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Abstract: As cloud services grow to span more and more
globally distributed datacenters, there is an increasingly
urgent need for automated mechanisms to place applica-
tion data across these datacenters. This placement must
deal with business constraints such as WAN bandwidth
costs and datacenter capacity limits, while also mini-
mizing user-perceived latency. The task of placement is
further complicated by the issues of shared data, data
inter-dependencies, application changes and user mobil-
ity. We document these challenges by analyzing month-
long traces from Microsoft’s Live Messenger and Live
Mesh, two large-scale commercial cloud services.

We present Volley, a system that addresses these chal-
lenges. Cloud services make use of Volley by submitting
logs of datacenter requests. Volley analyzes the logs us-
ing an iterative optimization algorithm based on data ac-
cess patterns and client locations, and outputs migration
recommendations back to the cloud service.

To scale to the data volumes of cloud service logs,
Volley is designed to work in SCOPE [5], a scalable
MapReduce-style platform; this allows Volley to per-
form over 400 machine-hours worth of computation in
less than a day. We evaluate Volley on the month-long
Live Mesh trace, and we find that, compared to a state-
of-the-art heuristic that places data closest to the pri-
mary IP address that accesses it, Volley simultaneously
reduces datacenter capacity skew by over 2 X, reduces
inter-datacenter traffic by over 1.8x and reduces 75th
percentile user-latency by over 30%.

1 Introduction

Cloud services continue to grow rapidly, with ever
more functionality and ever more users around the globe.
Because of this growth, major cloud service providers
now use tens of geographically dispersed datacenters,
and they continue to build more [10]. A major unmet
challenge in leveraging these datacenters is automati-
cally placing user data and other dynamic application
data, so that a single cloud application can serve each
of its users from the best datacenter for that user.

At first glance, the problem may sound simple: de-
termine the user’s location, and migrate user data to
the closest datacenter. However, this simple heuris-
tic ignores two major sources of cost to datacenter
operators: WAN bandwidth between datacenters, and
over-provisioning datacenter capacity to tolerate highly
skewed datacenter utilization. In this paper, we show that
a more sophisticated approach can both dramatically re-
duce these costs and still further reduce user latency. The
more sophisticated approach is motivated by the follow-
ing trends in modern cloud services:

Shared Data: Communication and collaboration are
increasingly important to modern applications. This
trend is evident in new business productivity software,
such as Google Docs [16] and Microsoft Office On-
line [32], as well as social networking applications such
as Facebook [12], LinkedIn [26], and Twitter [43]. These
applications have in common that many reads and writes
are made to shared data, such as a user’s Facebook wall,
and the user experience is degraded if updates to shared
data are not quickly reflected to other clients. These
reads and writes are made by groups of users who need
to collaborate but who may be scattered worldwide, mak-
ing it challenging to place and migrate the data for good
performance.

Data Inter-dependencies: The task of placing shared
data is made significantly harder by inter-dependencies
between data. For example, updating the wall for a
Facebook user may trigger updating the data items that
hold the RSS feeds of multiple other Facebook users.
These connections between data items form a commu-
nication graph that represents increasingly rich applica-
tions. However, the connections fundamentally trans-
form the problem’s mathematics: in addition to connec-
tions between clients and their data, there are connec-
tions in the communication graph in-between data items.
This motivates algorithms that can operate on these more
general graph structures.

Application Changes: Cloud service providers want
to release new versions of their applications with ever
greater frequency [35]. These new application features



can significantly change the patterns of data sharing and
data inter-dependencies, as when Facebook released its
instant messaging feature.

Reaching Datacenter Capacity Limits: The rush in
industry to build additional datacenters is motivated in
part by reaching the capacity constraints of individual
datacenters as new users are added [10]. This in turn
requires automatic mechanisms to rapidly migrate appli-
cation data to new datacenters to take advantage of their
capacity.

User Mobility: Users travel more than ever to-
day [15]. To provide the same rapid response regard-
less of a user’s location, cloud services should quickly
migrate data when the migration cost is sufficiently inex-
pensive.

In this paper we present Volley, a system for auto-
matic data placement across geo-distributed datacenters.
Volley incorporates an iterative optimization algorithm
based on weighted spherical means that handles the com-
plexities of shared data and data inter-dependencies, and
Volley can be re-run with sufficient speed that it handles
application changes, reaching datacenter capacity limits
and user mobility. Datacenter applications make use of
Volley by submitting request logs (similar to Pinpoint [7]
or X-Trace [14]) to a distributed storage system. These
request logs include the client IP addresses, GUIDs iden-
tifying the data items accessed by the client requests, and
the structure of the request “call tree”, such as a client re-
quest updating Facebook wall 1, which triggers requests
to data items 2 and 3 handling Facebook user RSS feeds.

Volley continuously analyzes these request logs to
determine how application data should be migrated be-
tween datacenters. To scale to these data sets, Volley is
designed to work in SCOPE [5], a system similar to Map-
Reduce [11]. By leveraging SCOPE, Volley performs
more than 400 machines hours worth of computation in
less then a day. When migration is found to be worth-
while, Volley triggers application-specific data migration
mechanisms. While prior work has studied placing static
content across CDNSs, Volley is the first research system
to address placement of user data and other dynamic ap-
plication data across geographically distributed datacen-
ters.

Datacenter service administrators make use of Volley
by specifying three inputs. First, administrators define
the datacenter locations and a cost and capacity model
(e.g., the cost of bandwidth between datacenters and the
maximum amount of data per datacenter). Second, they
choose the desired trade-off between upfront migration
cost and ongoing better performance, where ongoing per-
formance includes both minimizing user-perceived la-
tency and reducing the costs of inter-datacenter commu-
nication. Third, they specify data replication levels and
other constraints (e.g., three replicas in three different

datacenters all located within Europe). This allows ad-
ministrators to use Volley while respecting other external
factors, such as contractual agreements and legislation.

