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Abstract

AJAX-based web applications are enabling the next gen-
eration of rich, client-side web applications, but today’s
web application developers do not have the end-to-end
visibility required to effectively build and maintain a re-
liable system. We argue that a new capability of the
web application environment—the ability for a system
to automatically create and serve different versions of an
application to each user—can be exploited for adaptive,
cross-user monitoring of the behavior of web applica-
tions on end-user desktops. In this paper, we propose
a live monitoring framework for building a new class of
development and maintenance techniques that use a con-
tinuous loop of automatic, adaptive application rewrit-
ing, observation and analysis. We outline two such adap-
tive techniques for localizing data corruption bugs and
automatically placing function result caching. The live
monitoring framework requires only minor changes to
web application servers, no changes to application code
and no modifications to existing browsers.

1 Introduction

Over the last several years, AJAX (Asynchronous Java-
Script and XML) programming techniques have enabled
a new generation of popular web-based applications,
marking a paradigm shift in web service development
and provisioning [11]. Unlike traditional web services,
these new web applications combine the data preserva-
tion and integrity, storage capacity and computational
power of data center(s) with a rich client-side experi-
ence, implemented as a JavaScript program shipped on-
demand to users’ web browsers!. This combination pro-
vides a compelling way to build new applications while
moving the burden of managing an application’s relia-

'We make a distinction between a web service and a web applica-
tion. The former includes only server-side components, while the latter
also includes a significant client-side JavaScript component

bility from end-users to the application’s own developers
and operators.

Unfortunately, today’s web application developers and
operators do not have the end-to-end visibility they need
to effectively build and maintain a dependable system.
Unlike traditional web services, running exclusively in
controlled, server-side environments, a web application
depends on many components outside the developer’s
control, including the client-side JavaScript engine and
libraries and the third-party back-end web services used
by mash-up applications—web applications that com-
bine functionality from multiple back-end web services.
Of course, web application developers must also contend
with the traditional bugs that occur when writing any
large, complex piece of software, including logic errors,
memory leaks and performance problems. When the in-
evitable problem does occur, the web application devel-
oper’s lack of visibility into the heterogeneous client en-
vironments and the dynamic behavior of third-party ser-
vices can make reproducing and debugging the problem
practically impossible.

To address these challenges, we propose a live mon-
itoring framework that exploits a new capability of the
web application environment, instant redeployability:
Each time any client runs a web application, the devel-
opers and operators of the application can automatically
provide the client a new, different version of the applica-
tion. Our live monitoring framework (1) exploits this ca-
pability to enable dynamic and adaptive instrumentation
strategies; and (2) integrates the resultant on-line obser-
vations of an application’s end-to-end behavior into the
development and operations process.

Live monitoring enables a new class of techniques that
use a continuous loop of automatic application rewriting,
observation and analysis to improve the development and
maintenance of web applications. Policy-based, auto-
matic rewriting of application code provides the neces-
sary visibility into end-to-end application behavior, and
collecting observations on-line from live end-user desk-



Op Performance (ms)
IE 7 | Firefox 1.5
Array.join 35 120
+ 5100 120

Table 1: The performance of two simple methods for
concatenating 10k strings varies across browsers.

tops provides visibility into the real problems affect-
ing clients. Distributing and sampling instrumentation
across the many users of a web application provides a
low-overhead instrumentation platform. Finally, using
already-collected information to adapt instrumentation
on-line enables efficient drill-down with specialized di-
agnosis techniques as problems occur.

2 Reliable Web Applications

The web application environment presents many of the
same development and operations challenges that con-
front any cross-platform, distributed system. In this envi-
ronment, however, there are also opportunities for a new
approach to addressing these challenges.

Challenges

The root challenge to building and maintaining a reli-
able client-side web application is a lack of visibility
into the end-to-end behavior of the program, brought
about by the fact that execution of the web application
is now split across multiple environments, including un-
controlled client-side and third-party environments and
exacerbated by their heterogeneity and dynamics.
Non-standard Execution Environments: While the
core JavaScript language is standardized as ECMA-
Script [7], most pieces of a JavaScript environment are
not. The result is that applications have to frequently
work-around subtle and not-so-subtle cross-browser in-
compatibilities. As a clear example, sending an XML-
RPC request requires calling an ActiveX object in IE6,
but a native JavaScript object in Firefox. More subtle
are issues such as event propagation: e.g., given multi-
ple registered event handlers for a mouse click, in what
order are they called? Moreover, even the standardized
pieces of JavaScript can have implementation differences
that cause serious performance problems (see Table 1 for
examples of performance variance across browsers.)
Third-Party Dependencies: All web applications have
dependencies on the reliability of back-end web services.
While these back-end services strive to maintain high-
availability, they can and do fail. Moreover, even regu-
lar updates, such as bug fixes and feature enhancements

