i.e.,

Gk(t) = {nσ(t) = k ∧ nσ(t− 1) = k − 1}.

Lemma A.22 (Exploration Numbers). Let µ(T ) = (1 + θa)2 αfX (T )
∆2

min
, 0 < a ≤ 1√

3
and θ ≥

√
3. If under distribution p,

there is a unique optimal action, i.e., |XGood| = 1, then the expected exploration round at time T (T0 ≤ T ) is:

E [nσ(T )] ≤ µ(T ) +
4e2

|X |4
ln(T + 1) + 1 +

T0∑
t=1

Pr
[
EExplore(t)

]
. (153)

Proof. Note that it takes |σ| time steps to play exploration and then to increase nσ by 1. EFinExplore(t) is the event that the
algorithm finishes one round of exploration and updates nσ at time t. Then, we have EFinExplore(t) = EExplore(t − |σ| + 1)
and ∀t = 1, 2, · · · , |σ|− 1, Pr

[
EFinExplore(t)

]
= 0, meaning that the event never happens for t < |σ|. By definition, we can

get:

E [nσ(T )] =

T∑
t=1

Pr
[
EFinExplore(t)

]
=

T∑
t=|σ|

Pr
[
EFinExplore(t)

]
=

T−|σ|+1∑
t=1

Pr
[
EExplore(t)

]
. (154)

Because the accumulation of exploration rounds is nσ(T ), therefore its expected number can be:

E [nσ(T )] =

T−|σ|+1∑
t=1

Pr
[
EExplore(t)

]
(155)

=

T−|σ|+1∑
t=1

Pr
[
EExplore(t) ∧ nσ(T ) < µ(T )

]
+

T−|σ|+1∑
t=1

Pr
[
EExplore(t) ∧ nσ(T ) ≥ µ(T )

]
. (156)



The following inequality ensures that the first part is not large:

T−|σ|+1∑
t=1

Pr
[
EExplore(t) ∧ nσ(T ) < µ(T )

]
(157)

≤
T−|σ|+1∑
t=1

Pr [nσ(T ) < µ(T )] · Pr
[
EExplore(t)

∣∣ nσ(T ) < µ(T )
]

(158)

≤Pr [nσ(T ) < µ(T )] ·
T−|σ|+1∑
t=1

Pr
[
EExplore(t)

∣∣ nσ(T ) < µ(T )
]

(159)

≤Pr [nσ(T ) < µ(T )] ·
T∑
t=1

Pr
[
EFinExplore(t)

∣∣ nσ(T ) < µ(T )
]

(160)

=Pr [nσ(T ) < µ(T )] · E [nσ(T ) | nσ(T ) < µ(T )] (161)
≤Pr [nσ(T ) < µ(T )] · µ(T ). (162)

We know the counter nσ could only increase by 1 at a time. For this reason, if the value of nσ(T ) exceeds µ(T ) at time
T , this event must happen within t = µ(T ), · · · , T . Thus, the occurrence of µ(T ) is equivalent to the union of events{∨T

i=µ(T ) Gµ(T )(i)
}

. By definition, each event Gµ(T )(i),∀i = µ(T ), · · · , T , is mutually exclusive. Therefore, we have

{nσ(T ) ≥ µ(T )} =
{∨T

i=µ(T ) Gµ(T )(i)
}

, and the second part is:

T−|σ|+1∑
t=1

Pr
[
EExplore(t) ∧ nσ(T ) ≥ µ(T )

]
(163)

=

T−|σ|+1∑
t=1

Pr

EExplore(t) ∧

 T∨
i=µ(T )

Gµ(T )(i)

 (164)

=

T−|σ|+1∑
t=1

Pr

 T∨
i=µ(T )

(
EExplore(t) ∧ Gµ(T )(i)

) (165)

≤
T−|σ|+1∑
t=1

T∑
i=µ(T )

Pr
[
EExplore(t) ∧ Gµ(T )(i)

]
{Union bound} (166)

≤
T∑

i=µ(T )

T−|σ|+1∑
t=1

Pr
[
EExplore(t) ∧ Gµ(T )(i)

]
(167)

≤
T∑

i=µ(T )

i∑
t=1

Pr
[
EExplore(t) ∧ Gµ(T )(i)

]
+

T∑
i=µ(T )

T−|σ|+1∑
t=i+1

Pr
[
EExplore(t) ∧ Gµ(T )(i)

]
. (168)



Now we will prove that the first term is in O(µ(T )):

