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Abstract
Today, large-scale web services run on complex sys-

tems, spanning multiple data centers and content dis-
tribution networks, with performance depending on di-
verse factors in end systems, networks, and infrastructure
servers. Web service providers have many options for
improving service performance, varying greatly in feasi-
bility, cost and benefit, but have few tools to predict the
impact of these options.

A key challenge is to precisely capture web object de-
pendencies, as these are essential for predicting perfor-
mance in an accurate and scalable manner. In this pa-
per, we introduce WebProphet, a system that automates
performance prediction for web services. WebProphet
employs a novel technique based on timing perturba-
tion to extract web object dependencies, and then uses
these dependencies to predict the performance impact
of changes to the handling of the objects. We have
built, deployed, and evaluated the accuracy and effi-
ciency of WebProphet. Applying WebProphet to the
Search and Maps services of Google and Yahoo, we find
WebProphet predicts the median and 95th percentiles of
the page load time distribution with an error rate smaller
than 16% in most cases. Using Yahoo Maps as an exam-
ple, we find that WebProphet reduces the problem of per-
formance optimization to a small number of web objects
whose optimization would reduce the page load time by
nearly 40%.

1 Introduction
Software vendors and service providers are increasingly
delivering services to users through the Internet. Large-
scale web services, such as maps, search, and social net-
working, have proliferated, attracting hundreds of mil-
lions of users worldwide. On the client side, these
services heavily leverage Asynchronous Javascript and
XML (AJAX) to provide a seamless and consistent user
experience across devices and form factors. Behind the

scenes, significant amounts of data and computation are
provided by servers in the cloud.

Many web services are extremely complex, since they
aim to match or even exceed the rich user experience of-
fered by traditional desktop application. For instance, the
“driving directions” webpage of Yahoo Maps comprises
about 110 embedded objects and 670KB of Javascript
code. These objects are retrieved from many differ-
ent servers, sometimes even from multiple data centers
(DCs) and content distribution networks (CDNs). These
dispersed objects meet only at a client machine, where
they are assembled by a browser to form a complete web-
page. Since service providers lack object-level measure-
ments obtained from clients, it is hard for them to as-
sess and study user-perceived performance. Moreover,
there exist a plethora of dependencies between different
objects. Many objects cannot be downloaded until some
other objects are available. For instance, an image down-
load may have to await a Javascript download because
the former is requested by the latter. These multiple fac-
tors make it highly challenging to understand and predict
the performance of web services.

The performance of web services has direct impact
on user satisfaction. Poor page load times (PLT) result
in low service usage, which in turn may undermine ser-
vice income. For instance, a study by Amazon reported
roughly 1% sales loss as the cost of a 100 ms extra de-
lay. Another study by Google found a 500 ms extra delay
in display search results may reduce revenues by up to
20% [16]. Even worse, users may simply abandon a ser-
vice provider for another offering, as switching barriers
are often low.

Ideally, service providers would like to predict the
effects of potential optimizations before actual deploy-
ment. Yet it is seldom clear what benefits various pos-
sible options for improvement might bring a service
provider – whether optimization to the object structure
of the page, or optimizations in the manner in which
content is placed and delivered over the Internet. User-
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perceived PLT is affected by the loading time of web ob-
jects and their dependencies. The loading time of each
individual object is further affected by a variety of delay
factors, including DNS lookup time, network round trip
time (RTT), server response time, and client execution
time.

One compelling way to predict performance is to first
measure the PLT through experiments on the service it-
self (e.g., A/B tests [16] by varying a given property of
the service), and then to extrapolate estimates using some
form of regression. However, such experiments can be
difficult to setup and expensive to sustain. It is not un-
common for such experiments to run for days or even
weeks, limiting the capacity for adding additional ex-
periments. Furthermore, it is extremely challenging to
sweep the space of all possible scenarios since the num-
ber of scenarios grows exponentially with the number of
objects and delay factors. Without detailed knowledge
of object dependencies, it is difficult to decide how many
distinct scenarios need to be measured to attain accurate
predictions.

Existing approaches for performance prediction gen-
erally fall into two broad categories: provider based vs.
end-system based. In the first category, WISE [23] pre-
dicts performance based on server logs collected at the
service provider’s data centers. As a result, this approach
has limited visibility into some client-side factors that
are crucial for user-perceived PLT, such as page render-
ing time, object dependencies, and multiple data sources
(crossing data centers and content providers). In the sec-
ond category, Link Gradients [10] proposes to predict
end-to-end response times of untested system configura-
tions, assuming the effects of change in individual fac-
tors are completely independent of each other. While
this assumption may hold in small-scale enterprise ap-
plications, it is inapplicable to complex web services in
which inter-component dependencies are prevalent.

To overcome these challenges and shortcomings, this
paper presents WebProphet, a tool that predicts the im-
pact of various optimizations on user-perceived PLT of
web services. First, WebProphet aims to be applicable to
a diverse set of web services. Second, WebProphet aims
to automatically produce accurate predictions. Given
the number of web services and the churns in their im-
plementations, a tool that involves manual effort can be
overly burdensome and error prone.

WebProphet consists of a measurement engine, a de-
pendency extractor, and a performance predictor. The
dependency extractor employs a novel algorithm to in-
fer dependencies between web objects by perturbing the
download times of individual objects. Our key observa-
tion is the delay of an individual object will be propa-
gated to all of its dependent objects. While others have
noticed that timing perturbation can convey information

(in particular, [20] uses such techniques to transmit data
covertly), we are the first to apply it to systematically
discovering web object dependencies. Given the depen-
dency graph of a webpage, the performance predictor im-
plements a simple and yet accurate method to simulate
the page load process of a web browser. It can make fast
and accurate PLT prediction under any combination of
changes in objects and delay factors. It can also predict
the statistical properties (e.g., median or 95th-percentile)
of a PLT distribution under a hypothetical scenario.

We applied WebProphet to four widely-used web ser-
vices: Maps and Search of Google and Yahoo. We
verified that our system successfully extracts the depen-
dency graphs for all these services, even though some of
the complex webpages comprise over 100 objects. We
used WebProphet to predict PLT on real, popular web
browsers using controlled experiments and the Planet-
Lab testbed. Our evaluation shows that the predictions of
WebProphet are highly accurate, with error rates mostly
under 16%. This is quite promising given the inher-
ent noise (e.g., different loss conditions) in these ex-
periments. We then apply WebProphet to finding cost-
effective optimization strategies for real applications.
For instance, Yahoo Maps contains 110 objects and has a
median PLT of 3.987 seconds measured from Northwest-
ern University. By simply optimizing the client execu-
tion time of 14 objects and moving 5 static objects from
Yahoo data centers to the Akamai CDN, the median PLT
of Yahoo Maps can be cut by nearly 40%.

We continue to discuss the problem formulation and
present an overview of WebProphet in §2. We describe
dependency extraction in §3 and performance prediction
in §4. The implementation is covered in §5. In §6 and §7,
we show the results of dependency extraction and per-
formance prediction respectively. We demonstrate how
WebProphet helps to optimize the PLT of Yahoo Maps
in §8. We evaluate the systems performance in §9. Fi-
nally, we review the related work in §10 and conclude in
§11.

2 Problem Context

Many web services are delivered to users in form of web-
pages that can be rendered by a browser. Sophisticated
webpages may contain many static and dynamic objects
arranged hierarchically. To load a page, a browser typ-
ically first downloads a main HTML object that defines
the structure of the page. Next, it may download a Cas-
cading Style Sheets (CSS) object that describes the pre-
sentation of the page. The main HTML object may em-
bed many Javascript objects that are executed locally to
interact with a user. As the page is being rendered, an
HTML or a Javascript object may request additional ob-
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Figure 1: The page load time decomposition.

jects, such as images and Javascripts. This process con-
tinues until all relevant objects are loaded.