In the rest of this paper, we first quantify the preva-
lence of trends such as user mobility in modern cloud
services by analyzing month-long traces from Live Mesh
and Live Messenger, two large-scale commercial data-
center services. We then present the design and imple-
mentation of the Volley system for computing data place-
ment across geo-distributed datacenters. Next, we evalu-
ate Volley analytically using the month-long Live Mesh
trace, and we evaluate Volley on a live testbed consist-
ing of 20 VMs located in 12 commercial datacenters dis-
tributed around the world. Previewing our results, we
find that compared to a state-of-the-art heuristic, Volley
can reduce skew in datacenter load by over 2, decrease
inter-datacenter traffic by over 1.8x, and reduce 75th
percentile latency by over 30%. Finally, we survey re-
lated work and conclude.

2 Analysis of Commercial Cloud-Service
Traces

We begin by analyzing workload traces collected by
two large datacenter applications, Live Mesh [28] and
Live Messenger [29]. Live Mesh provides a number of
communication and collaboration features, such as file
sharing and synchronization, as well as remote access to
devices running the Live Mesh client. Live Messenger
is an instant messaging application. In our presentation,
we also use Facebook as a source for examples due to its
ubiquity.

The Live Mesh and Live Messenger traces were col-
lected during June 2009, and they cover all users and de-
vices that accessed these services over this entire month.
The Live Mesh trace contains a log entry for every mod-
ification to hard state (such as changes to a file in the
Live Mesh synchronization service) and user-visible soft
state (such as device connectivity information stored on
a pool of in-memory servers [1]). The Live Messenger
trace contains all login and logoff events, all IM con-
versations and the participants in each conversation, and
the total number of messages in each conversation. The
Live Messenger trace does not specify the sender or the
size of individual messages, and so for simplicity, we
model each participant in an IM conversation as hav-
ing an equal likelihood of sending each message, and
we divide the total message bytes in this conversation
equally among all messages. A prior measurement study
describes many aspects of user behavior in the Live Mes-
senger system [24]. In both traces, clients are identified
by application-level unique identifiers.

To estimate client location, we use a standard com-
mercial geo-location database [34] as in prior work [36].
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Figure 1. Simplified data inter-dependencies in Face-
book (left) and Live Mesh (right). In Facebook, an “up-
dated wall” request arrives at a Facebook wall data item,
and this data item sends the request to an RSS feed data
item, which then sends it to the other client. In Live
Mesh, a “publish new IP” request arrives at a Device
Connectivity data item, which forwards it to a Publish-
subscribe data item. From there, it is sent to a Queue
data item, which finally sends it on to the other client.
These pieces of data may be in different datacenters, and
if they are, communication between data items incurs ex-
pensive inter-datacenter traffic.
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Figure 2. Two clients, their four data items and the com-
munication between them in the simplified Facebook ex-
ample. Data placement requires appropriately mapping
the four data items to datacenters so as to simultaneously
achieve low inter-datacenter traffic, low datacenter ca-
pacity skew, and low latency.
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The database snapshot is from June 30th 2009, the very
end of our trace period.

We use the traces to study three of the trends moti-
vating Volley: shared data, data inter-dependencies, and
user mobility. The other motivating trends for Volley,
rapid application changes and reaching datacenter capac-
ity limits, are documented in other data sources, such as
developers describing how they build cloud services and
how often they have to release updates [1, 35]. To pro-
vide some background on how data inter-dependencies
arise in commercial cloud services, Figure 1 shows sim-
plified examples from Facebook and Live Mesh. In the
Facebook example, Client 1 updates its Facebook wall,
which is then published to Client 2; in Facebook, this al-
lows users to learn of each other’s activities. In the Live
Mesh example, Client 1 publishes its new IP address,
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Figure 4. Distribution of clients in the Messenger trace.

which is routed to Client 2, enabling Client 2 to con-
nect directly to Client 1; in Live Mesh, this is referred to
as a notification session, and it enables both efficient file
sharing and remote device access. The Figure caption
provides additional details, as do other publications [1].
In both cases, the client operations involve multiple data-
center items; inter-datacenter traffic is minimized by co-
locating these items, while the latency of this particular
request is minimized by placing the data items as close
as possible to the two clients.

Figure 2 attempts to convey some intuition for why
data sharing and inter-dependencies make data place-
ment challenging. The figure shows the web of connec-
tions between just two clients in the simplified Facebook
example; these inter-connections determine whether a
mapping of data items to datacenters achieves low inter-
datacenter traffic, low datacenter capacity skew, and low
latency. Actual cloud services face this problem with
hundreds of millions of clients. Each client may ac-
cess many data items, and these data items may need to
communicate with each other to deliver results to clients.
Furthermore, the clients may access the data items from
a variety of devices at different locations. This leads to a
large, complicated graph.

In order to understand the potential for this kind of
inter-connection to occur between clients that are quite
distant, we begin by characterizing the geographic diver-
sity of clients in the traces.

Client Geographic Diversity: We first study the
traces to understand the geographic diversity of these ser-
vices’ client populations. Figures 3 and 4 show the distri-
bution of clients in the two traces on a map of the world.
The figures show that both traces contain a geographi-
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Figure 5. Sharing of data between geographically dis-
tributed clients in the Messenger and Mesh traces. Large
amounts of sharing occur between distant clients.
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Figure 6. Data inter-dependencies in Live Mesh be-
tween Publish-subscribe objects and Queue objects. A
user that updates a hard state data item, such as a docu-
ment stored in Live Mesh, will cause an update message
to be generated at the Publish-subscribe object for that
document, and all Queue objects that subscribe to it will
receive a copy of the message. Each user or device that is
sharing that document will have a unique Queue. Many
Publish-subscribe objects are subscribed to by a single
Queue, but there is a long tail of popular objects that are
subscribed to by many Queues.
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Figure 7. Mobility of clients in the Messenger and Mesh
traces. Most clients do not travel. However, a significant
fraction do travel quite far.

cally diverse set of clients, and thus these service’s per-
formance may significantly benefit from intelligent data
placement.