App | IS (bytes) [ IS (LOC) |
Live Maps IMB 54K
Google Maps 200KB 20K
HousingMaps 213KB 19K
Amazon Book Reader 390KB 16K
CNN.com 137KB 5K

Table 2: Numbers on the amount of client-side code in a
few major web applications, measured in bytes and lines
of code (LOC)

can break dependent applications. Anecdotally, such
breaking upgrades do occur: Live.com updated their beta
gadget API, breaking dependent developers code [13];
and, more recently, the popular social bookmark website,
del.icio.us, moved the URLs pointing to some of their
public data streams, breaking dependent applications [3].
Software Complexity: Of course, JavaScript also suf-
fers from the traditional challenges of writing any non-
trivial program?. While JavaScript programs were once
only simple scripts containing a few lines of code, they
have grown dramatically to the point where the client-
side code of cutting-edge web applications easily exceed
10k lines, as shown in Table 2. The result is that web
applications suffer from the same kinds of bugs as tra-
ditional programs, including memory leaks, logic bugs,
race conditions, and performance problems.

The difficulties caused by heterogeneous execution en-
vironments and dynamic third-party behavior, as well as
the challenge of writing correct software can certainly be
improved through more complete standardization, better
web service management and careful software engineer-
ing. But, we would argue that, at a minimum, software
bugs and human error will continue to give all of these
challenges a long life frustrating web application devel-
opers.

Opportunities

While the above challenges are faced by most any cross-
platform distributed systems, two technical features of
web applications provide an opportunity for building
new kinds of tools to deal with these problems:

Instant Deployability: Web applications are deployed
and updated by modifying the code stored on a central
web server. Modulo caching policies, clients download
a fresh copy of the application each time they run it, en-
abling instant deployability of updates. We take advan-

2Coding in JavaScript today is also made more difficult by a lack
of compile-time errors and warnings, static type checking, and private
scoping. We do not consider these problems fundamental, however, as
current and upcoming tools, such as Google’s WebToolkit are remedy-
ing these issues [8].



tage of this capability to serve different versions of a web
application (e.g., with varying instrumentation) over time
and across users.

Dynamic extensions: During their execution,
JavaScript-based web applications can dynamically
load and run new scripts, allowing late-binding of
functionality based on current requirements. We use this
to download specialized fault diagnosis routines when a
web application encounters a problem.

3 Live Monitoring

The goal of live monitoring techniques is to improve de-
veloper and operator visibility into the end-to-end behav-
ior of web applications by enabling automatic, adaptive
analysis of application behavior on real end-user desk-
tops. At the core of a live monitoring technique is a sim-
ple process:

1. Use automatic program rewriting together with in-
stant redeployability to serve differently instru-
mented versions of applications over time and
across users.

2. Continually gather observations of the on-line, end-
to-end behavior of applications running under real
workload on many end-user’s desktops.

3. As observations of application behavior are gath-
ered and analyzed, use the results to guide the adap-
tation of the dynamic instrumentation policy.

4. In special cases, use the client’s ability to dynam-
ically load scripts to enable just-in-time fault diag-
nosis handlers, tailored based on previously gleaned
information about the specific encountered symp-
toms.

Our framework for live monitoring, shown in Figure 1,
divides this process across several key components. The
Transformer is responsible for rewriting the JavaScript
application as it is sent from the web application’s servers
to the end-user’s desktop. The transformer contains both
generic code, such as the JavaScript and HTML parsers
reusable across many live monitoring techniques, and
technique-specific rewriting rules. These rules are ex-
pressed in two steps: the first step searches for target
code-points matching some rule-specific filter, such as
“all function call expressions” or “all variable declara-
tions”; and the second step applies an arbitrary transfor-
mation on a target code-point by modifying the abstract
syntax tree of the JavaScript program. Each rewriting
rule exposes a set of discrete knobs for controlling the
rewriting of target code points. For example, a rule that
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Figure 1: Live Monitoring Framework.

adds performance profiling to function calls might ex-
pose an on/off knob for each function that could be pro-
filed.