We define page load time (PLT) as the time between
when the user triggers the page starting to load and when
all the objects in the page are loaded. Sometimes, users
do not care about all the objects in a page. For instance,
a page may contain invisible images, advertisements, or
user tracking services. Moreover, a user action may only
trigger a few new objects to be loaded after the initial
page load. Accordingly, we could also define PLT as
the time to load a subset of objects in a page that are
relevant to user-perceived performance. Note that there
is a subtle difference between when objects are loaded
and when objects are perceived by the user. While the
latter is more directly related to user satisfaction, it is
also harder to define and measure precisely. Therefore,
we choose to focus on the former in this paper.

As illustrated in Figure 1, we may decompose the
loading time of each object into client delay, network de-
lay, and server delay. The client delay is due to various
browser activities such as page rendering and Javascript
execution. The network delay can be further decomposed
into DNS lookup time, TCP three-way handshake time,
and data transfer time. TCP handshake time and data
transfer time are influenced by network path conditions
such as RTT and packet loss. The server delay is pro-
duced by various server processing tasks such as retriev-
ing static content or generating dynamic content.

Service providers have many different options to im-
prove the PLT of a webpage. For instance, they may
upgrade the back-end infrastructure to reduce server re-
sponse time for dynamic objects. They may use a CDN
service to reduce the network delay for static objects.
They may also optimize the implementation code to re-
duce the client execution time for computation-intensive
objects. While optimizing for an individual object or de-
lay factor (or for a combination of multiple objects or
delay factors) will bring some benefits, they may also in-
cur significant costs in development and management. It
is economically infeasible for a service provider to op-
timize for every object/delay factor, and is often unclear
where to find the biggest bang for the buck. Our goal is
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Figure 2: System architecture.

to build an automated system that can accurately predict
the PLT improvement under any combination of changes
in object and delay factor. A service provider can easily
use our system to narrow down the optimization strate-
gies that could bring the most benefits.

For a web service, WebProphet predicts PLT based on
a performance model extracted from client-side obser-
vations. Compared to server-side techniques [23], our
approach can take into account a few important factors
that are visible only at the client. First, a modern web-
page usually contains many objects which have depen-
dencies between each other. As a result, the PLT cannot
be estimated simply based on the page size and TCP-
level characteristics such as RTT, packet loss, and con-
gestion window size. In fact, the dependencies will deter-
mine when an object can be loaded and which objects can
be loaded in parallel. Second, many webpages comprise
sophisticated HTML and Javascript objects to provide a
rich user experience. Nonetheless, HTML rendering and
Javascript execution may introduce significant client de-
lay. Third, the objects in a page may come from multiple
data centers and CDN nodes. For example, Yahoo Maps
uses both the Akamai CDN and Yahoo data centers to
deliver page content. Though the client side is the ideal
place where we can measure the user-perceived PLT ac-
counting for all these effects end-to-end, existing client
browsers lack the measurement hooks needed.

As shown in Figure 2, WebProphet has three major
components. Given a webpage, the dependency extrac-
tor infers the dependencies between objects by perturb-
ing the download times of individual objects. The mea-
surement engine controls multiple automated web agents
which can drive a full-featured web browser (Firefox 3)
to load the page. The measurement engine also collects
one packet trace for each page load. Using the extracted
dependency graph and the packet trace in a baseline sce-
nario, the performance predictor estimates the PLT in a
new scenario by simulating the page load process.

The PLT of a webpage will not be a constant due to the
variations of network latency, server response time, and
load on the client. WebProphet can predict the statistical
properties (e.g., median or 95th-percentile) of the PLT
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distribution under a new scenario. For this purpose, we
first collect a reasonably large number of page load traces
in a baseline scenario using a web agent. Then, for each
of these traces, we run performance prediction to obtain
the PLT in the new scenario, and therefore produce the
PLT distribution in a new scenario.

Currently, we do not explicitly consider the effect of
packet loss in our model. In other words, we assume the
same loss condition in the baseline and new scenarios.
Differences in loss conditions can change the number of
round trips involved in loading an object, which in turn
lead to prediction errors (§4.1). The impact of packet
loss on PLT can be highly variable, and highly depen-
dent on factors such as network transients, TCP conges-
tion states, and specific TCP loss recovery mechanisms.
In spite of this limitation, as shown in §7, WebProphet
attains high prediction accuracy in both controlled and
real-world experiments under normal loss conditions.

3 Dependency Extraction

In this section, we first present an overview of depen-
dency relationships between web objects and describe
the types of dependencies that we aim to discover. We
then explain the details of our dependency extraction al-
gorithm based on timing perturbation.

3.1 What are dependencies?
Modern webpages may contain many types of objects,
including HTML, Javascript, CSS, and image. These
embedded objects are downloaded via separate requests
on potentially multiple TCP connections instead of all
at once. For instance, the main HTML object may con-
tain a Javascript object whose execution will lead to ad-
ditional downloads of HTML and image objects. We
say one object depends on the other if the former can-
not be downloaded until the latter is available. De-
pendencies between objects can be caused by a num-
ber of reasons. Common ones include: i) The em-
bedded objects in an HTML page will depend on the
HTML page; ii) Since many objects are dynamically
requested during Javascript execution, these objects de-
pend on the corresponding Javascript; iii) The download
of an external CSS or Javascript object may block the
download of other types of objects in the same HTML
page [22]; iv) Object downloads may depend on certain
events in Javascript object or web browser. For instance,
a Javascript object may download image B only after im-
age A is loaded.

Given an object A, its dependent objects usually can-
not be requested before A is completely downloaded.
However, there are exceptions. Today’s browsers ren-
der an HTML page in a streamlined fashion, by which

we mean the HTML page can be partially displayed
even before its download finishes. For example, if an
HTML page has an embedded image, the image can be
downloaded and displayed in parallel with the down-
load of the HTML page. The image download may
start once the tag <img src=... /> (identified by
a byte offset in the HTML page) has been parsed. We
call an HTML object a stream object. We use depen-
dency offsetA(img) to denote the offset of the last byte
of <img src=... /> in the stream object A. We
observed this streamlined processing behavior in major
browsers including IE, Firefox and Chrome.

Given an object X , we use descendant(X) to denote
the set of objects that depend on X and use ancestor(X)
to denote the set of objects that X depends on. By
definition, X cannot be requested until all the objects
in ancestor(X) are available. Among the objects in
ancestor(X), we are particularly interested in object Y
which is the last to become available. We call Y the last
parent of X . If Y is a stream object, its available-time
is when the dependency offsetY (X) has been loaded.
If Y is a non-stream object, its available-time is when
Y is completely loaded. In §4.1, we will explain how
to use the available-time of Y to estimate the start time
of X’s download. Essentially, this will allow us to pre-
dict the PLT of a webpage. While X only has one last
parent in one particular page load, its last parent may
change across different page loads due to variations in
the available-time of its ancestors. We use parent(X) to
denote the subset of the objects in ancestor(X) which
may be the last parent of X .

Given a webpage, we use a parental dependency graph
(PDG) to encapsulate the parental relationship between
objects in the page. A PDG = (V, E) is a Directed
Acyclic Graph (DAG) and includes a set of nodes and
directed links. Each node is a web object. Each link
Y ← X means Y is a parent of X .