Geographically Distant Data Sharing: We next
study the traces to understand whether there is significant
data sharing among distant users. For each particular
data item, we compute its centroid (centroid on a sphere
is computed using the weighted spherical mean method-
ology, which we describe in detail in Section 3). Fig-

ure 5 shows a CDF for the distance over which clients ac-
cess data placed according to its centroid; data that is not
shared has an access distance of 0, as does data shared by
users whose IP addresses map to the same geographic lo-
cation. Given the amount of collaboration across nations
both within corporations and between them, it is perhaps
not surprising that large amounts of sharing happens be-
tween very distant clients. This data suggests that even
for static clients, there can be significant benefits to plac-
ing data closest to those who use it most heavily, rather
than just placing it close to some particular client that
accesses the data.

Data Inter-dependencies: We proceed to study
the traces to understand the prevalence of data inter-
dependencies. Our analysis focuses on Live Mesh be-
cause data inter-dependencies in Live Messenger have
been documented in detail in prior work [24]. Figure 6
shows the number of Queue objects subscribing to re-
ceive notifications from each Publish-subscribe object;
each such subscription creates a data inter-dependency
where the Publish-subscribe object sends messages to
the Queue object. We see that some Publish-subscribe
objects send out notifications to only a single Queue ob-
ject, but there is a long tail of popular Publish-subscribe
objects. The presence of such data inter-dependencies
motivates the need to incorporate them in Volley.

Client Mobility: We finally study the traces to un-
derstand the amount of client mobility in these services’
client populations. Figure 7 shows a CDF characterizing
client mobility over the month of the trace. To compute
this CDF, we first computed the location of each client
at each point in time that it contacted the Live Mesh
or Live Messenger application using the previously de-
scribed methodology, and we then compute the client’s
centroid. Next, we compute the maximum distance be-
tween each client and its centroid. As expected, we ob-
serve that most clients do not move. However, a signifi-
cant fraction do move (more in the Messenger trace than
the Mesh trace), and these movements can be quite dra-
matic — for comparison purposes, antipodal points on the
earth are slightly more than 12,000 miles apart.

From these traces, we cannot characterize the reason
for the movement. For example, it could be travel, or it
could be that the clients are connecting in through a VPN
to a remote office, causing their connection to the public
Internet to suddenly emerge in a dramatically different
location. For Volley’s goal of reducing client latency,
there is no need to distinguish between these different
causes; even though the client did not physically move in
the VPN case, client latency is still minimized by moving
data closer to the location of the client’s new connection
to the public Internet. The long tail of client mobility
suggests that for some fraction of clients, the ideal data
placement changes significantly during this month.
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Figure 8. Dataflow for an application using Volley.

This data does leave open the possibility that some
fraction of the observed clients are bots that do not cor-
respond to an actual user (i.e., they are modified clients
driven by a program). The current analysis does fil-
ter out the automated clients that the service itself uses
for doing performance measurement from various loca-
tions. Prior work has looked at identifying bots automati-
cally [45], and Volley might benefit from leveraging such
techniques.

3 System Design and Implementation

The overall flow of data in the system is shown in Fig-
ure 8. Applications make use of Volley by logging data
to the Cosmos [5] distributed storage system. The ad-
ministrator must also supply some inputs, such as a cost
and capacity model for the datacenters. The Volley sys-
tem frequently runs new analysis jobs over these logs,
and computes migration decisions. Application-specific
jobs then feed these migration decisions into application-
specific data migration mechanisms. We now describe
these steps in greater detail.

3.1 Logging Requests

To utilize Volley, applications have to log information
on the requests they process. These logs must enable
correlating requests into “call trees” or “runtime paths”
that capture the logical flow of control across compo-
nents, as in Pinpoint [7] or X-Trace [14]. If the source
or destination of a request is movable (i.e., because it is
a data item under the control of the cloud service), we
log a GUID identifier rather than its IP address; IP ad-
dresses are only used for endpoints that are not movable
by Volley, such as the location that a user request came
from. Because Volley is responsible for placing all the
data named by GUIDs, it already knows their current lo-
cations in the steady state. It is sometimes possible for
both the source and destination of a request to be referred
to by GUIDs—this would happen, for example, in Fig-
ure 1, where the GUIDs would refer to Client 1’s Face-
book wall and Client 2’s Facebook RSS feed. The exact
fields in the Volley request logs are shown in Table 1. In
total, each record requires only 100 bytes.

There has been substantial prior work modifying ap-
plications to log this kind of information, and many com-

mercial applications (such as the Live Mesh and Live
Messenger services analyzed in Section 2) already log
a superset of this data. For such applications, Volley can
incorporate simple filters to extract out the relevant sub-
set of the logs.

For the Live Mesh and Live Messenger commercial
cloud services, the data volumes from generating Volley
logs are much less than the data volumes from processing
user requests. For example, recording Volley logs for all
the requests for Live Messenger, an IM service with hun-
dreds of millions of users, only requires hundreds of GB
per day, which leads to an average bandwidth demand in
the tens of Mbps [24]. Though we cannot reveal the ex-
act bandwidth consumption of the Live Mesh and Live
Messenger services due to confidentiality concerns, we
can state that tens of Mbps is a small fraction of the total
bandwidth demands of the services themselves. Based
on this calculation, we centralize all the logs in a single
datacenter; this then allows Volley to run over the logs
multiple times as part of computing a recommended set
of migrations.

3.2 Additional Inputs

In addition to the request logs, Volley requires four
inputs that change on slower time scales. Because they
change on slower time scales, they do not noticeably con-
tribute to the bandwidth required by Volley. These ad-
ditional inputs are (1) the requirements on RAM, disk,
and CPU per transaction for each type of data handled
by Volley (e.g., a Facebook wall), (2) a capacity and
cost model for all the datacenters, (3) a model of la-
tency between datacenters and between datacenters and
clients, and (4) optionally, additional constraints on data
placement (e.g., legal constraints). Volley also requires
the current location of every data item in order to know
whether a computed placement keeps an item in place or
requires migration. In the steady state, these locations are
simply remembered from previous iterations of Volley.