T∑
i=µ(T )

i∑
t=1

Pr
[
EExplore(t) ∧ Gµ(T )(i)

]
(169)

=

T∑
i=µ(T )

i∑
t=1

Pr
[
Gµ(T )(i)

]
· Pr

[
EExplore(t)

∣∣ Gµ(T )(i)
]

(170)

=

T∑
i=µ(T )

Pr
[
Gµ(T )(i)

]
·

i∑
t=1

Pr
[
EExplore(t)

∣∣ Gµ(T )(i)
]

(171)

=

T∑
i=µ(T )

Pr
[
Gµ(T )(i)

]
·
i+|σ|−1∑
t=1

Pr
[
EFinExplore(t)

∣∣ Gµ(T )(i)
]

(172)

=

T∑
i=µ(T )

Pr
[
Gµ(T )(i)

]
· E
[
nσ(i+ |σ| − 1)

∣∣ Gµ(T )(i)
]

(173)

≤
T∑

i=µ(T )

Pr
[
Gµ(T )(i)

]
· E
[
nσ(i) + 1

∣∣ Gµ(T )(i)
]

{nσ(i+ |σ| − 1) ≤ nσ(i) + 1} (174)

≤Pr [nσ(T ) ≥ µ(T )] · (µ(T ) + 1) , {Mutually exclusive} (175)

Since Gµ(T )(i) = {nσ(i) = µ(T ) ∧ nσ(i− 1) = µ(T )− 1}, we can write the second term as:

T∑
i=µ(T )

T−|σ|+1∑
t=i+1

Pr
[
EExplore(t) ∧ Gµ(T )(i)

]
(176)

≤
T∑

i=µ(T )

T0∑
t=1

Pr
[
EExplore(t) ∧ Gµ(T )(i)

]
+

T∑
i=µ(T )

T−|σ|+1∑
t=max{i+1,T0+1}

Pr
[
EExplore(t) ∧ Gµ(T )(i)

]
(177)

≤
T∑

i=µ(T )

T0∑
t=1

Pr
[
EExplore(t) ∧ Gµ(T )(i)

]
+

T∑
i=µ(T )

T−|σ|+1∑
t=max{i+1,T0+1}

Pr
[
EExplore(t) ∧ nσ(i) = µ(T )

]
(178)

≤
T0∑
t=1

T∑
i=µ(T )

Pr
[
EExplore(t) ∧ Gµ(T )(i)

]
+

T∑
i=µ(T )

T−|σ|+1∑
t=max{i+1,T0+1}

4e2N(t)−2 {Lemma A.20}

(179)

≤
T0∑
t=1

Pr

EExplore(t) ∧

 T∨
i=µ(T )

Gµ(T )(i)

+
4e2

|X |4
·
∫ T

i=µ(T )

∫ T

t=i

t−2 · dt · di {Mutually exclusive}

(180)

≤
T0∑
t=1

Pr
[
EExplore(t)

]
+

4e2

|X |4

∫ T

i=µ(T )

1

i
di (181)

≤
T0∑
t=1

Pr
[
EExplore(t)

]
+

4e2

|X |4
lnT. (182)

Therefore, we can get

E [nσ(T )] ≤µ(T ) + 1 +
4e2

|X |4
lnT +

T0∑
t=1

Pr
[
EExplore(t)

]
. (183)



Theorem 4.2 (in the main text): (Distribution-dependent bound). For Algorithm GCB, let fX (t) = ln t + 2 ln |X |,
α = 24L2β2

σ . If the instance has a unique optimal action under outcome distribution p and mean outcome vector ν,
the distribution-dependent regret bound of Algorithm GCB is:

R(T ) ≤
∑
x∈σ

∆x ·
[

96L2β2
σ

∆2
min

· (lnT + 2 ln |X |) +
4e2

|X |4
lnT + 1

]
+ ∆max ·

(
3e2

|X |4
+

941L3β3
σ

∆3
min

)
, (184)

where
∑
∀x∈σ ∆x, ∆max and ∆min are problem-specific constants under the distribution p.