3.2 How to extract dependencies?

WebProphet extracts the dependencies of a webpage by
perturbing the download of individual objects. Our key
observation is the delay of an individual object will be
propagated to its descendants. While conceptually sim-
ple, the major challenge is to extract the stream parent of
an object and the corresponding dependency offset. Sup-
pose an object X has a stream parent Y . To discover
this parental relationship and the dependency offset, the
available-time of offsetY (X) must be later than that of
all the other parents of X in a particular page load. This
requires the ability to control the download of not only
each non-stream parent of X as a whole but also each
partial download of each stream parent of X . As we will
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see in §7.4, correctly extracting stream parents and de-
pendency offsets is critical for accurate PLT prediction.
Discovering ancestors/descendants: Given a webpage
and its embedded objects, we discover the descendants
of each object iteratively. In each round, we reload the
page and delay the download of an object X for τ sec-
onds. Here, X is an object which has not been processed
and τ is much greater than the normal loading time of
any object. The descendants of X are the objects whose
download is delayed together with X for at least τ sec-
onds. We repeat this process until the descendants of all
the objects are discovered. Note that the order by which
we delay each object has no influence on the final result.

Our approach for dependency extraction makes two
assumptions. First, we assume the dependencies of a
webpage do not change during the discovery process.
This may not hold in practice. When a page is reloaded,
there could be some minor changes in the new page. For
instance, there could be parameter changes in the Uni-
versal Resource Identifier (URI) of certain objects. We
tackle this problem by matching similar URIs in differ-
ent rounds according to edit distance. Moreover, there
could be object changes due to reasons such as new ad-
vertisements. We find such changes tend to have limited
impact on the overall structure of the page or the PDG.
This is because the number of affected objects is small
and they usually do not have any descendants. In § 7, we
will show that our prediction results are highly accurate
in spite of minor changes in webpages.

The second assumption we make is that the artificially
injected delay will not change the dependencies in the
page. Among the pages we studied, we found only one
exception in the “driving directions” webpage of Google
Maps. There are two Javascripts A.js and B.js which
have the same parent main.js. We use A and B
to represent the names of these two Javascripts, given
their original names are very long. When main.js is
severely delayed, A.js and B.js sometimes are com-
bined into one single Javascript named AB.js. This
probably reflects the fact that main.js attempts to
adapt when it detects poor download speed. We iden-
tified this application behavior because it leads to in-
consistencies in the extracted dependencies of the page.
Among the applications we studied, only Google Maps
exhibits this behavior which is handled with a simple
heuristic. In the future, we plan to devise a more sys-
tematic solution to deal with such behavior.
Extracting non-stream parents: Given a non-stream
object X and its descendant Z, we observe that X is the
parent of Z if and only if there does not exist an object
Y which is the descendant of X and the ancestor of Z.
On the one hand, if such Y exists, the available-time of Y
will always be later than that of X . This is because X is a
non-stream object and Y cannot be downloaded until X

offsetH(J) offsetH(I)H T M L  ob j ec t H

Ja v a sc r i p t ob j ec t J Im a g e ob j ec t I

Figure 3: Stream parent example.

is available, which implies X cannot be the parent of Z.
On the other hand, if Y does not exist, we can imagine a
scenario where X is delayed until all the other ancestors
of Z are available. This is possible because none of the
other ancestors of Z depend on X . This implies X may
indeed be the parent of Z. Based on this observation,
Algorithm ExtractNonStreamParent takes the set
of objects and the set of descendants of each object (in-
ferred from the previous step) as input and computes the
parent set of each object.

ExtractNonStreamParent(Object, Descendant)
For X in Object

For Z in Descendant(X)
IsParent = True
For Y in Descendant(X)

If (Z in Descendant(Y))
IsParent = False
Break

EndIf
EndFor
If (IsParent) add X to Parent(Z)

EndFor
EndFor

Extracting stream parents and dependency offsets:
The method described above may not be useful for dis-
covering the stream parent of an object. We illustrate
this with an example in Figure 3. A large HTML ob-
ject H contains a Javascript J and an image I . J and I
are embedded in the beginning and the end of H respec-
tively (offsetH(J) < offsetH(I)). Because the URI of
I is defined in J , I cannot be downloaded until J is exe-
cuted. This causes I to depend on both H and J while J
only depends on H . According to the previous method,
H cannot be the parent of I since J is the descendant of
H and the ancestor of I . Nonetheless, when the down-
load of H is slow, J may have been downloaded and
executed before offsetH(I) becomes available. In this
case, H becomes the last parent of I .

Given a stream object H and its descendant I , we use
the following method to determine whether H is the par-
ent of I . We first reload the whole page and control the
download of H at an extremely low rate λ. If H is the
parent of I , all the other ancestors of I should have been
available by the time offsetH(I) is available. We can
then estimate offsetH(I) with offsetH(I)′, where the
latter is the offset of H that has been downloaded when
the request of I starts to be sent out. offsetH(I)′ can
be directly inferred from network traces and is usually a
bit larger than offsetH(I). This is because it may take
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Figure 4: Performance prediction procedure.

some extra time to request I after offsetH(I) is avail-
able. Since H is downloaded at an extremely low rate,
these two offsets should be very close.

Given offsetH(I)′, we perform an additional parental
test to determine whether H is the parent of I . We reload
the whole page again. This time, we control the down-
load of H at the same low rate λ as well as delay the
download of all the known non-stream parents of I by τ .
Let offsetH(I)′′ be the offset of H that has been down-
loaded when the request of I is sent out in this run. If
offsetH(I)′′ − offsetH(I)′ � τ × λ, this indicates the
delay of I’s known parents has little effect on when I is
requested. Therefore, H should be the last parent of I .

The choice of λ reflects the trade-off between mea-
surement accuracy and efficiency. A smaller λ allows
us to estimate offsetH(I) more accurately but leads to
longer running times. The parameter τ directly affects
the accuracy of parental tests. If τ is too small, the
results may be susceptible to noise in experiment, in-
creasing the chance of missing true parents. If τ is
too large, we may mistakenly infer a parental relation-
ship because offsetH(I)′′ − offsetH(I)′ is bounded by
sizeH − offsetH(I) where sizeH is the page size of H .
In our current system, we use λ = sizeH/200 bytes/sec
and τ = 2 seconds. This means the HTML object H will
take 200 seconds to transfer. We will study the accuracy
of dependency extraction in § 6.
Discussion: We currently infer the timing information
from the packet trace of a page load (§4.1). One alternate
approach is to extract dependencies through some com-
bination of static and dynamic program analysis. In fact,
it is quite straightforward to parse an HTML object to
extract its dependencies. However, extracting the depen-
dencies of Javascript objects requires extensive browser
instrumentations. Since the PDG of a page may vary de-
pending on how the page is rendered by a browser, we
will have to instrument each type and each version of
the major browsers. In comparison, our trace-based ap-
proach can more easily work with different browsers.

4 Performance Prediction

In this section, we describe our methodology for predict-
ing performance under hypothetical scenarios. Given the
PLT of a webpage in a baseline scenario, we aim to pre-
dict the new PLT when there are changes in the delay fac-

request rep l y
Response time

Req u est tr a nsf er  time Repl y  tr a nsf er  time

Tf  H TTP  r e q u e s t  
s t a r t

Tl  H TTP  r e p l y  
e n d

Figure 5: Decomposition of an HTTP activity.

tors (including client delay, server delay, RTT, and DNS
lookup time) of any objects in the page. The basic idea
is to develop a model that can simulate the page load
process of a browser under any hypothetical scenarios.
In practice, the page load process can be very complex,
since it also relates to browser behavior and parameters,
web objects dependencies, versions of TCP and HTTP
protocols, and network conditions. The key challenge is
to keep the model simple and yet accurate. This requires
us to provide the right level of abstraction in the model
which captures the most fundamental characteristics of
webpages and browsers.