In the applications we have analyzed thus far, the ad-
ministrator only needs to estimate the average require-
ments on RAM, disk and CPU per data item; the ad-
ministrator can then rely on statistical multiplexing to
smooth out the differences between data items that con-
sume more or fewer resources than average. Because of
this, resource requirements can be estimated by looking
at OS-provided performance counters and calculating the
average resource usage for each piece of application data
hosted on a given server.

The capacity and cost models for each datacenter
specify the RAM, disk and CPU provisioned for the ser-
vice in that datacenter, the available network bandwidth
for both egress and ingress, and the charging model for
service use of network bandwidth. While energy usage
is a significant cost for datacenter owners, in our expe-



Request Log Record Format

Field Meaning

Timestamp

Time in seconds when request was received (4B)

Source-Entity

A GUID if the source is another data item, an IP address if it is a client (40B)

Request-Size Bytes in request (8B)

Destination-Entity

Like Source-Entity, either a GUID or an IP address (40B)

Transaction-Id

Used to group related requests (8B)

Table 1. To use Volley, the application logs a record with these fields for every request. The meaning and size in bytes

of each field are also shown.

Migration Proposal Record Format

Field Meaning
Entity The GUID naming the entity (40B)
Datacenter The GUID naming the new datacenter for this entity (40B)

Latency-Change

The average change in latency per request to this object (4B)

Ongoing-Bandwidth-Change

The change in egress and ingress bandwidth per day (4B)

Migration-Bandwidth

The one-time bandwidth required to migrate (4B)

Table 2. Volley constructs a set of proposed migrations described using the records above. Volley then selects the
final set of migrations according to the administrator-defined trade-off between performance and cost.

rience this is incorporated as a fixed cost per server that
is factored in at the long timescale of server provision-
ing. Although datacenter owners may be charged based
on peak bandwidth usage on individual peering links, the
unpredictability of any given service’s contribution to a
datacenter-wide peak leads datacenter owners to charge
services based on total bandwidth usage, as in Amazon’s
EC2 [2]. Accordingly, Volley helps services minimize
their total bandwidth usage. We expect the capacity and
cost models to be stable at the timescale of migration.
For fluid provisioning models where additional datacen-
ter capacity can be added dynamically as needed for a
service, Volley can be trivially modified to ignore provi-
sioned capacity limits.

Volley needs a latency model to make placement de-
cisions that reduce user perceived latency. It allows dif-
ferent static or dynamic models to be plugged in. Vol-
ley migrates state at large timescales (measured in days)
and hence it should use a latency model that is stable
at that timescale. Based on the large body of work
demonstrating the effectiveness of network coordinate
systems, we designed Volley to treat latencies between
IPs as distances in some n-dimensional space specified
by the model. For the purposes of evaluation in the pa-
per, we rely on a static latency model because it is sta-
ble over these large timescales. This model is based on
a linear regression of great-circle distance between geo-
graphic coordinates; it was developed in prior work [36],
where it was compared to measured round trip times
across millions of clients and shown to be reasonably ac-
curate. This latency model requires translating client IP
addresses to geographic coordinates, and for this purpose
we rely on the geo-location database mentioned in Sec-
tion 2. This geo-location database is updated every two

weeks. In this work, we focus on improving latency to
users and not bandwidth to users. Incorporating band-
width would require both specifying a desired latency
bandwidth tradeoff and a model for bandwidth between
arbitrary points in the Internet.

Constraints on data placement can come in many
forms. They may reflect legal constraints that data be
hosted only in a certain jurisdiction, or they may reflect
operational considerations requiring two replicas to be
physically located in distant datacenters. Volley models
such replicas as two distinct data items that may have
a large amount of inter-item communication, along with
the constraint that they be located in different datacen-
ters. Although the commercial cloud service operators
we spoke with emphasized the need to accommodate
such constraints, the commercial applications we study
in this paper do not currently face constraints of this
form, and so although Volley can incorporate them, we
did not explore this in our evaluation.

3.3 Volley Algorithm

Once the data is in Cosmos, Volley periodically an-
alyzes it for migration opportunities. To perform the
analysis, Volley relies on the SCOPE [5] distributed ex-
ecution infrastructure, which at a high level resembles
MapReduce [11] with a SQL-like query language. In our
current implementation, Volley takes approximately 14
hours to run through one month’s worth of log files; we
analyze the demands Volley places on SCOPE in more
detail in Section 4.4.

Volley’s SCOPE jobs are structured into three phases.
The search for a solution happens in Phase 2. Prior
work [36] has demonstrated that starting this search in
a good location improves convergence time, and hence
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Figure 9. Weighted spherical mean calculation. The
weighted spherical mean (wsm()) is defined recursively
as a weighted interpolation (interp()) between pairs of
points. Here, w; is the weight assigned to ©;, and T; (the
coordinates for node i) consists of ¢;, the latitudinal dis-
tance in radians between node i and the North Pole, and
i, the longitude in radians of node i. The new (inter-
polated) node C consists of w parts node A and 1 — w
parts node B; d is the current distance in radians be-
tween A and B; vy is the angle from the North Pole to B to
A (which stays the same as A moves); (3 is the angle from
B to the North Pole to A’s new location. These are used
to compute T, the result of the interp(). For simplicity
of presentation, we omit describing the special case for
antipodal nodes.

Phase 1 computes a reasonable initial placement of data
items based on client IP addresses. Phase 2 iteratively
improves the placement of data items by moving them
freely over the surface of the earth—this phase requires
the bulk of the computational time and the algorithm
code. Phase 3 does the needed fix up to map the data
items to datacenters and to satisfy datacenter capacity
constraints. The output of the jobs is a set of poten-
tial migration actions with the format described in Ta-
ble 2. Many adaptive systems must incorporate explicit
elements to prevent oscillations. Volley does not incor-
porate an explicit mechanism for oscillation damping.
Oscillations would occur only if user behavior changed
in response to Volley migration in such a way that Vol-
ley needed to move that user’s state back to a previous
location.