The Controller component is responsible for the core
of the technique-specific adaptation algorithm, analyzing
the collected observations of application behavior and
using the results of the analysis to modify the knobs ex-
posed by the rewriting rules in the Transformer. The Log
Collector is a simple component, responsible for gather-
ing observations returned by rewritten programs; and the
Dynamic Extension Generator creates special-purpose
fault diagnosis handlers, based on the application’s re-
quest and configuration input from the Controller.

While some parts of this process are generic and
reusable across techniques, the rest—what we call a live
monitoring policy—is specific to each live monitoring
technique. This policy includes the rewriting rules in the
Transformer, the analysis policy in the Controller respon-
sible for analyzing logs and modifying the knobs of the
rewriting rules, and the dynamic extension generator.

4 Live Monitoring Policies

When developing a new policy to address a debugging or
maintenance challenge, we consider several questions:

What are the appropriate rewriting rules? The first
consideration when building a monitoring policy is what
observations of application behavior need to be captured,
and how a program can be modified to efficiently capture
it. In particular, we ask what instrumentation is statically



written into the code, and what functionality will be dy-
namically determined and downloaded as needed from
the Dynamic Extension Generator.

How does the rewriting adapt over time? A second
consideration is which code points in a program should
initially be rewritten, and how this choice changes over
time as we gather more observations of behavior. The
policy should also consider whether a multi-stage ap-
proach is appropriate, where completely different rewrit-
ing rules are applied to gather different kinds of informa-
tion over time.

How does the policy spread instrumentation across
users? A third axis of consideration is how a policy
can distribute instrumentation across many users (e.g.,
via sampling) and re-aggregate that information to rea-
son about the program’s overall behavior.

How do the developers and operators interact and use
live monitoring policies? The final question when de-
signing a policy is how people will use it. Some policies
may be completely automated and continuously running,
whereas other live monitoring policies may only run oc-
casionally and on the explicit request of a developer. In
particular, if the policy’s application rewriting might af-
fect the semantics of the program then human interaction
is likely necessary.

We have built a prototype of our live monitoring
framework, implemented several policies for debugging
errors, drilling-down into performance problems, and an-
alyzing runtime behavior to detect potentially correct
cache optimizations and are exploring answers to these
questions. The rest of this section describes two policies
that use different styles of adaptation to address different
problems. In the first example, a single rewriting rule is
applied to different points in the code as we drill-down
into data structure corruptions. The second example uses
different rewriting rules over time, and decides where to
place each rewriting rule based on observations gathered
from previous application runs.

Locating Data Structure Corruption Bugs

While it can be very difficult to reproduce the steps to
triggering bugs in a controlled, development environ-
ment, real users will run into the same problems again
and again in a real, deployed application. We would like
to capture the relevant error information and debug prob-
lems in real conditions, but adding all the necessary de-
bugging infrastructure to the entire program can have too
high an overhead. The solution is to adaptively enable
the debugging infrastructure only when and where in the
code it is needed.

Corruption of in-memory data structures is a clear sign
of a bug in an application, and can easily lead to seri-
ous problems in the application’s behavior. A straight-

forward method for detecting data structure inconsisten-
cies is to use consistency checks at appropriate locations
to ensure that data structures are not corrupt. A con-
sistency check is a small piece of data-structure-specific
code that tests for some invariant. E.g., a doubly-linked
list data structure might be inspected for unmatched for-
ward and backward references. While today these checks
are commonly written manually, there has been recent
work on automatically inferring such checks [6].

When a consistency check fails, we might suspect that
a bug exists somewhere in the executed code after the last
successful consistency check’. If we execute these con-
sistency checks infrequently, we will not have narrowed
down the possible locations of a bug. On the other hand,
if we execute these checks too frequently, we can easily
cause a prohibitive performance overhead, as well as in-
troduce false positives if we check a data structure while
it is being modified.

Using live monitoring, we can build an adaptive pol-
icy that adds and removes consistency checks to bal-
ance the need for localizing data structures with the de-
sire to avoid excessive overhead. Initially, the policy in-
serts consistency checks only at the beginning and end
of stand-alone script blocks and event handlers (essen-
tially, all the entry and exit points for the execution of a
JavaScript application). Assuming that any data structure
that is corrupted during the execution of a script block
or event handler will remain corrupted at the end of the
block’s execution, we have a high confidence of detect-
ing corruptions as they are caused by real workloads.

