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Abstract
Size and weight constraints on wearables limit their bat-
tery capacity and restrict them from providing rich func-
tionality. The need for durable and secure storage for
personal data further compounds this problem as these
features incur energy-intensive operations. This paper
presents WearDrive, a fast storage system for wearables
based on battery-backed RAM and an efficient means to
offload energy intensive tasks to the phone. WearDrive
leverages low-power network connectivity available on
wearables to trade the phone’s battery for the wearable’s
by performing large and energy-intensive tasks on the
phone while performing small and energy-efficient tasks
locally using battery-backed RAM. WearDrive improves
the performance of wearable applications by up to 8.85x
and improves battery life up to 3.69x with negligible im-
pact to the phone’s battery life.

1 Introduction
The utility of a mobile device has long depended upon
the tension between the device’s size, weight and its bat-
tery lifetime. Smaller, lighter devices tend to be easier to
carry. However, battery lifetime is mainly a function of
size. A smaller device must therefore contain a smaller
battery making energy a precious resource. The need for
durable storage further compounds this problem. Slow
flash storage wastes energy by keeping the CPU active
for longer period of time [26, 27, 52], yet the use of a bat-
tery dictates that durable storage is vital to a device’s util-
ity. Likewise, data encryption is energy-intensive [31],
but the sensitive nature of personal information that de-
vices collect dictates using appropriate protection mech-
anism over a durable medium like flash that can be easily
detached from a stolen device to retrieve personal data.

On wearables [43, 13, 5, 35], these trade-offs are mag-
nified. Size matters even more since the device is worn
on the body, therefore these devices have a very precious
energy reserve. A watch that must be charged after a few
hours is not very useful. Likewise, these devices gener-
ate precious sensor data (e.g., body sensor readings and
location) that must be guaranteed against loss and theft.

In this paper, we explore a new approach to storage on
wearable devices that does away with local durable stor-
age while leveraging a nearby phone to protect against
data loss and theft in an energy efficient manner. The

system, called WearDrive, uses only memory on wear-
ables for storage operations to provide performance and
energy improvements. It exploits the battery in mobile
devices to provide durability for the data in memory. It
leverages low-power network connectivity available on
wearables to exploit the capabilities of the phone. New
data is asynchronously transmitted to the phone, which
ultimately performs the energy-intensive operations of
storing data with encryption in its local flash.

WearDrive targets the two most important application
scenarios of wearables. The first scenario is the “ex-
tended display” that uses the wearable as a second dis-
play to allow applications on a nearby phone to run in-
teractive but less-featured companion applications. Ex-
amples include companions that provide notifications for
emails, social networks, etc. Providing fast and durable
storage to such applications helps wearables conserve
battery while remaining interactive.

The second scenario is sensor data analysis. Wear-
ables are packed with sensors that take advantage of their
location on a person’s body. Exposing this data to the ap-
plications on the phone with low-energy data sharing can
open up powerful applications. WearDrive targets these
scenarios and reduces the need for a large battery and
eliminates the need for flash on wearables. This paper
makes the following contributions:

• A distributed battery-backed RAM based storage
system called WearDrive is presented that can help
applications span data and computation across the
wearable and phone quickly and energy efficiently.

• A hybrid Bluetooth and Wi-Fi data transfer scheme
is presented. It helps the wearable exploit the capa-
bilities of the phone at a low-energy cost by ship-
ping data and computation to it.

• Data-intensive wearable workloads are identified. A
benchmarking tool named WearBench with several
data-intensive scenarios is developed to benchmark
applications spanning wearable and phone.

Experimental results show WearDrive helps applica-
tions obtain up to 8.85x better performance and consume
up to 3.69x less energy compared to the state-of-the-art
systems with little impact to the phone.

The rest of this paper is organized as follows: Sec-
tion 2 presents the challenges that we address in this
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Figure 1: Motivating scenarios for WearDrive: (a) Mobile storage stacks are energy-intensive because storage software
consumes 80–110x more energy than flash. (b) To maintain a connection to the phone for the wearable, WiFi-Direct
consumes 10–15mW extra power, while Bluetooth Low-Energy requires only 1–2mW. (c) In terms of energy con-
sumption of the whole system when sequentially writing 32 MB data set with various I/O granularities, it is more
energy efficient to write to remote phone’s memory via WiFi-Direct than to write data locally to flash on the wearable.

work. Design and implementation of WearDrive are de-
scribed in Section 3. The benchmarking suite and the
evaluation results are shown in Section 4. Section 5
presents the related work. Finally, we describe the con-
clusions from this work in Section 6.

2 Wearable Storage Challenges
Wearables present a new challenge for mobile system de-
sign. Constraints on size and weight limit the battery ca-
pacity, but their location on the body and proximity to
the phone create new opportunities.

Small Batteries. Li-ion battery metrics like gravimet-
ric energy density (Watt-Hours/kg) and volumetric en-
ergy density (Watt-Hours/liter) take 10+ years to dou-
ble [9]. Therefore, wearables will still be restricted to
battery capacities of 1–2 Watt-Hours for the next sev-
eral years because of their size and weight constraints;
today’s phones have 7–11 Watt-Hours batteries [19, 44,
33]. Therefore, we propose that the battery on the phone
be traded for the battery on the wearable.

Energy Overhead of Legacy Platforms. To sim-
plify the hardware and software development of wear-
ables, manufacturers have chosen to reuse the system-on-
a-chip (SOC) design and mobile operating systems that
were originally made for phones and tablets. For exam-
ple, most smart-watches and smart-glasses [43, 14, 13, 5]
follow this approach to reduce cost, and accelerate devel-
opment of the platform and the applications. The focus
of this paper is on such wearable devices. This means
that wearables face a larger energy challenge compared
to phones, because of their smaller batteries.