Phase 1: Compute Initial Placement. We first map
each client to a set of geographic coordinates using the
commercial geo-location database mentioned earlier.
This IP-to-location mapping may be updated between
Volley jobs, but it is not updated within a single Volley
job. We then map each data item that is directly accessed
by a client to the weighted average of the geographic
coordinates for the client IPs that access it. This is done
using the weighted spherical mean calculation shown
in Figure 9. The weights are given by the amount of
communication between the client nodes and the data
item whose initial location we are calculating. The
weighted spherical mean calculation can be thought
of as drawing an arc on the earth between two points,
and then finding the point on the arc that interpolates
between the two initial points in proportion to their
weight. This operation is then repeated to average in
additional points. The recursive definition of weighted
spherical mean in Figure 9 is conceptually similar to
defining the more familiar weighted mean recursively,

e.g.,

weighted-mean({3, z1. }, {2, z;}, {1, 2;}) =

<2 -z + % - weighted-mean({2, z }, {1, xl}))
Compared to weighted mean, weighted spherical mean
has the subtlety that the rule for averaging two individual
points has to use spherical coordinates.

Figure 10 shows an example of this calculation us-
ing data from the Live Mesh trace: five different devices
access a single shared object from a total of eight dif-
ferent IP addresses; device D accesses the shared object
far more than the other devices, and this leads to the
weighted spherical mean (labeled “centroid” in the fig-
ure) being placed very close to device D.

Finally, for each data item that is never accessed di-
rectly by clients (e.g., the Publish-subscribe data item in
the Live Mesh example of Figure 1), we map it to the
weighted spherical mean of the data items that commu-
nicate with it using the positions these other items were
already assigned.

Phase 2: Iteratively Move Data to Reduce Latency.
Volley iteratively moves data items closer to both clients
and to the other data items that they communicate with.
This iterative update step incorporates two earlier ideas:
a weighted spring model as in Vivaldi [9] and spherical
coordinates as in Htrae [36]. Spherical coordinates de-
fine the locations of clients and data items in a way that
is more conducive to incorporating a latency model for
geographic locations. The latency distance between two
nodes and the amount of communication between them
increase the spring force that is pulling them together.
However, unlike a network coordinate system, nodes in
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Figure 11. Update rule applied to iteratively move
nodes with more communication closer together. Here, w
is a fractional weight that determines how much node A
is moved towards node B, | is the amount of commu-
nication between the two nodes, d is the distance between
nodes A and B, """ and T3 are the current lo-
cations of node A and B, T is the location of A after
the update, and k is an algorithmic constant.

Volley only experience contracting forces; the only fac-
tor preventing them from collapsing to a single location
is the fixed nature of client locations. This yields the
update rule shown in Figure 11. In our current imple-
mentation, we simply run a fixed number of iterations of
this update rule; we show in Section 4 that this suffices
for good convergence.

Intuitively, Volley’s spring model attempts to bring
data items closer to users and to other data items that
they communicate with regularly. Thus it is plausible
that Volley’s spring model will simultaneously reduce
latency and reduce inter-datacenter traffic; we show in
Section 4 that this is indeed the case for the commercial
cloud services that we study.

Phase 3: Iteratively Collapse Data to Datacenters.
After computing a nearly ideal placement of the data

items on the surface of the earth, we have to modify this
placement so that the data items are located in datacen-
ters, and the set of items in each datacenter satisfies its
capacity constraints. Like Phase 2, this is done itera-
tively: initially, every data item is mapped to its clos-
est datacenter. For datacenters that are over their capac-
ity, Volley identifies the items that experience the fewest
accesses, and moves all of them to the next closest data-
center. Because this may still exceed the total capacity of
some datacenter due to new additions, Volley repeats the
process until no datacenter is over capacity. Assuming
that the system has enough capacity to successfully host
all items, this algorithm always terminates in at most as
many iterations as there are datacenters in the system.
For each data item that has moved, Volley outputs
a migration proposal containing the new datacenter lo-
cation, the new values for latency and ongoing inter-
datacenter bandwidth, and the one-time bandwidth re-
quired for this migration. This is a straightforward cal-
culation using the old data locations, the new data lo-
cations, and the inputs supplied by the datacenter ser-
vice administrator, such as the cost model and the latency
model. These migration proposals are then consumed by
application-specific migration mechanisms.

3.4 Application-specific Migration

Volley is designed to be usable by many different
cloud services. For Volley to compute a recommended
placement, the only requirement it imposes on the cloud



service is that it logs the request data described in Ta-
ble 1. Given these request logs as input, Volley outputs a
set of migration proposals described in Table 2, and then
leaves the actual migration of the data to the cloud ser-
vice itself. If the cloud service also provides the initial
location of data items, then each migration proposal will
include the bandwidth required to migrate, and the ex-
pected change in latency and inter-datacenter bandwidth
after migration.

Volley’s decision to leave migration to application-
specific migration mechanisms allows Volley to be more
easily applied to a diverse set of datacenter applications.
For example, some datacenter applications use migra-
tion mechanisms that follow the pattern of marking data
read-only in the storage system at one location, copy-
ing the data to a new location, updating an application-
specific name service to point to the new copy, marking
the new copy as writeable, and then deleting the old copy.
Other datacenter applications maintain multiple replicas
in different datacenters, and migration may simple re-
quire designating a different replica as the primary. In-
dependent of the migration mechanism, datacenter appli-
cations might desire to employ application-specific throt-
tling policies, such as only migrating user state when an
application-specific predictive model suggests the user is
unlikely to access their state in the next hour. Because
Volley does not attempt to migrate the data itself, it does
not interfere with these techniques or any other migration
technique that an application may wish to employ.

4 Evaluation

In our evaluation, we compare Volley to three heuris-
tics for where to place data and show that Volley sub-
stantially outperforms all of them on the metrics of dat-
acenter capacity skew, inter-datacenter traffic, and user-
perceived latency. We focus exclusively on the month-
long Live Mesh trace for conciseness. For both the
heuristics and Volley, we first compute a data placement
using a week of data from the Live Mesh trace, and then
evaluate the quality of the resulting placement on the
following three weeks of data. For all four placement
methodologies, any data that appears in the three-week
evaluation window but not in the one-week placement
computation window is placed in a single datacenter lo-
cated in the United States (in production, this new data
will be handled the next time the placement methodol-
ogy is run). Placing all previously unseen data in one
datacenter penalizes the different methodologies equally
for such data.