As these consistency checks notice data structure cor-
ruptions, the policy adds additional consistency checks
in the suspect code path to “drill-down” and help local-
ize the problem. As clients download and execute fresh
copies of the application and run into the same data struc-
ture consistency problems, they will report in more de-
tail on any problems they encounter in this suspect code
path, and our adaptive policy can then drill-down again,
as well as remove any checks that are now believed to be
superfluous.

Several simple extensions can make this example pol-
icy more powerful. For example, performance overhead
can be reduced at the expense of fidelity by randomly
sampling data structure consistency across many clients.
Also, if the policy finds a function that only intermit-
tently corrupts a data structure, we can explore the pro-
gram’s state in more detail with an additional rewriting
rule to capture the function’s input arguments and other
key state arguments and other state to help the developer
narrow down the cause of a problem.

3JavaScript programs are executed within a single-thread, avoiding
the possibility of a separate thread having corrupted the data structure.



Identifying Promising Cache Placements

Even simple features of web applications are often cut
because of performance problems, and the poor perfor-
mance of overly ambitious AJAX applications is one of
the primary complaints of end-users. Some of the blame
lies with JavaScript’s nature as a scripting language not
designed for building large applications: given a lack of
access scoping and the ability to dynamically load arbi-
trary code, the scripting engine often cannot safely ap-
ply even simple optimizations, such as caching variable
dereferences and in-lining functions.

With live monitoring, however, we can use a multi-
stage instrumentation policy to detect possibly valid op-
timizations and evaluate the potential benefit of applying
the optimization. Let us consider a simple optimization
strategy: the insertion of function result caching. For this
optimization strategy to be correct, the function being
cached must (1) return a value that is deterministic given
only the function inputs and (2) have no side-effects. We
monitor the dynamic behavior of the application to cull
functions that empirically do not meet the first criteria.
Then, we rely on a human developer to understand the
semantics of the remaining functions to double-check
the remaining functions for determinism and side-effects.
Finally, we use another stage of instrumentation to check
whether the benefit of caching outweighs the cost.

The first stage of such a policy injects test predicates to
help identify when function caching is valid. To accom-
plish this, the rewriting rule essentially inserts a cache,
but continues to call the original function and check its
return value against any previously cached results. If any
client, across all the real workload of an application, re-
ports that a cache value did not match the function’s ac-
tual return value, we know that function is not safe for
optimization and remove that code location from consid-
eration. After gathering many observations over a suffi-
cient variety and number of user workloads, we provide
a list of potentially cache-able functions to the developer
of the application and ask them to use their knowledge of
the function’s semantics to determine whether it might
have any side-effects or unseen non-determinism. The
advantage of this first stage of monitoring is that review-
ing a potentially short list of possibly valid cache-able
code points should be easier than inspecting all the func-
tions for potential cache optimization.

In the second stage of our policy, we use automatic
rewriting to cache the results of functions that the devel-
oper deemed to be free of side-effects. To test the cost
and benefit of each function’s caching, we distribute two
versions of the application: one with the optimization
and one without, where both versions have performance
instrumentation added. Over time, we compare our ob-
servations of the two versions and determine when and

where the optimization has benefit. For example, some
might improve performance on one browser but not an-
other. Other caches might have a benefit when network
latency between the user and the central service is high,
but not otherwise. Regardless, testing optimizations in
the context of a real-world deployment, as opposed to
testing only in a controlled pre-deployment environment,
allows us to evaluate performance improvement while
avoiding any potential systematic biases of test work-
loads or differences between real-world and test environ-
ments.

5 Related Work

Several previous projects have worked on improved
monitoring techniques for web services and other dis-
tributed systems [2, 1], but to our knowledge, live moni-
toring is the first to extend developer’s visibility into web
application behavior on the end-user’s desktop. Others,
including Tucek et al [15], note that moving debugging
capability to the end-user’s desktop benefits from lever-
aging information easily available only at the moment of
failure—we strongly agree. In [9] Liblit ef al present
an algorithm for isolating bugs in code by using ran-
domly sampled predicates of program behavior from a
large user base. We believe that the adaptive instrumen-
tation of live monitoring can improve on such algorithms
by enabling the use of active learning techniques [5]
that use global information about encountered problems
to dynamically control predicate sampling. Perhaps the
closest in spirit to our work is ParaDyn [10], which uses
dynamic, adaptive instrumentation to find performance
bottlenecks in parallel computing applications.