Our prior work [31] identified that mobile storage
software consumes up to 110x more energy compared
to flash hardware for accessing data as shown in Fig-
ure 1(a). The energy overheads are caused by three fac-
tors. First, mobile flash is slow and increases CPU idle
time while waiting for IO completion [26]. Second, stor-
age on mobile devices is accessed via managed runtime
environments like the Darwin engine on Android and the

CLR engine on Windows that add additional CPU over-
head. Finally, encryption of data that happens using spe-
cial CPU instructions is also energy intensive. A fast and
energy-efficient storage system with security and privacy
guarantees is needed for wearables.

New Applications. Nearly all existing applications of
wearables fall into two categories: extended display and
sensor analysis. Using a wearable as an extended dis-
play requires arbitrary mobile application state be shared
across the wearable and phone. And for wearables, the
users focus more on new content from contextual appli-
cations like email, messaging, social networks, calendar
events, music controls, navigation companion and etc.

Wearables are rich sources of sensor data (Table 3) be-
cause of their location on the body. For example, watches
can better monitor heart-rate and glasses can provide bet-
ter video sensing. These sensors pave the way for a
wide variety of useful applications including long term
fitness/wellness tracking, detecting chronic health condi-
tions like sleep-disorder, heart conditions, etc. Existing
wearables unfortunately are severely crippled in terms
of battery size and provide only limited data analytics.
A storage system capable of supporting these wearable
workloads and exploiting their characteristics for per-
formance and energy-savings is needed.

Reaching the phone. Bluetooth Low Energy (BLE)
enables wearables to maintain a constant connection to
phone at a low-energy cost (Figure 1(b)). However,
its low modulation rate imposes a large energy tax on
large data transfers. An alternative is WiFi-Direct (WFD)
which requires higher constant power to maintain a con-
nection, but supports low-energy large data transfers with
high modulation rates. Figure 1(c) shows the average en-
ergy per KB consumed by the whole system of the wear-
able (see Table 3) as it sequentially writes data to local
flash or remotely to the phone via BLE/WFD. The ex-
perimental setup is the same as described in Section 4.2.
Experimental results indicate that the energy overhead of
writing data to remote memory via WFD is comparable
to that of writing data to flash on the wearable.



The challenge is to build a mechanism to connect the
wearable to the phone with a constant low-power con-
nection overhead with a means to transfer data energy-
efficiently. A hybrid connection and data-transfer mech-
anism can be built using BLE and WFD so that data
sharing between wearable and phone can be enabled at
a low-energy cost.

Slow flash. Mobile flash is slow and energy-
intensive [26]. Faster flash technologies like SSDs re-
quire 25–100% more $/GB and 5x more energy per op-
eration, and have a controller alone that is bigger than
an entire SD card. Moreover, even SSDs are 10,000x
slower than DRAM 1. Furthermore, we demonstrate that
data transfers over WiFi-Direct between two mobile de-
vices consumes less energy than writing the same data to
flash (Figure 1(c)). We propose that wearables actively
use only DRAM (local and remote) to drastically speed
up storage operations.

3 WearDrive Design
We begin by showing how applications minimize using
flash and use mostly DRAM for fast and durable stor-
age operations on wearables. We then present a new
data management system that helps applications span
extended-display and sensor data across the wearable
and the phone. A new hybrid BLE/WFD data trans-
fer mechanism is then described which helps WearDrive
transmit data at a low-energy cost to the phone.

3.1 Storage with Battery-Backed RAM
To speed up storage operations, WearDrive actively uses
DRAM as storage. However, WearDrive guarantees
durability in spite of DRAM’s volatility. DRAM on mo-
bile platforms is continuously refreshed. The only time
when the DRAM refresh stops is when the device is shut-
down, the battery runs out of energy or it is removed.
The first two scenarios provide an early warning sign al-
lowing data in DRAM to be flushed to flash just in time
before the refresh stops. Removing the battery while
the system is running can lead to data loss even in to-
day’s systems. Moreover, most wearables’ batteries are
not removable. Therefore, we assume that DRAM can
be treated as non-volatile on such devices. We call such
DRAM as battery-backed RAM (BB-RAM).

BB-RAM coexists with DRAM to minimize OS
changes. It grows and shrinks dynamically according
to the memory pressure in the rest of the OS. DRAM
is a precious resource on wearable devices. Most of the
wearables we surveyed have less than 0.5GB of DRAM.
While reserving a known and fixed region of physical
memory as BB-RAM simplifies the implementation, it
leads to fragmentation of DRAM and does not allow

1Data surveyed from samsung.com, newegg.com and amazon.com

BB-RAM to dynamically expand and contract in accor-
dance with application/OS requirements. WearDrive’s
BB-RAM design adapts to memory pressure and spans
across non-contiguous physical memory pages.

WearDrive uses BB-RAM both on the wearable and
phone to ensure high-performance of applications span-
ning both the wearable and the phone. Wearable uses
the phone as the secondary storage for its data. All old
data on the wearable’s BB-RAM is retired to the phone’s
BB-RAM. All dirty data in wearable’s BB-RAM is also
sent to the phone when the wearable needs to shutdown.
Likewise, phone uses its flash as the secondary storage
for its data in BB-RAM.

Data in BB-RAM is not lost even after an OS crash.
WearDrive uses a firmware component to ensure that
BB-RAM is backed to flash in case of an OS crash.
Firmware needs additional support to identify the phys-
ical pages that are used as BB-RAM. For this purpose,
WearDrive reserves a small known region of physical
memory to store a bitmap in DRAM to represent whether
that physical page belongs to BB-RAM or not. The
firmware uses these bits to identify BB-RAM pages af-
ter an OS crash (before shutdown) and writes them to a
reserved region on flash. This simple design allows BB-
RAM to coexist with DRAM and also enables a firmware
without any OS state awareness to ensure data durability.
Recovering WearDrive’s state after a crash solely from
the set of BB-RAM pages that it spans across is a harder
problem and we present its design in the next sections.