Figure 4 illustrates the overall flow of performance
prediction in WebProphet. We first infer the timing infor-
mation of each object from the packet trace of a page load
in a baseline scenario. Based on the PDG of the page, we
further annotate each object with additional timing infor-
mation related to client delay. We then adjust the object
timing information to reflect the changes from the base-
line scenario to the new one. Finally, we simulate the
page load process with the new object timing informa-
tion to estimate the new PLT. We will explain the first
three steps in §4.1 and leave the details of the last step in
§4.2.

4.1 Acquiring object timing information
Inferring basic object timing information: We infer
web objects and their timing information from the packet
trace of a page load collected on the client side. This
makes our approach easily deployable since it does not
require any instrumentation in browsers or applications.
We identify three types of activities in the trace:

• DNS: the time used for looking up a domain name.
• TCP connection: the time used for establishing a

TCP connection.
• HTTP: the time of loading a web object. As

illustrated in Figure 5, an HTTP activity can be
further decomposed into three parts: (i) Request
transfer time: the time to transfer the first byte to
the last byte of an HTTP request; (ii) Response
time: the time from when the last byte of the
HTTP request is sent out to when the first byte of
the HTTP reply is received. This includes one RTT
plus server delay; (iii) Reply transfer time: the
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time to transfer the first byte to the last byte of an
HTTP reply.

In addition, we infer the RTT for each TCP connec-
tion. The RTT of a TCP connection should be quite
stable since the entire page load process usually lasts
for only a few seconds. We also infer the number of
round-trips involved in transferring an HTTP request or
reply. Such information allows us to predict HTTP trans-
fer times when RTT changes. We will provide the details
of packet trace analysis in §5.3.
Adding client delay information: When the last par-
ent of an object X becomes available, the browser will
not issue a request for X immediately. This is because
the browser needs time to do some additional process-
ing, e.g., parsing HTML page or executing Javascript.
For object X , we use the client delay to denote the time
from when its last parent is available to when the browser
starts to request it. When the browser loads a sophisti-
cated webpage or the client machine is slow, client delay
may have significant impact on PLT. We infer the client
delay of each object by combining basic object timing
information with the PDG of the page. Note that when
the browser starts to request an object, the first activity
can be DNS, TCP connection, or HTTP depending on
the current state and behavior of the browser.

Many browsers limit the maximum number of TCP
connections to a host, e.g., six in IE 8 and Firefox 3. This
can cause the request for an object to wait for available
connections even when it is ready to be sent. Therefore,
the client delay we observe in a trace may be longer than
the actual browser processing time. To overcome this
problem, when collecting the packet trace in a baseline
scenario, we set the TCP connection limit of the browser
to a large number, for instance, 30. This helps to elimi-
nate the effects of connection waiting time. Nonetheless,
we will still predict the PLT in a new scenario under the
default TCP connection limit of the browser (§4.2).
Adjusting object timing information according to
new scenario: So far, we have obtained the object tim-
ing information under the baseline scenario. We need to
adjust the timing information for each object according
to the new scenario. Let serverδ be the server delay dif-
ference between the new and the baseline scenario. We
simply add serverδ to the response time of each object
to reflect the server delay change in the new scenario. We
use similar methods to adjust DNS activity and client de-
lay for each object. RTT change (rttδ) needs some spe-
cial handling. Suppose the HTTP request and response
transfers involve m and n round-trips for object X . We
will add (m + n + 1)× rttδ to the HTTP activity of X
and rttδ to the TCP connection activity if a new TCP
connection is required for loading X . Our assumption
is that the number of round-trips involved in loading an
object is the same in the baseline and new scenarios. Our

results in §7 confirm the validity of this assumption in
PlanetLab experiments. This assumption could be vio-
lated if bandwidth becomes the bottleneck, e.g., in DSL
link. Further research is needed to deal with such scenar-
ios.
Discussion on object & DNS cache: Besides the four
delay factors mentioned above, the PLT of a page in a
new scenario will also be affected by the object and DNS
cache. To handle cached objects and DNS names in a
new scenario, we collect page load traces with the same
set of cached objects and DNS names in a baseline sce-
nario. We will explain how to control object and DNS
cache in §5.1. Suppose Ψ is the PDG of a page when
no object is cached. When an object x is cached, Ψ will
transform into a new PDG Ψ′ where x is removed and
each of its children xc is directly connected with each of
its parents xp. Accordingly, the client delay of (xc, xp)
in Ψ′ will include the cache lookup time of x and the
client delay of (x, xp) and (xc, x) in Ψ. Hence, there is
no need to explicitly consider the timing information of
x in Ψ′.

Our current approach can only predict the PLT under
the same caching state. Given a page with n objects, we
will need to measure 2n baseline scenarios to handle all
the possible caching states. To reduce the measurement
overheads, we could explicitly model the timing infor-
mation of a cached object x in three cases: i) TTL has
not expired: x is directly looked up from cache; ii) TTL
has expired but x has not changed: x is revalidated and
then looked up from cache; iii) TTL has expired and x
has changed: x is revalidated and downloaded from the
server. To predict the PLT under any caching state, we
simply need to extend our model to include the cache
lookup time and the number of round trips involved in
the revalidation of each object. We can use a small con-
stant to represent the former and perform controlled ex-
periments to measure the latter. The details are out of the
scope of this paper.

4.2 Simulating page load process
We now describe our methodology for predicting PLT
based on object timing information. The key challenge
here is object downloads are not independent from each
other. The download of an object may be blocked be-
cause its dependent objects are unavailable or because
there are no TCP connections ready for use. To tackle
these problems, we simulate the page load process by
taking into account the constraints of browser and PDG.
Browser behavior: We studied a few popular browsers
including IE, Firefox and Chrome. They share a few
important features. Presently, they all use HTTP/1.1 ei-
ther with HTTP pipelining disabled by default or without
pipelining support at all. This is because HTTP pipelin-
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Case I II III IV V
First web object of a domain Y Y N N N
Cached DNS name N Y - - -
Available TCP connections - - Y N N
Max # of parallel connections - - - N Y
Involved activities in Figure 6 a b c b d

Table 1: Five possible cases for loading an object.
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Figure 6: Four cases of activities for loading an object.

ing has not been widely supported by proxies and may
have head-of-line blocking with the presence of dynamic
contents [1], e.g., one slow response in the pipeline will
block other subsequent responses. Given the fact, we
do not consider the effect of pipelining in this paper.
More sophisticated techniques might be needed to model
pipelining if it becomes widely-used in the future. With-
out pipelining, HTTP request-reply pairs do not overlap
with each other within the same TCP connection.

In HTTP/1.1, a browser uses persistent TCP connec-
tions which can be reused for multiple HTTP requests
and replies. The browser attempts to keep the number
of parallel connections small. It opens a new connection
only when it needs to send a request but all the existing
connections are occupied by other requests or replies. A
browser is configured with an internal parameter to limit
the maximum number of parallel connections with a par-
ticular host. Note that the limit is applied to a host instead
of to an IP address. If multiple hosts map to the same IP
address, the number of parallel connections with that IP
address can exceed the limit.

Loading an object may trigger multiple activities in-
cluding looking up a DNS name, establishing a new

TCP connection, waiting for an existing TCP connec-
tion, and/or issuing an HTTP request. Table 1 lists the
five possible cases and the conditions of each of these
cases. A “-” in the table means the corresponding con-
dition does not matter. The activities involved in each
case are illustrated in Figure 6. For instance, in Case V,
a browser needs to load an object from a domain with
which it already has TCP connections. Because all the
existing TCP connections are occupied and the number
of parallel connections has reached the maximum limit,
the browser has to wait for the availability of an existing
connection to issue the new HTTP request (Figure 6(d)).