6 Challenges and Implications

In summary, we have presented live monitoring, a frame-
work for improving developers’ end-to-end visibility into
web application behavior through a continuous, adaptive
loop of instrumentation, observation and analysis. As ex-
amples, we have shown how live monitoring can be used
to localize bugs and analyze runtime behavior to detect
and evaluate optimization opportunities.

We still face open challenges as we look to building
a practical and deployable live monitoring system, such
as the privacy issues of added instrumentation. While
we believe that the browser’s sandbox on web applica-
tions, together with the explicit trust users already give
web services to store application-specific personal in-
formation (e-mails, purchasing habits, etc) greatly re-
duces the potential privacy concerns of extra instrumen-
tation, there may be corner cases where live monitoring
would pose a risk. Another challenge is to maintain the



predictability—predictable behavior and performance—
of web applications as we dynamically adapt our instru-
mentation.

If successful, however, we believe the implications of
instant redeployability may go beyond monitoring and
also open the door to adaptive recovery techniques, in-
cluding variations of failure-oblivious computing and Rx
techniques [14, 12]. In these cases, the detection of a fail-
ure and the discovery of an appropriate mitigation tech-
nique in one user’s execution of an application could be
immediately applied to help other users, before they ex-
perience problems. At the moment, web applications are
the most widespread platforms that have the capability
for instantly redeployment. In the future, however, auto-
matic update mechanisms and other centralized software
management tools [4] might enable instant redeployabil-
ity in broader domains.

References

[1] M.K. Aguilera, J.C. Mogul, J.L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance Debugging for Distributed Sys-
tems of Black Boxes. In Proceedings of SOSP 2003.

[2] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using magpie
for request extraction and workload modelling. In Proceedings of
OSDI 2004.

[3] A. Bosworth. How To Provide a Web APIL http:
//www.sourcelabs.com/blogs/ajb/2006/08/
how_to_provide_a_-web_api.html, Aug 2006.

[4] R. Chandra, N. Zeldovich, C. Sapuntzakis, and M.S. Lam. The
Collective: A Cache-Based System Management Architecture. In
Proceedings of NSDI 2005.

[5] D.A. Cohn, Z. Ghahramani, and M.L. Jordan. Active Learning
with Statistical Models. Journal of Artificial Intelligence Re-
search, 4, 1996.

[6] B. Demsky, M.D. Ernst, PJ. Guo, S. McCamant, J.H. Perkins,
and M. Rinard. Inference and enforcement of data structure con-
sistency specifications. In Proceedings of ISSTA 2006.

[7] ECMA. ECMAScript Language Specification 3rd
Ed. http://www.ecma-international.org/
publications/files/ECMA-ST/Ecma-262.pdf,

Dec 1999.

[8] Google. Google web toolkit. http://code.google.com/

webtoolkit/.

[9] B.Liblit, M. Naik, A.X. Zheng, A. Aiken, and M.I. Jordan. Scal-
able Statistical Bug Isolation. In Proceedings of PLDI 2005.

[10] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth,
R.B. Irvin, K.L. Karavanic, K. Kunchithapadam, and T. Newhall.
The Paradyn Parallel Performance Measurement Tool. IEEE
Computer, 28(11), Nov 1995.

[11] T. O’Reilly. What is Web 2.0. http://www.oreillynet.
com/pub/a/oreilly/tim/news/2005/09/30/
what-is-web20.html, Sep 2005.

[12] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating bugs
as allergies—a safe method to survive software failure. In Pro-
ceedings of SOSP 2005.

[13] S. Rider.  Recent changes that may break your gadgets.
http://microsoftgadgets.com/forums/1438/
ShowPost .aspx, Nov 2005.

[14] M. Rinard, C. Cadar, D. Dumitran, D.M. Roy, T. Leu, and
Jr. W.S. Beebee. Enhancing Server Availability and Security
Through Failure-Oblivious Computing. In Proceedings of OSDI
2004.

[15] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Automatic
On-line Failure Diagnosis at the End-User Site. In Proceedings
of HotDep 2006.