WearDrive uses BB-RAM only as long as there is
enough battery life left to ensure durability of data in
case of a crash. When battery level reaches a threshold,
WearDrive stops using BB-RAM and treats all of DRAM
as volatile. New and dirty data is first written to local
flash to ensure durability. We set the threshold to 7%
in WearDrive based on the observation that flushing 512
MB data from memory to flash sequentially costs about
5% of wearable’s battery life on our reference wearable
platform. However, this value can be adapted according
to the hardware.

Warm reset. WearDrive is optimized for warm re-
sets of the OS. If the available energy is above 7%, the
firmware continues to refresh DRAM without scrubbing
or cleaning any data. The OS then separates the pages
in BB-RAM from regular DRAM using the bitmap and
continues the boot process.

OS Deadlock. In case of a deadlock there is a chance
that the data in BB-RAM will permanently be lost as the
phone is completely drained out of battery. WearDrive
uses a watchdog timer to detect if the OS is hung. When
the battery life reaches the threshold, firmware sched-
ules a BIOS-context process that wakes up once every
sixty seconds and sets a bit in a known portion of mem-
ory that it expects the OS to reset every sixty seconds.
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Figure 2: (a) WearDrive expands wearable’s memory and storage capacity by leveraging phone’s capabilities. Loc-
DRAM/RemDRAM represents local/remote DRAM, LocFlash/RemFlash are local/remote Flash. (b) BB-RAM pages
are held in a linked list. The pages contain a sequential log of key-value pairs as they arrive. The hashtable stored in
regular DRAM contains the index for the key-value store whose state can be efficiently recovered after failures.

If the OS fails to reset it during an iteration then the
firmware assumes that the OS has hanged and flushes the
data to flash by itself and disables the watchdog timer.
The watchdog timer is also disabled as soon as the OS
starts using DRAM as volatile.

3.2 Storing Data Across Devices
Since extended display and sensor data analysis scenar-
ios need to span data across wearables and phone, we
design WearDrive as a distributed storage system span-
ning across all devices. We find that in most extended-
display scenarios, the wearable is treated as a helper for
the full application on the phone because of the smaller
screen size on watches, lack of touch screen on glasses
and small battery size on both. For this reason, we de-
sign the component of WearDrive on the wearable as
a cache (WearCache) and the component of WearDrive
on the phone (WearKV) as the main storage of data (see
Figure 2(a)). WearKV and WearCache both have a key-
value store interface that mobile application developers
are familiar with. We use the same KV-store system to
implement both WearCache and WearKV.

3.3 KV-store Design
KV-store is optimized for BB-RAM. This ensures fast
and durable operations for WearCache and WearKV
when inserting new data. KV-store prioritizes new data.
The focus of wearable applications is on the latest data
generated by phone applications and also by the sensors.
Examples include the user’s interest in latest notifications
and most recent sensor values that can provide statistics
about a run or a workout session. Therefore, the KV-
store is implemented as a sequential log of key-value
pairs in BB-RAM with FIFO replacement. Figure 2(b) il-
lustrates the design. Keys and values are arbitrary length
data blobs. New values are inserted by appending the
KV-pair to the head of the log and adding a hash table
entry with pointers to the key and the value in the log.

KV-store stores data in BB-RAM and metadata in
DRAM. The log of KV-pairs is stored in BB-RAM and

the hash table is stored in regular DRAM. The rationale
for this is that the hash table can be recovered from BB-
RAM in case of a crash by scanning through the BB-
RAM pages in the right order. In case of a clean shut-
down, the hash table is serialized to secondary storage
(Index Log in Figure 2(b)). This design choice makes
effective use of the precious BB-RAM space.

KV-store can recover BB-RAM and DRAM state af-
ter a crash. Recall that the firmware flushes BB-RAM
pages to local flash in case of a crash. To recover the
hash table and the correct head of the log of KV-pairs,
ordering of the BB-RAM pages is needed. The order-
ing of the BB-RAM pages in the log is determined by
a four byte pointer stored at the tail of every BB-RAM
page to the next BB-RAM page in the log as shown in
Figure 2(b). Each KV-pair in BB-RAM is a sequence of
five fields: four bytes length of the key followed by the
key, followed by eight bytes of application identifier (de-
scribed later) and then four bytes length of the value fol-
lowed by the value. This FIFO of BB-RAM pages allows
the KV-store to arbitrarily increase its size by appending
new pages and decrease the size of the log by purging
the KV-pairs at the tail to secondary storage. Moreover,
the firmware remains simple, precious BB-RAM space
is best utilized and recent data that is of interest for ap-
plications is prioritized during page replacement.

WearCache is the KV-store instance that lives on the
wearable and caches all the latest data from applica-
tions and sensors. New data arrives in WearCache via
two methods: when phone applications push data to
their companion applications and when sensors generate
new values. When WearCache runs out of BB-RAM, it
flushes old data to WearKV on the phone in FIFO order
as the focus of the wearable is always on new data. It
does so by simply moving the tail forward in the log of
KV-pairs on BB-RAM several KV-pairs at a time. This
provides the functionalities of having recent data on the
wearable, adapting to memory pressure, and providing
an efficient replacement policy. An example application
on today’s watches that can leverage this storage model
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Figure 3: WearDrive creates individual logs per applica-
tion and per sensor to isolate on secondary storage.

is a notification center for recent emails. The user’s focus
will be on the most recent emails while the older emails
may be safely flushed to WearKV as the user may not ac-
cess them on the wearable. Complex functionalities are
implemented by the email application on the phone while
a companion email application on the wearable keeps the
design/UI simple with focus on latest data.

WearCache removes flash I/O overhead from the criti-
cal path of applications. The OS, application binaries and
other application metadata continues to reside on local
flash. However, data accessed in critical path resides in
WearDrive. The key-value interface to WearDrive eases
development as wearable applications already use the
key-value interface for sharing data between the phone
and wearable [3]. As future work, we wish to provide
filesystem and database interfaces using BB-RAM.