PredictPLT(ObjectTimingInfo, PDG)
Insert root objects into CandidateQ
While (CandidateQ not empty)

1) Get earliest candidate C from CandidateQ
2) Load C according to conditions in Table 1
3) Find new candidates whose parents

are available
4) Adjust timings of new candidates
5) Insert new candidates into CandidateQ

Endwhile

Simulating page load: Given a webpage, Algorithm
PredictPLT takes the timing information of each ob-
ject and the PDG as input and simulates the page load
process. The PLT is estimated as the time when all the
objects are loaded. For each object X , the algorithm
keeps track of four time variables: i) Tp: when X’s last
parent is available; ii) Tr: when the HTTP request for X
is ready to be sent; iii) Tf : when the first byte of the
HTTP request is sent; and iv) Tl: when the last byte
of the HTTP reply is received. Figure 6 illustrates the
position of these time variables in four different scenar-
ios. In addition, the algorithm maintains a priority queue
CandidateQ which contains the objects that can be re-
quested. The objects in CandidateQ are sorted based
on Tr.

5 Implementation

As illustrated in Figure 2, the implementation of
WebProphet comprises three major components. In this
section, we will describe each of them in more detail.
The whole system is implemented with roughly 11,000
lines of code in Python, Perl, Javascript and Bro’s policy
language [18].

5.1 Measurement engine
The measurement engine includes a set of web agents
which are currently deployed at multiple PlanetLab sites.
These web agents allow us to measure the PLT of a web-
page under diverse client, server, and network condi-
tions. A centralized controller is used to maintain the
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continual operation of the agents and perform upgrade
when a new version of agent software becomes available.
The controller can upload script snippets to an agent to
control the interaction between the agent and a webpage.
It also retrieves and stores the packet traces from the
agents logged by tcpdump. The controller is written
in Perl and Python with 1,300 lines of code.

The web agent needs to meet a few requirements.
First, it should be able to interact with a webpage au-
tomatically. As mentioned in §2, WebProphet requires a
potentially large number of page load traces in a baseline
scenario to predict the statistical properties (e.g., median
or 95th-percentile) of the PLT distribution in a new sce-
nario. Second, it should behave like a full-featured web
browser in order to simulate user interaction with sophis-
ticated web 2.0 applications, e.g., Google Maps. This
is especially important for correctly measuring the user-
perceived PLT of these complex applications. Third,
it should provide support for setting object and DNS
cache, which will affect the PLT (§4.1). We need to con-
trol the web agent to cache the same set of objects and
DNS names in the baseline and new scenarios. Fourth,
it should be able to adjust the parallel TCP connection
limit, e.g., to a large number, to eliminate the impact of
connection waiting time (§4.1).

Existing web measurement tools cannot meet our re-
quirements. Simple web clients (e.g., wget, curl, and
lynx) do not execute the Javascripts in the pages. Web
form automation tools [3, 5, 7] and KITE [4] (an auto-
mated web measurement tool developed by Keynote) do
not provide control for object/DNS cache or TCP con-
nection limit. This prompts us to develop our own web
agent, which uses Jssh plug-in to take full control of the
Firefox 3 browser. Through the XPCOM [8] interfaces
of Firefox, we use Javascript to call the internal APIs of
Firefox. These internal APIs supports object and DNS
cache control, TCP connection limit adjustment, and user
input simulation. The user inputs from mouse and key-
board can be simulated as DOM [6] events.

We developed a set of script snippets to automate the
interactions with multiple complex web services, such
as Google/Yahoo Search, Google/Yahoo Maps, Gmail,
Hotmail, Flickr, etc. The script snippet for each web ser-
vice comprises only about 10 to 150 lines of code, de-
pending on the complexity of the service. We believe it
is quite easy to create new script snippets for other ser-
vices too. The web agent, excluding the service-specific
script snippets, is implemented in Javascript and Python
with 1,100 lines of code. The whole automation part of
the web agent has no measurable effects on PLT since it
incurs very little overhead.

5.2 Dependency extractor
To extract the PDG of a web page, we setup a web agent
to go through a web proxy running on the same host.
The web proxy is modified from a simple proxy writ-
ten in Python. We extended the proxy with the support
of delaying the download of any specified object, which
is required for discovering the descendants of the object
(§3.2). We also added the functionality of controlling the
download speed of a stream object, which is required for
discovering stream parent and dependency offset (§3.2).

Given a webpage, we first obtain the list of its embed-
ded objects by loading it once. The proxy will cache all
the objects observed in the first round for future use. This
reduces the measurement overhead imposed on the origin
servers. We then subsequently control the download of
one object during each page reload and record the timing
information of object download. Finally, we extract the
PDG according to the procedure described in §3.2. The
dependency extractor and web proxy include 2,800 lines
of code in Python.

5.3 Performance predictor
The performance predictor comprises a trace analyzer
and a page simulator. The trace analyzer extracts ba-
sic object timing information (described in §4.1) from
packet traces in pcap format. It leverages Bro [18], a
network intrusion detection system, to parse DNS, TCP,
and HTTP protocol information. We write programs us-
ing Bro’s policy language to recover timing information,
e.g., DNS lookup time, TCP handshake time, and HTTP
transfer and response times.

We estimate the RTT of a TCP connection using the
time between the SYN and SYN/ACK packets. This is
because many web services have relatively short TCP
connections (e.g., a few seconds) and the RTT is usually
quite stable in such time scale. We could use other exist-
ing techniques [12, 24] to estimate RTT for web services
that involve long TCP connections. We infer the num-
ber of round trips involved in an HTTP transfer based
on the TCP self-clocking behavior [24] — the packets
in the same TCP send window are very close to each
other while the packets in two adjacent send windows
are at least one RTT apart. We compute the server delay
by subtracting one RTT from the time interval between
two adjacent send windows. Using this method, we find
Google and Yahoo Search process user query in a stream-
lined fashion. The server will return partial results to
users while additional results are being generated. This
causes some extra delay to the reply packets in multiple
different round trips. Our method can handle such cases
well, leading to high prediction accuracy reported in §7.

The page simulator combines the basic object timing
information and the PDG to infer the client delay of each
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object. It then adjusts the timing of each object accord-
ing to the specifications in the new scenario. Finally, it
simulates the page load process (§4.2) and outputs the
predicted PLT. The trace analyzer and page simulator in-
clude 6,200 lines of code written in Python and Bro’s
policy language.

6 Results of Dependency Extraction
We now characterize and validate the PDGs of
Google/Yahoo Search and Maps extracted by
WebProphet. Google/Yahoo Search are two of the
most popular web services and their PDGs are relatively
easy to validate. In contrast, the PDGs of Google/Yahoo
Maps are much more complex. In fact, Yahoo Maps has
the most complicated PDG in terms of the number of
objects and dependencies among all the web services
we studied (including Amazon.com, Flickr, and Google
Docs).

In this paper, we only present the results on the cases
where there is no cached object. This is common for ac-
cessing webpages in which most contents are dynamic.
For instance, Yahoo performance team found 40 to 60%
of Yahoo users have an empty cache when visiting Ya-
hoo [22]. Our approach also works when some objects
are cached and we omit those results here due to lack of
space.

Figure 7: The PDG of Google Search.
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J a v a s c r i p t

Figure 8: The PDG of Yahoo Search.