The first heuristic we consider is commonlP — place
data as close as possible to the IP address that most com-
monly accesses it. The second heuristic is oneDC — put
all data in one datacenter, a strategy still taken by many
companies due to its simplicity. The third heuristic is

hash — hash data to datacenters so as to optimize for
load-balancing. These three heuristics represent reason-
able approaches to optimizing for the three different met-
rics we consider—oneDC and hash optimize for inter-
datacenter traffic and datacenter capacity skew respec-
tively, while commonlIP is a reasonably sophisticated
proposal for optimizing latency.

Throughout our evaluation, we use 12 commercial
datacenters as potential locations. These datacenters are
distributed across multiple continents, but their exact lo-
cations are confidential. Confidentiality concerns also
prevent us from revealing the exact amount of bandwidth
consumed by our services. Thus, we present the inter-
datacenter traffic from different placements using the
metric “fraction of messages that are inter-datacenter.”
This allows an apples-to-apples comparison between the
different heuristics and Volley without revealing the un-
derlying bandwidth consumption. The bandwidth con-
sumption from centralizing Volley logs, needed for Vol-
ley and commonlP, is so small compared to this inter-
datacenter traffic that it does not affect graphs compar-
ing this metric among the heuristics. We configure Vol-
ley with a datacenter capacity model such that no one of
the 12 datacenters can host more than 10% of all data, a
reasonably balanced use of capacity.

All latencies that we compute analytically use the la-
tency model described in Section 3. This requires using
the client’s IP address in the trace to place them at a ge-
ographic location. In this Live Mesh application, client
requests require sending a message to a first data item,
which then sends a second message to a second data
item; the second data item sends a reply, and then the
first data item sends the client its reply. If the data items
are in the same datacenter, latency is simply the round
trip time between the client and the datacenter. If the
data items are in separate datacenters, latency is the sum
of four one-way delays: client to datacenter 1, datacen-
ter 1 to datacenter 2, datacenter 2 back to datacenter 1,
and datacenter 1 back to the client. These latency calcu-
lations leave out other potential protocol overheads, such
as the need to initially establish a TCP connection or to
authenticate; any such protocol overheads encountered
in practice would magnify the importance of latency im-
provements by incurring the latency multiple times. For
clarity of presentation, we consistently group latencies
into 10 millisecond bins in our graphs. The graphs only
present latency up to 250 milliseconds because the better
placement methodologies all achieve latency well under
this for almost all requests.

Our evaluation begins by comparing Volley and the
three heuristics on the metrics of datacenter capacity
skew and inter-datacenter traffic (Section 4.1). Next, we
evaluate the impact of these placements on the latency of
client requests, including evaluating Volley in the con-
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Figure 13. Inter-datacenter traffic under three different
placement heuristics and Volley.

text of a simple, hypothetical example to understand this
impact in detail (Section 4.2). We then evaluate the in-
cremental benefit of Volley as a function of the num-
ber of Volley iterations (Section 4.3). Next, we evaluate
the resource demands of running Volley on the SCOPE
distributed execution infrastructure (Section 4.4). Fi-
nally, we evaluate the impact of running Volley more fre-
quently or less frequently (Section 4.5).

4.1 Impact on Datacenter Capacity Skew and
Inter-datacenter Traffic

We now compare Volley to the three heuristics for
where to place data and show that Volley substantially
outperforms all of them on the metrics of datacenter
capacity skew and inter-datacenter traffic. Figures 12
and 13 show the results: hash has perfectly balanced
use of capacity, but high inter-datacenter traffic; oneDC
has zero inter-datacenter traffic (the ideal), but extremely
unbalanced use of capacity; and commonIP has a mod-
est amount of inter-datacenter traffic, and capacity skew
where 1 datacenter has to support more than twice the
load of the average datacenter. Volley is able to meet a
reasonably balanced use of capacity while keeping inter-
datacenter traffic at a very small fraction of the total num-
ber of messages. In particular, compared to commonlP,
Volley reduces datacenter skew by over 2x and reduces
inter-datacenter traffic by over 1.8x.
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Figure 14. Client request latency under three different
placement heuristics and Volley.

4.2 TImpact on Latency of Client Requests

We now compare Volley to the three heuristics on the
metric of user-perceived latency. Figure 14 shows the
results: hash has high latency; oneDC has mediocre la-
tency; and commonlP has the best latency among the
three heuristics. Although commonIP performs better
than oneDC and hash, Volley performs better still, par-
ticularly on the tail of users that experience high latency
even under the commonIP placement strategy. Com-
pared to commonlP, Volley reduces 75th percentile la-
tency by over 30%.

4.2.1

Previously, we evaluated the impact of placement on
user-perceived latency analytically use the latency model
described in Section 3. In this section, we evaluate Vol-
ley’s latency impact on a live system using a prototype
cloud service. We use the prototype cloud service to em-
ulate Live Mesh for the purpose of replaying a subset of
the Live Mesh trace. We deployed the prototype cloud
service across 20 virtual machines spread across the 12
geographically distributed datacenters, and we used one
node at each of 109 Planetlab sites to act as clients of the
system.

The prototype cloud service consists of four compo-
nents: the frontend, the document service, the publish-
subscribe service, and the message queue service. Each
of these components run on every VM so as to have ev-
ery service running in every datacenter. These compo-
nents of our prototype map directly to the actual Live
Mesh component services that run in production. The
ways in which the production component services co-
operate to provide features in the Live Mesh service is
described in detail elsewhere [1], and we provide only a
brief overview here.