WearDrive supports simple sensor data analytics on
the wearable and complex data analytics on the phone.
Small battery restricts wearables to analyzing sensor logs
from short activities like the latest run/workout-session
or other short activity. However, applications can per-
form rigorous analytics on the phone (several days worth
of sensor logs at a time). Applications on the phone
can proactively pull the sensor data from WearCache
as and when a certain number of samples are available.
For example, a fitness tracker on the phone can register
with WearCache that the heart-rate logs from the wear-
able be pushed to the phone once every ten minutes.
WearCache implements these requests in the following
manner. For each sensor, WearCache pre-allocates a
KV-pair. A certain amount of space is reserved for the
value upfront. The sensor samples (configurable sam-
pling rate) are gradually added to the pre-allocated value
as they become available. Data is pushed to the phone
and phone-applications are notified accordingly.

WearKV is the KV-store that resides on the phone and
contains all the data of the wearable. It contains old ex-
tended display data and the entire log of sensor values.
Old extended display data is fetched back to WearCache
on demand (this is a rare event as wearables focus on
new data). The phone with its larger battery can use
the full sensor log to perform rigorous sensor data anal-
ysis. When WearKV runs out of BB-RAM, it flushes old
data to flash where it creates a per-application and per-
sensor sequential log as shown in Figure 3. It does so by

leveraging the metadata information stored in the values
where it records the device-ID, application-ID, sensor-ID
and time stamp of creation.

Data in WearDrive crosses the memory/flash bound-
ary only on the phone. Data encryption and other mech-
anisms put in place to ensure security and privacy of
data are needed only for “truly” non-volatile media like
flash that can be detached from the rest of the phone and
have unprotected data stolen in a straightforward man-
ner. Therefore, the heavy software cost [31] of storage
is offloaded to the phone. Note that treating DRAM as
non-volatile by using it as BB-RAM is at least as secure
as the previous model where data was not encrypted in
DRAM as DRAM which is part of the SOC is hard to de-
tach from a device. BB-RAM is a mechanism to ensure
that data in DRAM in never lost as opposed to making
DRAM “truly” non-volatile.

Offline Capabilities. WearCache can function with-
out the phone. WearCache can lock data on the wearable
based on time of arrival such that it is not purged to the
phone until explicitly deleted. Offline capabilities allow
applications to lock data to be available locally so that
functionality can be provided without the phone. An ex-
ample is when the email companion application imposes
a restriction that email from last three days be locked lo-
cally. KV-pairs are written to flash on the wearable only
if WearCache runs out of BB-RAM and the applications
impose an offline availability restriction. Offline require-
ments are specified in WearCache using time cutoffs per
applications and per sensor (see Table 1). We compare
the specified time with the timestamp stored in KV-pair’s
metadata. The qualified offline data is written to its lo-
cal flash’s logs. As time passes, WearCache will move
the tail closer to the head on the flash log and overwrites
older data that the application does not need.

3.4 Communication
Efficient reachability to the phone allows the wearable to
be designed with less DRAM and slower flash thereby
reducing their cost. Moreover, it allows the wearable to
offload storage and computations to the phone. BLE 4.1
and 802.11a/b/g/n/ac are the network connectivity op-
tions for wearables. While a few smart-watches only
have BLE, we envision that Wi-Fi will make it to all
wearables as it enables efficient large data transfer.

Standalone BLE or WFD is not an ideal network con-
nection. BLE consumes low power (1–3mW) for stay-
ing always connected to the phone while using a WFD
to stay connected to the phone consumes 5x extra power
(10–14mW) (Figure 1(b)). On the other hand, BLE con-
sumes 10–20x extra energy for transmitting data when
compared to WFD (Figure 1(c)). A mechanism to min-
imize the total energy of always staying connected and
for transferring data is required.



API Description

OpenWearDrive (FileName) open a connection to WearDrive and obtains a handle, the data is represented using an opaque FileName.
CloseWearDrive (handle) close the connection to WearDrive and flush any data from BB-RAM in the process to an appropriate location.
InsertKV (handle, key, value) insert the new key/value to the FileName corresponding to the handle.
ReadKV (handle, key) provide the value corresponding to the key in the FileName file.

MakeOffline (handle, date) make all data of this file that arrived after a certain date available on the wearable even when the phone is not
reachable. Date is specified relatively to the current time. This function is available only to WearCache.

DeleteOldData (handle, date) provide a hint to WearDrive that data beyond a certain date can be deleted. Date is an absolute value. This
function is available only to WearKV.

RegisterForSensor (DeviceID, SensorID) register an application for values from the sensor represented by (DeviceID, SensorID).
UnregisterFromSensor (DeviceID, SensorID) unregister the application from a sensor.

RegisterCallBack (TimeGap, CallBackFunction) make WearDrive issue the CallBackFunction in the context of registering application every
TimeGap seconds with the newly available sensor values.

Compute (DeviceID1, SensorID1, ..., Devi-
ceIDN, SensorIDN, TimeGap)

a function that does not access any global variables but accesses data in sensor logs that
are accessible to the application. It can be executed on both wearable and phone.

Table 1: WearDrive API
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Figure 4: Energy consumption of data transfer via BLE
and WFD. WFD is efficient if connection establishment,
tail latency and connection-teardown are not included.

Using BLE for staying connected and short data trans-
fers, and turning on WFD solely for large data transfers
is a hybrid solution. This is practical because WearCache
and WearKV know how much data is to be pushed. If it
is beneficial then a control signal over BLE is sent to the
other side to turn on WFD. Data transmission begins on
BLE and switches over to WFD when it is available.