Proof. If we penalize each time the algorithm plays a sub-optimal action by ∆max, then the regret function is composed
of exploration and exploitation:

R(T ) ≤
∑
x∈σ

∆x · E [nσ(T )] + ∆max ·
T∑
t=1

E
[
I
[
EExploit(t) ∧ FBad(t)

]]
(185)

≤
∑
x∈σ

∆x · E [nσ(T )] + ∆max ·
T∑
t=1

Pr
[
EExploit(t) ∧ FBad(t)

]
. (186)

Suppose it has unique optimal action |XGood| = 1, from Lemma A.22 the expected rounds of exploration are:

E [nσ(T )] ≤ (1 + θa)2αfX (T )

∆2
min

+ 1 +
4e2

|X |4
ln(T + 1) +

T0∑
t=1

Pr
[
EExplore(t)

]
. (187)

The regret of exploitation phase can be inferred from Lemma A.18 that:

∆max ·
T∑
t=1

Pr
[
FBad(t) ∧ EExploit(t)

]
(188)

≤∆max ·

(
T∑

t=T0+1

3e2

N(t)2
+

T0∑
t=1

Pr
[
FBad(t) ∧ EExploit(t)

])
(189)

≤∆max ·

(
3e2

|X |4
T∑

t=T0+1

1

t2
+

T0∑
t=1

Pr
[
EExploit(t)

])
(190)

≤∆max ·

(
3e2

|X |4
+

T0∑
t=1

Pr
[
EExploit(t)

])
. (191)

Since for t = 1, 2, · · · , T0, we perform either exploration or exploitation, the regret is no worse than ∆max · T0, that is:∑
x∈σ

∆x ·
T0∑
t=1

Pr
[
EExplore(t)

]
+ ∆max ·

T0∑
t=1

Pr
[
EExploit(t)

]
≤ ∆max · T0. (192)

Thus, for fX (t) = ln t+ 2 ln |X |, α ≥ 8L2β2
σ

a2 , 0 < a ≤ 1√
3

and θ ≥
√

3,

R(T ) ≤
∑
x∈σ

∆x ·
[

(1 + θa)2α

∆2
min

· (lnT + 2 ln |X |) +
4e2

|X |4
lnT + 1

]
+ ∆max ·

(
3e2

|X |4
+ T0

)
, (193)

where T0 = (1+θa)3α
3
2

∆3
min

.

Let a = 1√
3

, θ =
√

3, and α = 24L2β2
σ . As a conclusion, we will get:

R(T ) ≤
∑
x∈σ

∆x ·
[

96L2β2
σ

∆2
min

· (lnT + 2 ln |X |) +
4e2

|X |4
lnT + 1

]
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(
3e2

|X |4
+

941L3β3
σ

∆3
min

)
. (194)



B. An Example of Mσ and Global Observer Set Construction for 1 < s < N in the
Crowdsourcing Application

In this section, we provide an example of constructing the stacked matrix Mσ and the global observer set in the crowd-
sourcing application when we require 1 < s < N , where s is the number of matched worker-task pairs used for reporting
the feedback. Recall that the feedback for a matching is the simple summation of these s matched worker-task pairs. This
implies that for each matching x, the transformation matrixMx contains a single row with exactly s 1s and all other entries
are 0, and Mx · x = s.

As an illustration, consider the case that both N and M are divisible by s + 1. Then we can construct a full-rank square
matrix Mσ such that, after rearranging the columns of Mσ , it is a block diagonal matrix with each block B being an
(s+1)-by-(s+1) square matrix with 0 in the diagonal entries and 1 as off-diagonal entries. The following is an illustration
of such a matrix for the case of s+ 1 = N = M = 3.



0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0


It is clear that this Mσ is full column rank. To recover the NM actions (matchings) corresponding to the NM rows, we
map each block B to a matching that matches s + 1 workers to s + 1 tasks such that these matchings share no common
edges. This can be done in the following way.

We partitionN workers intoN/(s+1) groups of size s+1 each, and partitionM tasks intoM/(s+1) groups of size s+1
each. Taking any group W of s+ 1 workers and any group U of s+ 1 tasks, we can find s+ 1 non-overlapping matchings
between W and U by rotation: in the j-th matching, the i-th worker is matched with the (i+ j mod s+ 1)-th task. Since
we have NM/(s + 1)2 worker-task group pairs, and each group pair generates s + 1 non-overlapping matchings, in total
we have NM/(s+ 1) non-overlapping matchings, and we map these matches to the NM/(s+ 1) blocks in the rearranged
matrix Mσ . The above construction implies that we can find NM actions to form a global observer set, in which each
action is a matching of s + 1 workers to s + 1 tasks, and each matching returns an aggregate performance feedback of s
worker-task pairs in the matching. Thus the assumption on the existence of the global observer set holds and the set can be
constructed easily.

The error bound βσ for the above constructed Mσ is more complicated to analyze, but by our empirical evaluation using
Matlab, we believe that it is also a low-degree polynomial in N and M .
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