The prototype cloud service exposes a simple fron-
tend that accepts client requests and routes them to the
appropriate component in either its own or another data-
center. In this way, each client can connect directly to
any datacenter, and requests that require an additional
step (e.g., updating an item, and then sending the update
to others) will be forwarded appropriately. This design

Multiple Datacenter Testbed
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Figure 15. Comparing Volley to the commonlP heuristic
on a live system spanning 12 geographically distributed
datacenters and accessed by Planetlab clients. In this
Figure, we use a random sample of the Live Mesh trace.
We see that Volley provides moderately better latency
than the commonlP heuristic.

allows clients to cache the location of the best datacen-
ter to connect to for any given operation, but requests still
succeed if a client request arrives at the wrong datacenter
due to cache staleness.

We walk through an example of how two clients can
rendezvous by using the document, publish-subscribe,
and message queue services. The document service can
store arbitrary data; in this case, the first client can store
its current IP address, and a second client can then read
that IP address from the document service and contact
the first client directly. The publish-subscribe service is
used to send out messages when data in the document
service changes; for example, if the second client sub-
scribes to updates for the first client’s IP address, these
updates will be pro-actively sent to the second client, in-
stead of the second client having to poll the document
service to see if there have been any changes. Finally, the
message queue service buffers messages for clients from
the publish-subscribe service. If the client goes offline
and then reconnects, it can connect to the queue service
and dequeue these messages.

To evaluate both Volley and the commonIP heuristic’s
latency on this live system, we used the same data place-
ments computed on the first week of the Live Mesh trace.
Because the actual Live Mesh service requires more than
20 VMs, we had to randomly sample requests from the
trace before replaying it. We also mapped each client
IP in the trace subset to the closest Planetlab node, and
replayed the client requests from these nodes.

Figure 15 shows the measured latency on the sample
of the Live Mesh trace; recall that we are grouping laten-
cies into 10 millisecond bins for clarity of presentation.
We see that Volley consistently provides better latency
than the commonIP placement. These latency benefits
are visible despite a relatively large number of external
sources of noise, such as the difference between the ac-
tual client locations and the Planetlab locations, differ-
ences between typical client connectivity (that Volley’s

Timestamp | Source- | Request- | Destination- | Transaction-
Entity Size Entity Id
To PSse 100 B Qr 1
To Q' 100 B IP! 1
To+1 PSSt 100 B Q' 2
Tp +1 Q! 100 B 1P? 2
To+2 PSS 100 B Q' 3
To +2 Qr 100 B P2 3
To+5 PSSt 100 B Q2 4
To+5 Q? 100 B Ip! 4

Table 3. Hypothetical application logs. In this example,
IP" is located at geographic coordinates (10,110) and
I1P? at (10,10).

Data commonlIP | Volley Volley
Phase 1 Phase 2
PSS* | (10,110) (14.7,43.1) | (15.1,49.2)
PSSt | (10,10) (15.3,65.6) | (15.3,63.6)
Q' (10,10) (14.7,43.1) | (15.1,50.5)
Q? (10,110) (10,110) (13.6,88.4)

Table 4. CommonlP and Volley placements computed
using Table 3, assuming a datacenter at every point
on Earth and ignoring capacity constraints and inter-
datacenter traffic.

Transaction- commonIP Volley Phase 2

Id distance | latency distance | latency
1 27,070 miles 396 ms | 8,202 miles 142 ms
2 0 miles 31 ms | 7,246 miles 129 ms
3 0 miles 31 ms | 7,246 miles 129 ms
4 13,535 miles 182 ms | 6,289 miles 116 ms

Table 5. Distances traversed and latencies of user re-
quests in Table 3 using commonIP and Volley Phase 2
placements in Table 4. Note that our latency model [36]
includes an empirically-determined access penalty for
all communication involving a client.

latency model relies on) and Planetlab connectivity, and
occasional high load on the Planetlab nodes leading to
high slice scheduling delays.

Other than due to sampling of the request trace, the
live experiment has no impact on the datacenter capac-
ity skew and inter-datacenter traffic differences between
the two placement methodologies. Thus, Volley offers
an improvement over commonIP on every metric simul-
taneously, with the biggest benefits coming in reduced
inter-datacenter traffic and reduced datacenter capacity
skew.

4.2.2 Detailed Examination of Latency Impact

To examine in detail how placement decisions im-
pact latencies experienced by user requests, we now con-
sider a simple example. Table 3 lists four hypothetical
Live Mesh transactions involving four data objects and
clients behind two IP addresses. For the purposes of this
simple example, we assume there is a datacenter at ev-
ery point on Earth with infinite capacity and no inter-
datacenter traffic costs. We pick the geographic coor-
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Figure 16. Average distance traveled by each object
during successive Volley Phase 2 iterations. The aver-
age incorporates some objects traveling quite far, while
many travel very little.

dinates of (10,110) and (10,10) for ease of examining
how far each object’s placement is from the client IP
addresses. Table 4 shows the placements calculated by
commonIP and Volley in Phases 1 and 2. In Phase 1,
Volley calculates the weighted spherical mean of the ge-
ographic coordinates for the client IPs that access each
“Q” object. Hence Q' is placed roughly two-thirds along
the great-circle segment from I P! to P2, while Q? is
placed at TP'. Phase 1 similarly calculates the place-
ment of each “PSS” object using these coordinates for
“Q” objects. Phase 2 then iteratively refines these coor-
dinates.

We now consider the latency impact of these place-
ments on the same set of user requests in Table 3. Ta-
ble 5 shows for each user request, the physical distance
traversed and the corresponding latency (round trip from
PSS to Q and from Q to IP). CommonlIP optimizes for
client locations that are most frequently used, thereby
driving down latency to the minimum for some user re-
quests but at a significant expense to others. Volley con-
siders all client locations when calculating placements,
and in doing so drives down the worst cases by more than
the amount it drives up the common case, leading to an
overall better latency distribution. Note that in practice,
user requests change over time after placement decisions
have been made and our trace-based evaluation does use
later sets of user requests to evaluate placements based
on earlier requests.

4.3 TImpact of Volley Iteration Count

We now show that Volley converges after a small
number of iterations; this will allow us to establish in
Section 4.5 that Volley runs quickly (i.e., less than a day),
and thus can be re-run frequently. Figures 16, 17, 18
and 19 show the performance of Volley as the number
of iterations varies. Figure 16 shows that the distance
that Volley moves data significantly decreases with each
Volley iteration, showing that Volley relatively quickly
converges to its ideal placement of data items.