Knowing the right data transfer size for switching on
WFD is crucial. To estimate the transfer size at which it
pays-off to turn on the WFD, we conduct the following
experiment: transferring data of various sizes on BLE
and WFD. We keep BLE always on and send data of var-
ious sizes between two mobile devices whose power con-
sumption is monitored using the Monsoon power moni-
tor [36]. We then estimate the energy required for trans-
ferring the data via WFD. The energy estimates for WFD
contains the energy needed for turning the WiFi chipset
on and off. Figure 4 shows the transfer size at which
using the hybrid protocol pays off.

The pay-off point for switching to WFD depends on
signal quality. We present the results for two extreme
modulation rates in 802.11n: the highest modulation
rate and the lowest modulation rate. A crossover-point
database is built for various modulation rates of BLE and
WFD. We use the BLE signal strength to estimate the

WiFi signal strength as they use the same band and radio
over the same distance.

Picking the right time to turn off WFD is important.
WFD consumes more power than BLE in idle state (i.e.,
standby power gap). However, network discovery, con-
nection and powering-down are expensive, frequently
turning WFD on/off would incur more energy usage than
keeping it in idle state for workloads with small inter-
arrival times. We use two solutions to solve this prob-
lem. The first is to have a running average of inter-arrival
times and predict on the basis of the average-value if it is
worth keeping the WFD on. The second is to explicitly
help applications that can tolerate delay to batch data (ef-
ficacy evaluated in Section 4) for further energy saving.

3.5 Implementation Details
We implement WearDrive on Android 4.4 using Java, C
and JNI [21]. It consists of the KV-store, the data trans-
fer library and the code needed for ensuring durability
of BB-RAM. WearDrive is accessed via the calls on all
devices as shown in Table 1. InsertKV and ReadKV
always append the application ID (stored in handle)
to the key for inserting and reading data. This helps
WearDrive isolate data between applications. Privacy
is protected by not providing user-space access to BB-
RAM. All data is accessed through user space buffers
provided to the system calls.

Sensor values are aggregated by WearDrive on a per-
sensor basis. Applications can register sensor logs for
each sensor. WearDrive directly appends sensor samples
to the pre-allocated KV-pair that is buffering the current
set of sensor samples. When enough samples are avail-
able, WearDrive notifies the corresponding applications.

4 Evaluation
Evaluating wearable applications is hard because of the
lack of a standard benchmarking tool that can generate



Workload Parameters Application examples

Extended
Display

Size and inter-arrival
time distribution of
data

Email, news, instant mes-
sages, status updates from
social networks, etc.

Sensors sampling rate, moni-
toring period

Physical fitness, sleep qual-
ity, heart health monitoring,
elder care, etc.

Audio/
Video

Encoding rate, qual-
ity, monitoring period

Dash-cam using glasses,
sleep quality monitoring.

Table 2: Workloads included in WearBench.

representative workloads that span across wearables and
phone. We present WearBench, a framework that is in-
tended to test the impact of data generated by such wear-
able workloads on performance and energy.

4.1 WearBench
WearBench is an Android app that runs on the
phone/wearable for generating the extended-display data
and sensor data which represent wearable applications.
WearBench runs on the phone when testing the wearable
and vice versa so that WearBench does not interfere with
the measurements. WearBench defines synthetic data-
analytics that can be executed on sensor logs like cal-
culation of running statistical features including average,
standard-deviation, k-means, and hourly/diurnal/weekly
pattern recognition algorithms – sampling rate and time-
liness are configurable. WearBench can create notifica-
tions of varying sizes and different inter arrival time dis-
tributions. To the best of our knowledge, WearBench is
the first framework for benchmarking wearable systems.

We identify several typical data-intensive workloads
running on smart wearables (see Table 2). In order to
cover a wide variety of users, we abstract the usage pat-
tern as configurable parameters in WearBench.

The aim of our evaluation is to demonstrate the per-
formance and energy benefits to wearable devices from
using WearDrive. We also study the impact on the bat-
tery life of the phone. Table 4 summarizes the major
benefits of WearDrive for wearable applications over the
state-of-the-art methods.

4.2 Experimental Setup
We use a low-end mobile platform as a reference wear-
able device that runs Android 4.4. As shown in Table 3,
our reference wearable device compares to Samsung
Galaxy Gear smart-watches which have similar hardware
and software configurations. While our reference has 1
GB RAM, we use only 512 MB on it for the system to
match the amount of RAM on state-of-the-art wearables.

Monsoon power monitor [36] is used to profile energy
consumption of the device. We instrument the reference
wearable device’s battery-leads such that it draws power
from the Monsoon power meter instead of a battery. We

Type Our Reference Wearable Samsung Gear
Processor 1.2 GHz dual-core 1.2 GHz dual-core
Memory 1 GB RAM 512 MB RAM
Storage 4 GB eMMC flash 4 GB eMMC flash

Network Bluetooth 4.0 LE, WiFi
802.11 b/g/n

Bluetooth 4.0 LE,
WiFi 802.11 b/g/n

Sensors

accelerometer, barometer,
compass, GPS, gyroscope,
heart rate monitor, magne-
tometer, altimeter, barome-
ter, UV light sensor, ambi-
ent light sensor, BLE and
WiFi events, camera, mi-
crophone

accelerometer, gy-
roscope, compass,
heart rate monitor,
ambient light, UV
light, barometer,
GPS, microphone,
BLE and WiFi events

OS Android 4.4 Android 4.3+/Tizen

Table 3: Reference wearable device used for evaluation.

Typical Workloads Battery-Life
Improvements

Passive heart-rate monitoring (Section 4.4.1) 39%
Passive movement monitoring (Section 4.4.1) 54%
Taking pictures (Section 4.4.2) 16%
Taking pictures in burst mode (Section 4.4.2) 27%
Passive video monitoring (Section 4.4.3) 33%
Passive audio monitoring (Section 4.4.4) 50%
Batched Notifications (Section 4.6) 149%
Unbatched Notifications (Section 4.6) 24%

Table 4: WearDrive’s benefits for typical wearable work-
loads compared to Google WearSDK.

perform comparative energy calculations by subtracting
the base power of the system from the power used when
a workload is executed. However, when reporting abso-
lute energy required for a workload we include the base
power of the system. We compare WearDrive with the
following state-of-the-art storage solutions:

WearableOnly: The wearable applications use the ca-
pabilities on the wearable for storage. The phone is used
only for Internet connection via tethering. All the com-
putation is performed locally and all data is durably writ-
ten to local flash. This is the way most fitness/health
trackers are implemented on today’s wearables.