Google/Yahoo Search PDG: Figure 8 illustrates the in-
ferred PDGs of Google/Yahoo Search for the search key-
word “mapouka”. The Google Search page has one

#H T M L =1

#J S =1 #H T M L =1, #J S =
1, #I M G =17

#J S =1#J S =1, #I M G =2 8#J S =1 #J S =3
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Figure 9: The simplified PDG of Google Maps.

HTML and several images while the Yahoo Search page
has one HTML, one CSS, and a few Javascripts and im-
ages. The Google Search page is simpler than that of
Yahoo. The former has not only a fewer number but
also fewer levels of dependencies. This could be one
of the factors that cause the PLT of Google Search to
be smaller (§7). The PDGs for different keywords have
similar structure. Some keywords may lead to an extra
Javascript object or a different number of images in the
PDG of Google Search. Because the Search pages are
not very complicated, we are able to verify that the PDGs
produced by WebProphet are the same as those extracted
through manual code analysis.
Google/Yahoo Maps PDG: We study the PDG of the
driving direction pages of Google/Yahoo Maps. We use a
pair of addresses of the Whole Foods stores in Arkansas,
USA. The full PDGs of Google/Yahoo Maps are too
complex to read, e.g., Yahoo Maps has a total number of
110 objects and 172 dependencies. Instead of showing
the full PDGs, we simplify them by merging the objects
that share the same sets of parents and children into a
single node. The two simplified PDGs are shown in Fig-
ure 9 and 10. Each node carries a label which describes
the number of objects of certain type. For instance, la-
bel “#HTML=1,#JS=1,#IMG=17” means this node cor-
responds to 1 HTML, 1 Javascript, and 17 image objects
in the full PDG.

Apparently, the PDGs of Maps are significantly more
sophisticated than those of Search. They include more
Javascripts for user interactions and more images for map
tiles. The PDG of Yahoo Maps is even more complex
than that of Google Maps, as the former comprises a
larger number and more levels of dependencies. The
PDGs for different address inputs are quite similar. The
main differences are in the map tile images.

The Javascripts of Google/Yahoo Maps are not only
large (536KB and 670KB respectively) but also obfus-
cated. It is difficult for us to validate the extracted PDGs
via manual code analysis. Instead, we verify their cor-
rectness in an indirect manner. First, we use our de-
pendency extractor to obtain the “approximate” PDGs of
Google/Yahoo Maps. Then we construct our own web-

10



#H T M L =1

#C S S =2

#J S =1

#J S =1

#J S =1

#J S =1

#I M G =1

#I M G =2 #I M G =2

#J S =5, #I M G =3 #J S =1 #J S =1

#I M G =1 #I M G =4 #J S =1 #J S =1 #J S =1 #H T M L =2, #I M G =6 5

#I M G =1 #I M G =10 #H T M L =1 #I M G =1

#I M G =1

Figure 10: The simplified PDG of Yahoo Maps.

pages which exactly match the “approximate” PDGs in
the number of objects, the types of objects, and the de-
pendencies between objects. After that, we attempt to
infer the PDGs of the constructed pages as if we know
nothing about the “approximate” PDGs. We find the
inferred PDGs exactly match the “approximate” PDGs.
Although this does not prove that we have extracted
the real PDGs of Google/Yahoo Maps, it at least sug-
gests that we can correctly handle webpages as com-
plex as Google/Yahoo Maps. Moreover, in §7, we will
show that WebProphet can accurately predict the PLT of
Google/Yahoo Maps under various hypothetical scenar-
ios using the “approximate” PDGs.

7 Prediction Accuracy

In this section, we evaluate the PLT prediction accuracy
of WebProphet for Google/Yahoo Search and Maps. We
first conduct controlled experiments by manipulating the
DNS delay, RTT, and server delay for all the objects or
a subset of the objects in a webpage. We then conduct
real-world experiments in which every delay factor of
every object changes simultaneously. We find that ignor-
ing object dependencies may lead to significant errors in
the PLT prediction for complex webpages. Finally, we
show that identifying stream parent and dependency off-
set is particularly important for accurate PLT prediction
for simple webpages.

Suppose tb and tn are the PLT in the baseline and new
scenarios and tp is the PLT predicted by WebProphet.
We could have used errr =

abs(tp−tn)
tn

, the relative er-
ror between tp and tn, to evaluate the prediction accu-
racy. However, we find errr may not be the right metric
because it tends to be small when abs(tb − tn) << tn.
Therefore, we choose errc = abs(1−

tp−tb

tn−tb
) as our eval-

uation metric. It represents the relative error of predicted
PLT change compared to the actual PLT change between

the baseline and new scenarios. For instance, suppose
tb = 5, tn = 4, and tp = 4.2 seconds. The prediction
error will be 5% measured in errr vs. 20% measured in
errc. As mentioned in §2, the PLT of a webpage may
not be a constant under a given scenario. In this paper,
we focus on err50

c and err95
c which are computed based

on the median and 95th-percentile in the baseline, new,
and predicted PLT distributions. These two metrics help
to quantify whether WebProphet can make accurate pre-
diction both for the normal case and for the extreme case.

In the following experiments, we consider the scenar-
ios where a web service provider is interested in predict-
ing the PLT reductions as a result of certain optimiza-
tions to the service. To evaluate the prediction accuracy
in each of the experiments, we collect two set of page
load traces in the baseline scenario. The first set, col-
lected with normal TCP connection limit, is for produc-
ing the baseline PLT distribution. The second set, col-
lected with a large TCP connection limit, is for infer-
ring the object timing information in the baseline sce-
nario (§4.1). Thereafter, this object timing information
is used to generate the predicted PLT distribution in the
new scenario. We also collect one set of traces in the new
scenario, from which we can extract the actual new PLT
distribution for validation purpose. Each of the three sets
contains 500 page load traces, which provides enough
samples for computing err95

c and err50
c . We only present

the results based on one random keyword for the Search
services and one random pair of addresses for the Maps
services. The results of using other keywords or pairs of
addresses are similar.

Before presenting the results, we discuss two problems
that may cause the predicted PLT to deviate from the ac-
tual PLT. First, there could be slight differences between
the times when the three set of traces are collected. These
time differences may lead to differences in the client,
server, and network conditions under which the traces
are collected. The resulting “prediction error” is actu-
ally due to the limitations of our validation methodology
rather than due to the limitations of our approach. Sec-
ond, as mentioned in §2, we currently do not explicitly
consider packet loss in our model. Any loss behavior
differences between the baseline and new scenarios may
also lead to prediction error. As shown in the following
results, WebProphet can attain high prediction accuracy
in spite of these two problems.

7.1 Controlled experiments
In the controlled experiments, we evaluate the accuracy
of our performance prediction under various RTTs, DNS
lookup times, and server response times. Figure 11 de-
picts the setup of our experiments located at Northwest-
ern University. We run a web agent to collect the packet
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Figure 12: The prediction errors under different injected delays of RTT, DNS lookup time, and server response time.

Figure 11: Setup of controlled experiments.

traces of page loads. The controlled gateway is used to
inject extra delays during page loads. The normal gate-
way does not manipulate any traffic. We configure the
routing table on the web agent to forward the traffic to
the controlled gateway or to the normal gateway to cre-
ate the baseline and new scenarios respectively. Since
we currently do not have a precise way to inject client
delays, we simply keep the web agent lightly-loaded all
the time. This ensures client delays are roughly the same
in all the controlled experiments. In the next section, we
will show that WebProphet can achieve high prediction
accuracy even when client delays change.