WearSDK: Android Wear SDK released by
Google [3] is one way to span data across wearable and
phone. However, this SDK uses flash synchronously on
either one of the devices to ensure durability. WearSDK
provides a data layer for data synchronization between
paired wearable and phone via BLE (i.e., WearSDK-
BLE). We extend the data layer and make it support
WFD (i.e., WearSDK-WFD) and our hybrid network
protocol (i.e., WearSDK-HYN).

4.3 Local Memory vs. Local Flash
We first examine the advantages of BB-RAM over lo-
cal flash with a set of microbenchmarks. We configure
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ableOnly and WearDrive with varied number (1, 2, 4) of
threads.
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Figure 6: Energy used by various storage systems with
varied number (1–16) of sensors sampling values con-
tinuously at 1Hz for 24 hours. A typical smart-watch
battery contains between 3000–6000 Joules of energy.

WearBench to issue 100 K InsertKV and ReadKV op-
erations. The size of the data written or read is varied
uniformly from 128 bytes to 1 KB. Figure 5 compares
the throughput for different data sizes. WearDrive out-
performs WearableOnly by 6.65–8.85x on inserts where
storage I/O from flash becomes the bottleneck, and
1.57–1.69x on reads where the CPU becomes (single
thread) the bottleneck for our system and the flash IOPS
for WearableOnly. Moreover, WearDrive’s throughput
scales linearly till four threads while WearableOnly is
saturated by a single thread. Figure 5 also shows the total
energy usage of these write/read operations. WearDrive
consumes 2.58–3.69x and 1.57–1.70x less power than
WearableOnly on inserts and reads respectively, as slow
I/O operations on flash cause more CPU cycle wastage,
and further increase the energy usage.

4.4 Passive Sensor Data Aggregation
In this section, we demonstrate the benefits of using local
and remote BB-RAM for providing durability for sensor
data recording over flash.

4.4.1 Fitness Tracker

Fitness/health tracking applications collect sensor values
on a periodic basis and update statistics [8]. We use a
fitness tracker application that samples various sensors
at 1Hz and stores them to local flash periodically. We
record the storage calls that this application makes for
storing sensor logs, and incorporate the workload into
WearBench for replaying.

WearDrive aggregates sensor data in BB-RAM and en-
sures their durability. WearableOnly and WearSDK un-
fortunately cannot provide such guarantees unless they
write every sensor sample through to flash, but they suf-
fer severe performance losses in doing so. As a tradeoff
between durability and performance, for these methods,
we write the sensor samples to flash when data fills a sec-
tor (512 bytes). Every five minutes, all the new data is
sent to the phone as sending data to phone at 1Hz leads
to significant energy wastage because the network chip
would never go into low power mode. Figure 6 shows the
total amount of energy in Joules required each day only
recording the sensor values. The overall trend across all
the systems show that the number of sensors sampled
does not severely impact the energy consumption of stor-
age, indicating that the setup costs inside storage stack
are the dominant factors for this workload.

WearDrive outperforms the other systems by up to
3.31x and provides better durability. When sampling 16
sensors every second for the whole day and writing them
to flash, the storage system (hardware and software) re-
quires 1760 Joules. Considering a typical smart-watch
battery that contains 4000 Joules (1.1 Watt-Hour) of en-
ergy, writing sensor data to flash requires 44% of total
battery life each day. WearDrive on the other hand con-
sumes 28.25%, which is 1.54x more efficient. Moreover,
we find that 89.5%, 68.1% and 58.75% of the battery life
is respectively required by WearSDK-BLE, WearSDK-
WFD and WearSDK-HYN. While HYN reduces the cost
of transmitting data over the network to the phone, the
bulk of the cost for these systems is still from using slow
flash which wastes energy by delaying CPU and network
from going to sleep sooner.

4.4.2 Time Lapse Photography

Time lapse photography applications for smart-glasses
allow users to log their outdoors activities without the ef-
fort of carrying a bulky camera or phone in the hands. We
incorporate a time-lapse photography storage workload
in WearBench by recording the storage calls of a time-
lapse application on Android which takes high-quality
pictures at each timer event. Each picture has 2592x1944
dimensions with average size of 900 KB. A few pic-
tures are taken once every few minutes. The results of
the workload are shown in Figure 7(a) where average
energy required on the wearable per round of photog-
raphy are reported. LocalFlash stores the pictures only
on the wearable. RemoteFlash stores the photos on the
phone’s flash with the various WearSDK networking so-
lutions. We also test scenarios where photos are stored
locally in flash but are also transmitted to the phone with
WearSDK. Finally, WearDrive does local BB-RAM to
remote BB-RAM copy with HYN.

Results indicate that storing pictures synchronously on
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Figure 7: Energy usage on wearable of taking pictures, video recording, audio recording.

local flash is 1.78–2.97x more energy efficient than on
remote flash. This implies that eliminating local durable
storage is not enough for energy savings and that the en-
ergy cost of storage is from the CPU that has to be idle
while the flash-IO completes. WearDrive’s ability to pro-
vide durability for data with local BB-RAM to remote
BB-RAM copy reduces the amount of time the CPU
and network have to be active and this significantly im-
proves energy efficiency while enabling applications on
the phone to have access to the photos.

4.4.3 Passive Video Monitoring

Recording video while traveling, riding or commuting al-
lows a person to have evidence in case of an accident. We
add a prototype dash-cam scenario in WearBench that
emulates storage calls due to recording of video. Video is
shot at 30 FPS (frames per second) with 480p resolution.
We buffer video on the wearable for 1, 3 and 5 minutes
and then transmit it to phone. Figure 7(b) demonstrates
that the energy required scales linearly with data size
for large workloads indicating that setup costs in stor-
age show up only for small workloads as in the case of
fitness tracking applications.

4.4.4 Passive Audio Monitoring

Some sleep disorders like snoring, bruxism, etc can be
diagnosed by passive audio recording on a wearable dur-
ing the night [53]. We create a prototype passive audio
monitoring workload in WearBench by recording all the
calls made by an audio recorder application. Audio is
sampled for a few minutes continuously several times
when the wearable detects motion or noises. The sam-
pling rate for audio is set to 16 KHz, the audio format is
PCM 16 bits per sample. As shown in Figure 7(c), com-
pared with the state-of-the-art solutions, WearDrive con-
sumes 1.5x less power than LocalFlash by taking advan-
tages of in-memory store and memory-to-memory data
transfer. Combined with the previous results, this pro-
vides further evidence that WearDrive can provide bene-
fits regardless of the sensor used as the energy overhead
is largely a function of data size.

4.5 Impact on Smart-phone
In this section, we evaluate the energy usage on the
phone side and show how WearDrive can improve the
lifetime of wearables by leveraging only a negligible por-
tion of phone’s larger battery capacity. To understand the
energy impact on the phone accurately in this context, we
use the same reference hardware in Table 3 as a phone.
Note that this is a hardware specification similar to most
low-end phones on the market today. However, we use a
2000mAh battery as the reference battery when evaluat-
ing the energy impact on the phone.

Energy cost of storage: We reuse the fitness moni-
toring application workload from Section 4.4.1. Recall
that for recording 16 sensors at 1Hz for 24 hours re-
quires 28.25% of the battery life on the wearable instead
of 44.0% when writing the data to the flash on the wear-
able. For this experiment, we find that the phone requires
1369 Joules of energy. This energy accounts for 5.1% of
the battery on the phone but this leads to savings of 16%
of the battery on the wearable. Considering the fact that
the batteries on wearables are usually 5–7x smaller than
on low-end phone, this is a valuable tradeoff to make.
Moreover, having the data on the phone enables phone
to perform analytics and provide more energy savings for
the wearable device.

Energy cost of computation: We implement Mean
and three commonly used data mining algorithms in
WearBench: k-NN (k-Nearest Neighbor) for classifica-
tion [24], ID3 (Iterative Dichotomiser 3) for generat-
ing decision tree [20], and k-means for cluster analy-
sis [23] for detecting patterns in streams of sensor data
to find out when user’s heart rate is high [4], when a
user snores during the night [53], the levels of UV ex-
posure [51], etc. WearableOnly refers to the baseline,
in which records are stored in SQLite and data analytics
run on wearables. WearDrive performs computation on
the phone with the data in WearKV. The sensor data are
aggregated over three days.

Table 5 shows that WearableOnly method of storing
and computing on the wearable consumes a significant
portion of wearable’s battery life, ranging from 14.72%
to 27.12%. For smaller data sets the data can be read



Algorithms Mean k-NN ID3 k-means

Schemes
% of battery life on % of battery life on % of battery life on % of battery life on

wearable phone wearable phone wearable phone wearable phone
WearableOnly 14.72% - 18.85% - 20.24% - 27.12% -

WearableOnly+InMem 0.83% - 4.96% - 6.56% - 13.23% -
WearDrive 0.87% 0.21% 0.87% 0.83% 0.87% 1.08% 0.87% 2.09%

Table 5: WearDrive saves wearable’s battery by trading it with the phone’s battery.The battery capacities of the wear-
able and phone used in the experiments are 300 mAh and 2000 mAh respectively.

5 10 15 20 30 40 50 60
Interval between two notifications (seconds)

0
2
4
6
8

10
12

E
ne

rg
y 

(J
ou

le
s) WearSDK-BLE

WearSDK-WFD
WearSDK-HYN
WearDrive

Figure 8: Energy usage of receiving 10 notifications
(10KB size) with varied interval between notifications.

into memory all at once and computed over as opposed
to reading data from flash in batches. We refer to this
solution as WearableOnly+InMem. It reduces the energy
usage dramatically, but it works only for small workloads
that fit in memory. However, when sampled at a higher
rate (required usually when the user is running or biking)
of over 10Hz, sensor data beyond a few hours will not fit
in the memory of the wearable. While such workloads
may not fit in the phone’s memory either, the phone’s
larger battery takes much smaller impact.

When the computation is shifted to the phone by
WearDrive, it consumes a trivial portion (0.21%–2.09%)
of phone’s battery life, but reduces the energy usage on
wearables to be only 0.87% of wearable’s battery life
for issuing the arithmetic functions. As future work,
we wish to explore when offloading computation to the
cloud pays-off with respect to energy. Offloading to the
cloud incurs more energy overhead due to data transmis-
sion across a wide area with WiFi or LTE. For instance,
uploading 8 MB data to Google Drive [11] consumes
3.14x more power than writing to local flash in our ex-
periment setup (with perfect WiFi conditions).

4.6 Extended Display Workload
In this experiment, we demonstrate the benefits of
WearDrive to efficiently store extended-display data
durably. We use WearBench to emulate application pat-
terns from representative workloads of Twitter [28], In-
stagram [17], and email [52] applications with various
parameters (size and interarrival time).

Varying inter-arrival times. In order to model more
notification workload patterns, we vary the interval be-
tween tweets from 5 to 60 seconds and measure the
energy-impact from storing them durably on the wear-
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Figure 9: Performance and energy usage of notification
workload with different data size.

able. Figure 8 shows these results.
WearDrive reduces energy usage by 1.2–2.9x com-

pared with the default option of WearSDK-BLE for to-
day’s wearable applications. The benefits are made pos-
sible not only because of the performance benefits of BB-
RAM, but also because of the energy-benefits of HYN.
Faster storage operations help the CPU and network go
back to sleep faster and reduce the energy footprint.