We use netem to inject extra RTT and DNS lookup
times on the controlled gateway. netem is a network
emulator in Linux which can add queuing delay to each
traversing packet. To inflate RTT, we simply forward
web traffic to the controlled gateway while forwarding
the DNS traffic to the normal gateway. We may in-
flate DNS lookup time in a similar way. Unfortunately,
netem cannot be used to inject extra server response
time because it can only add queuing delay to every
packet. Instead, we develop our own tool based on
libpcap and libdnet to inflate server response time.
Our tool can identify and delay the packets that corre-
spond to the HTTP requests from the agent to the web
server for certain amount of time. In effect, this extra
delay will be considered as part of the server response
time (§4.1). Note that this may trigger TCP timeout on

Service t
50

b t
50

n t
50

p err
50

c err
95

c Indep err
50

c

Gsearch 0.74 0.21 0.23 3.8% 15.9% 1.2%
Ysearch 1.04 0.26 0.24 3.2% 2.2% 13.0%
Gmap 4.10 2.12 2.01 5.5% 11.0% 49.7%
Ymap 6.19 3.99 4.03 1.7% 1.2% 85.5%

Table 2: Changing RTT and DNS lookup time together.

the web agent. Our tool will intercept and drop all the
related retransmitted packets.
Manipulating one delay factor at a time: In the first
group of experiments, we evaluate the prediction accu-
racy when we change one delay factor for all the objects
across a certain range. We inject five different delay val-
ues (100, 150, 200, 250, and 300 ms) to create the base-
line scenarios. These values reflect the real delay differ-
ences observed from different PlanetLab sites (e.g., those
in Asia vs. those in the US) to our server at Northwestern
University. We use the scenario without any injected de-
lay as the new scenario that we aim to predict. Figure 12
(a)-(c) illustrate the err50

c for the four web services as we
change RTT, DNS delay, and server delay. Among the to-
tal of 60 experiments, 50% of them have err50

c ≤ 6.1%,
90% err50

c ≤ 16.2%. The maximum err50
c is 21.7%.

Manipulating RTT and DNS delay together: Next, we
evaluate the accuracy of performance prediction when
multiple delay factors change simultaneously. We in-
flate both RTT and DNS delay by 100 ms for all the
objects to create the baseline scenario. We still use the
scenario without injected delay as the new scenario. Ta-
ble 2 shows the prediction error for the four applications.
t50b , t50n and t50p are the median PLT of the baseline, new,
and predicted scenarios. WebProphet can accurately pre-
dict not only the median PLT but also the 95th-percentile
PLT. The maximum err50

c and err95
c are only 5.5% and

15.9% respectively.
Manipulating only a subset of objects: So far, we have
changed the delay factors for all the objects simultane-
ously. In fact, WebProphet can make accurate predic-
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DC err
50

c err
95

c

Akamai 16.0% 11.8%
Y DC1 6.5% 9.7%
Y DC2 14.8% 6.0%

Table 3: Inflating the RTT to different DCs.

tion when we change the delay factors for any subset of
objects. When visiting Yahoo Maps from Northwestern
University, the web agent will download objects from
Akamai CDN and two Yahoo data centers (Y DC1 and
Y DC2). In the following experiments, we create three
baseline scenarios by injecting 100 ms extra RTT to the
objects from Akamai CDN, Y DC1, or Y DC2 respec-
tively. We still use the scenario without injected delay
as the new scenario. Our setup is to simulate the case in
which the owners of Yahoo Maps want to predict the new
PLT if they could reduce the RTT from users to one of
their DCs or Akamai CDN. The results in Table 3 show
that the prediction errors are reasonably small in all the
three experiments.

7.2 Real-world experiments
In the controlled experiments, we changed the delay fac-
tors by the same amount for a set of objects. In this sec-
tion, we conduct experiments on PlanetLab to demon-
strate the effectiveness of WebProphet even when each
delay factor of each object changes by a different amount
simultaneously. The PlanetLab nodes in the US normally
experience smaller PLT when accessing Google/Yahoo
Search and Maps than those in Asia and Europe. For
each of the four web services, we pick one international
node as the baseline scenario. We use a node at North-
western University as the new scenario. This is to sim-
ulate the case where the service owners want to predict
the new PLT if they could optimize their services for in-
ternational users in certain way. To predict the new PLT,
we replace the timing information of each object in the
baseline scenario with the timing information of the same
object in the new scenario and then run the page load
simulation.

Table 4 shows the locations of the baseline scenario
and the prediction errors. Both err50

c and err95
c are

within 10.7% for all the four services. We find the pre-
diction errors in the PlanetLab experiments are gener-
ally smaller than those in the controlled experiments.
Since we directly use the object timing information in the
new scenario for PLT prediction in the PlanetLab exper-
iments, the prediction results are no longer affected by
the trace collection time differences between the baseline
and new scenarios. This suggests our model does capture
sufficient level of detail for accurate PLT prediction.

Service Baseline New err
50

c err
95

c No-stream err
50

c

Gsearch Singapore US 2.0% 10.7% 21.2%
Ysearch Japan US 6.1% 0.3% 258.7%
Gmap Sweden US 1.2% 1.8% 1.2%
Ymap Poland US 0.7% 1.3% 0.1%

Table 4: The results in the real-world experiments.

7.3 Importance of modeling object depen-
dencies

One alternate approach for performance prediction is to
measure the PLT under a range of values for each de-
lay factor of each object and then make predictions by
extrapolating from these measured PLTs through some
form of regression. This may not be feasible for com-
plex webpages with many embedded objects. For in-
stance, even if we measure the PLT only under two differ-
ent values for each delay factor of each object in Yahoo
Maps, we will end up measuring the PLT in 2440 scenar-
ios, when considering all the possible combinations of
four factors each for 110 objects. Without detailed do-
main knowledge, it is difficult to decide how many dis-
tinct scenarios indeed need to be measured for accurate
prediction.

One way to reduce the number of measured scenar-
ios required for prediction is by assuming independence
among every delay factor of every object. Let xi (i =
1...n) be the delay factors of all the objects that impact
the PLT of a webpage. Under this assumption:

f(dx1, dx2, ..., dxn) =
n∑

1

fi(dxi)

Here, dxi denotes the change of delay factor xi. fi(dxi)
is a function that describes the PLT change when only xi

changes. f(dx1, dx2, ..., dxn) is a function that describes
the PLT change when all the xi’s change simultaneously.
In essence, this equation says the PLT change caused by
each xi is independent from the PLT changes caused by
other delay factors. If this assumption holds, the number
of measured scenarios required for prediction will be-
come linear to the number of delay factors, significantly
reducing the measurement overheads. Recently, Chen et
al. developed a latency prediction tool based on similar
assumption [10].

In the following, we study to what extent such inde-
pendence assumption affects the prediction accuracy. We
use the same baseline scenario as that of Table 2 in §7.1,
in which both RTT and DNS delay are inflated by 100
ms for all the objects. We still use the scenario without
injected delay as the new scenario. For each web ser-
vice, we divide the objects in the page into three groups
(G1, G2, and G3) and subsequently measure the PLT
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change δi when we only change the delay factors for one
group Gi at a time. We then predict the PLT change be-
tween the baseline and new scenarios by taking the sum
of δi’s. As shown in column “Indep err50

c ” of Table 2,
the prediction errors are significantly higher than those
of WebProphet for Google/Yahoo Maps. In particular
for Yahoo Maps, err50

c is as high as 85.5%. The pre-
diction errors are smaller for Google Search because its
webpage has very simple dependencies. Since each δi

is directly measured instead of being predicted by any
model, the prediction error should be close to zero when
the delay factors are indeed independent. The results of
the experiment highlight the importance of capturing ob-
ject dependencies for accurate PLT prediction.