With HYN, WearDrive uses WFD when the average
interval between notifications is small enough to war-
rant keeping WFD active (20 seconds for our hardware).
When the interval is further increased, WearDrive will
intelligently turn off WFD and use BLE to send noti-
fications. The hybrid networking protocol also brings
benefit to WearSDK (see WearSDK-HYN in Figure 8).
For long intervals, WearDrive still performs better than
WearSDK-BLE, because of its faster storage.

Effects of batching notifications. Buffering data on
the phone gives HYN more opportunity to exploit the en-
ergy efficiency of the WFD protocol. We vary the size of
the notifications pushed by the phone to wearable from
128 bytes to 1KB. The batch size that the data is sent
ranges from 10 to 100. This experiment allows us to
study the energy-benefits of delaying notifications from
applications that are less interactive than instant mes-
sages, such as social networking updates and even email
in some cases.

Figure 9(a) shows the results for tweets which are
short social networking messages that can tolerate delay.
Compared to WearSDK-BLE, WearDrive takes 2.93x
less time, while saving energy by 2.23x. The overhead of



WearSDK is reduced with WFD and HYN for large num-
ber of notifications. For small number of notifications
such as 10 notifications, HYN will use BLE instead of
WFD for data transfer. The execution time of WearSDK-
WFD is less than WearSDK-BLE and WearSDK-HYN,
but its energy usage is larger as the overhead on WiFi
discovery and connection offsets its benefit on data trans-
fer. WearDrive is 1.81x more energy efficient than
WearSDK-HYN because of BB-RAM’s fast durability.

Likewise for email, as shown in Figure 9(b), the ben-
efits of HYN when batching when possible are appar-
ent. However, WearDrive is 2.49x more energy efficient
than WearSDK-HYN because of the fast durability guar-
antee provided by BB-RAM. Overall, WearDrive helps
extended-display applications not only by making the
energy-batching tradeoff straightforward to exploit but
also by providing benefits for applications that are in-
teractive by enabling fast durability.

5 Related Work
WearDrive is built upon existing work on mobile storage
systems, hybrid wireless networks and data management
for Internet of Things (IoT).

Energy-efficient mobile storage: Kim et al. [26] pro-
vided the evidence that slow flash technologies such as
SD and eMMC are the primary performance bottleneck
for several classes of mobile applications. Our previous
work [31] studied the energy overhead of mobile storage
systems and found that the mobile software stack con-
sumes more power than storage hardware. These find-
ings motivate our work, as these overheads become more
prominent on wearables where the battery is more con-
strained than on phones.

Recent optimizations to mobile storage [27, 22] ad-
dress some of the performance problems, but flash is
still 10,000x slower compared to DRAM. Emerging non-
volatile memory (NVM) technologies like PCM [29, 30,
6] are not yet available in the market. Battery-backed
RAM [34, 38, 32] is viable because batteries, DRAM
and flash are pervasive in mobile systems. Luo et al. [34]
proposed QuasiNVRAM that is a dedicated, known, con-
tiguous region of physical memory to provide perfor-
mance benefits for phone applications that use SQLite on
Android. WearDrive’s BB-RAM improves upon Quas-
iNVRAM by dynamically adapting to memory pressure,
not losing data during any class of crashes and by ex-
ploiting application characteristics to provide energy and
performance benefits.

Rio [45], BlueFS [39], EnsemBlue [40] Simba [1],
Segank [47], Bayou [49] and PersonalRAID [46] are
distributed file system techniques to share personal data
efficiently across mobile consumer electronic devices.
WearDrive is an energy-efficient storage system for data
intensive wearable workloads like extended-display and

sensor data analysis where the workload characteristic of
focus on the newest data is exploited to provide a quick
and energy-efficient mechanism to span data and compu-
tation across the wearable and the phone.

Data management for IoT: Time-series
databases [18, 15, 50] enable computations over
logs of sensor values. WearDrive is designed to provide
time-series data from sensors to applications on the
phone at a low-energy cost to enable such computa-
tions [37, 54, 42]. Android Wear SDK [3] provides
a library to share data between wearables and phone
via Bluetooth. WearDrive additionally takes energy-
efficiency as its primary design consideration, exploits
the recency-focused nature of wearable applications and
provides a low-energy durable storage and communi-
cation mechanism. WearDrive can also provide sensor
data to cloud-based fitness APIs [16, 12, 4] on the phone
at a low-energy cost.

Energy-efficient hybrid networks: Blue-
Fi [2], TailEnder [7], Turducken [48], WASP [25],
CoolSpots [41] and Bluetooth high speed wireless [10]
design heterogeneous networks for efficient data
transfer. We draw upon these works and present an
energy-efficient hybrid data transfer mechanism by ex-
ploiting application knowledge. We find that awareness
of data transfer size coupled with the technique where
BLE connection is used to predict WiFi’s quality enables
a mechanism to send data efficiently.

6 Conclusion
WearDrive demonstrates that battery-backed RAM (BB-
RAM) can provide significant performance and energy
benefits for wearable applications. It also shows how
Bluetooth and WiFi can be used in combination to pro-
vide a low-energy communication link (HYN) between
the wearables and the phone. BB-RAM in combina-
tion with HYN provides a quick and energy-efficient way
for wearable applications to span data across all the de-
vices on the body enabling new functionalities for users.
We validate these benefits with various typical wear-
able applications using a new wearable benchmarking
suite that we develop, and show that WearDrive is 1.16-
1.55x more energy-efficient compared to existing solu-
tions. WearDrive can leverage phone’s capabilities to re-
duce energy usage of wearables by up to 15.21x, with
trivial impact on phone for realistic wearable workloads.
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