7.4 Importance of identifying stream par-
ent

One of the key steps in our PDG extraction is to iden-
tify stream parents and dependency offsets (§3.2). We
now evaluate the importance of identifying stream par-
ents in prediction accuracy. We use the same baseline
and new scenarios as those in the PlanetLab experiments
in §7.2. The only difference is that we ignore all the de-
pendencies on stream parents in the PDGs when we make
predictions. As shown in column “No-Stream err50

c ”
in Table 4, the prediction errors without stream parents
are much higher than those with stream parents for the
Search services. Nonetheless, the prediction errors are
roughly the same for the Maps services. This is because
the HTML objects account for a significant portion of the
Search pages. In contrast, most of the objects in the Maps
pages are non-stream ones, e.g., Javascripts and images.

8 Usage Scenarios
As illustrated in the previous sections, the PLT of a com-
plex webpage may depend on the delay factors of many
objects. The owner of the page often faces the challenge
of finding a cost-effective way to improve service per-
formance from a huge number of possible optimization
strategies. Since WebProphet can make fast and accurate
prediction under the changes of any delay factor and/or
object, it provides the service owner an easy way to nar-
row down the strategies that could bring the most benefit.

Because Yahoo Maps has the most complex webpage
and the largest median PLT (measured from Northwest-
ern University) among all the four services, we use it as
an example to demonstrate the power of WebProphet.
Though we cannot directly validate the effect of these
changes, the experiments described in §7 provide a ba-
sis for trust in the predictions. Suppose the owners of
Yahoo Maps are considering three methods to optimize
the median PLT: i) OPTrtt: reducing the RTT of certain

static objects by moving them from Yahoo data centers to
the Akamai CDN; ii) OPTserver : reducing the server re-
sponse time by half for certain dynamic objects; and iii)
OPTclient: reducing the client execution time by half
for certain objects. Since the Yahoo Maps page contains
about 110 objects including roughly 74 static objects and
36 dynamic ones, it could be too costly to optimize for
all of them. Hence, we seek to identify a small set of
candidate objects whose optimization would lead to sig-
nificant PLT reduction.

In this paper, we use a simple greedy-based algorithm
to search for those candidate objects. In the future, we
could also leverage other more sophisticated search al-
gorithms (such as simulated annealing) to obtain better
results. Our search algorithm considers one of the opti-
mization methods (OPTrtt, OPTserver , or OPTclient)
at a time. It starts with a list of all the objects and
the original object timing information extracted from the
page load trace that corresponds to the median of the
baseline PLT distribution. At each step, it greedily picks
the candidate object whose optimization will lead to the
largest PLT reduction among all the remaining objects.
It then removes the new candidate object from the list
and updates its timing information according to the opti-
mization method. This process terminates when the PLT
reduction resulting from the optimization of a new can-
didate object becomes negligibly small.

After evaluating 2,176 hypothetical scenarios, we
identify 5 candidate objects for OPTserver and OPTrtt

respectively. We also identify 14 candidate objects for
OPTclient. The predicted PLT reductions by applying
OPTrtt, OPTclient, and OPTserver are 14.8%, 26.6%,
and 1.6% respectively. Apparently, OPTserver does not
seem to be promising, since it can only reduce PLT
slightly. The PLT can be further reduced by 40.1% by
combining OPTrtt and OPTclient together. Therefore,
by simply optimizing the client execution time of 14 ob-
jects and moving 5 static objects to Akamai CDN, we
predict that the median PLT of Yahoo Maps can be cut
from 3.99 to 2.39 seconds.

9 Systems Evaluation

We now evaluate the systems overhead of dependency
extraction and performance prediction. The dependency
extraction process includes two steps: 1) subsequently
control the download of each object during a page load;
and 2) extract the PDG from the recorded timing infor-
mation of object download (§3.2). Step 2 is relatively
simple. The running time is dominated by step 1 because
we need to reload a page many times and artificially de-
lay the download of one object during each page load.
Given a page with n objects and m stream objects, we
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need to reload the page n times to discover all the de-
scendants and at most m × n times to discover all the
stream parents and dependency offsets (§3.2). All the
webpages we have studied so far have only a few stream
(HTML) objects. Thus, the running time is roughly lin-
ear to the total number of objects in the page. Even for
Yahoo Maps which has the most complex PDG, the run-
ning time is only two hours. Note that since each con-
trolled page load is independent, we can easily run de-
pendency extraction on multiple machines in parallel to
speed up the process.

To predict the PLT of a page, we first need to parse
page load traces to extract object timing information and
then to simulate page load process under new scenarios
(§4). We evaluate the performance predictor on a com-
modity server with two 2.5 GHz Xeon processors and 16
GB memory running Linux 2.6.18. We use Yahoo Maps
as an example because its page incurs the largest pre-
diction time among the four services. The trace parsing
time depends on the size of the traces. For Yahoo Maps,
it takes 317 seconds to parse 500 page load traces of one
scenario with a total size of 455 MB. The page load sim-
ulation time depends on the complexity of the PDG. For
Yahoo Maps, it takes about 9 ms to run one page load
simulation under our current implementation in Python.
This translates to a total of 20 seconds simulation time to
evaluate all of the 2,176 hypothetical scenarios in §8. We
could further optimize the running time by rewriting the
simulation code in C/C++.

10 Related Work
There is a large body of prior work on web performance
measurement and modeling. For instance, Smith et al.
leveraged TCP/IP headers in packet traces to character-
ize the nature of web traffic and the structure of web-
pages [21]. Nahum et al. built an emulator to study the
impact of network delay and packet loss on web server
performance [17]. Olshefski et al. developed techniques
for inferring client response time from server-side logs.
These works either treat a webpage as a single object or
treat each web object independently while ignoring the
dependencies between different objects.

Web performance measurement tools, such as Firebug
and IBM Page Detailer [2], can provide detailed object
timing information of a page load. Nonetheless, they can
neither extract object dependencies nor perform PLT pre-
dictions.

CPRT [19] used client-side Javascript code to mea-
sure user-perceived response times. AjaxScope [15] pro-
vided more detailed Javascript code instrumentations to
debug client-side errors. Due to the limited informa-
tion exposed by the browser and OS to the Javascript
layer, these approaches cannot reason about the impact

of network-layer conditions, such as DNS delay or RTT,
on web service performance.

Several existing systems, e.g., Orion [11], eX-
pose [13], NetMedic [14], and Sherlock [9], employed
various techniques to automatically infer causalities be-
tween hosts, processes, and network flows. They lever-
aged these causalities to diagnose performance problems
in network applications. In contrast, WebProphet fo-
cuses on extracting dependencies between web objects
and predicting the performance of web applications.

Wischik used a manually constructed dependency
graph of Gmail to study the effects of TCP parameter
settings on web performance [25]. In this paper, we for-
mally define the object dependencies of a webpage in-
cluding ancestors, stream and non-stream parents, and
dependency offsets. We further develop an automated
system to extract the PDG of a webpage.

11 Conclusion
We built WebProphet, a system that automates perfor-
mance prediction for web services. The key idea of
WebProphet is the use of PDG to encapsulate web ob-
ject dependencies for accurate and scalable predictions.
WebProphet leverages a novel technique based on tim-
ing perturbation to extract object dependencies of com-
plex webpages. It implements a simple and yet effec-
tive model to simulate the page load process of a web
browser, which enables accurate PLT prediction under
changes to any web objects. It can also predict the statis-
tical properties of a PLT distribution under a hypothetical
scenario. Applying WebProphet to the Search and Maps
services of Google and Yahoo, we successfully extract
their PDGs and keep the PLT prediction error rates un-
der 16% in most cases. Our results show WebProphet
provides a solid foundation for web service providers to
quickly find cost-effective optimization strategies for real
applications.
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