Figures 17, 18 and 19 further break down the changes
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Figure 17. Inter-datacenter traffic at each Volley itera-
tion.
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Figure 18. Datacenter capacity at each Volley iteration.
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Figure 19. Client request latency at each Volley itera-
tion.

in Volley’s performance in each iteration. Figure 17
shows that inter-datacenter traffic is reasonably good af-
ter the initial placement of Phase 1, and is quite similar to
the commonlP heuristic. In contrast, recall that the hash
heuristic led to almost 80% of messages crossing data-
center boundaries. Inter-datacenter traffic then decreases
by over a factor of 2 during the first 5 Phase 2 itera-
tions, decreases by a small amount more during the next
5 Phase 2 iterations, and finally goes back up slightly
when Volley’s Phase 3 balances the items across data-
centers. Of course, the point of re-balancing is to avoid
the kind of capacity skew seen in the commonlIP heuris-
tic, and in this regard a small increase in inter-datacenter
traffic is acceptable.

Turning now to datacenter capacity, we see that Vol-
ley’s placement is quite skewed (and by an approxi-
mately constant amount) until Phase 3, where it smooths
out datacenter load according to its configured capacity



Volley Elapsed | SCOPE | SCOPE CPU

Phase Time Stages | Vertices | Hours
in Hours

1 1:22 39 20,668 89

2 14:15 625 255,228 386

3 0:10 16 200 0:07

Table 6. Volley’s demands on the SCOPE infrastructure
to analyze 1 week’s worth of traces.

model (i.e., such that no one of the 12 datacenters hosts
more than 10% of the data). Turning finally to latency,
Figure 19 shows that latency has reached its minimum
after only five Phase 2 iterations. In contrast to the im-
pact on inter-datacenter traffic, there is almost no latency
penalty from Phase 3’s data movement to satisfy data-
center capacity.

4.4 Volley Resource Demands

Having established that Volley converges after a small
number of iterations, we now analyze the resource re-
quirements for this many iterations; this will allow us to
conclude that Volley completes quickly and can be re-run
frequently. The SCOPE cluster we use consists of well
over 1,000 servers. Table 6 shows Volley’s demands on
the SCOPE infrastructure broken down by Volley’s dif-
ferent phases. The elapsed time, SCOPE stages, SCOPE
vertices and CPU hours are cumulative over each phase
— Phase 1 has only one iteration to compute the initial
placement, while Phase 2 has ten iterations to improve
the placement, and Phase 3 has 12 iterations to balance
out usage over the 12 datacenters. Each SCOPE stage
in Table 6 corresponds approximately to a single map
or reduce step in MapReduce [11]. There are 680 such
stages overall, leading to lots of data shuffling; this is
one reason why the total elapsed time is not simply CPU
hours divided by the degree of possible parallelism. Ev-
ery SCOPE vertex in Table 6 corresponds to a node in
the computation graph that can be run on a single ma-
chine, and thus dividing the total number of vertices by
the total number of stages yields the average degree of
parallelism within Volley: the average stage parallelizes
out to just over 406 machines (some run on substantially
more). The SCOPE cluster is not dedicated for Volley but
rather is a multi-purpose cluster used for several tasks.
The operational cost of using the cluster for 16 hours ev-
ery week is small compared to the operational savings
in bandwidth consumption due to improved data place-
ment. The data analyzed by Volley is measured in the
terabytes. We cannot reveal the exact amount because it
could be used to infer confidential request volumes since
every Volley log record is 100 bytes.

4.5 Impact of Rapid Volley Re-Computation

Having established that Volley can be re-run fre-
quently, we now show that Volley provides substantially
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Figure 20. Client request latency with stale Volley
placements.
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Figure 21. Inter-datacenter traffic with stale Volley
placements.
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Figure 22. Previously unseen objects over time.

better performance by being re-run frequently. For these
experiments, we use traces from the Live Mesh service
extending from the beginning of June 2009 all the way
to the beginning of September 2009. Figures 20, 21
and 22 show the impact of rapidly re-computing place-
ments: Volley computes a data placement using the trace
from the first week of June, and we evaluate the per-
formance of this placement on a trace from the imme-
diately following week, the week after the immediately
following week, a week starting a month later, and a
week starting three months after Volley computed the
data placement. The better performance of the place-
ment on the immediately following week demonstrates
the significant benefits of running Volley frequently with
respect to both latency and inter-datacenter traffic. Fig-
ure 20 shows that running Volley even every two weeks
is noticeably worse than having just run Volley, and this
latency penalty keeps increasing as the Volley placement
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becomes increasingly stale. Figure 21 shows a similar
progressively increasing penalty to inter-datacenter traf-
fic; running Volley frequently results in significant inter-
datacenter traffic savings.

Figure 22 provides some insight into why running
Volley frequently is so helpful; the number of previously
unseen objects increases rapidly with time. When run
frequently, Volley detects accesses to an object sooner.
Note that this inability to intelligently place previously
unseen objects is shared by the commonlIP heuristic, and
so we do not separately evaluate the rate at which it de-
grades in performance.

In addition to new objects that are created and ac-
cessed, previously placed objects may experience sig-
nificantly different access patterns over time. Running
Volley periodically provides the added benefit of migrat-
ing these objects to locations that can better serve new
access patterns. Figure 23 compares a Volley placement
calculated from the first week of June to a placement cal-
culated in the second week, then the first week to the
third week, and finally the first week to the fourth week.
About 10% of the objects in any week undergo migra-
tions, either as a direct result of access pattern changes
or due to more important objects displacing others in
capacity-limited datacenters. The majority of objects re-
tain their placement compared to the first week. Run-
ning Volley periodically has a third, but minor advan-
tage. Some client requests come from IP addresses that
are not present in geo-location databases. Objects that
are accessed solely from such locations are not placed by
Volley. If additional traces include accesses from other
IP addresses that are present in geo-location databases,
Volley can then place these objects based on these new
accesses.

5 Related Work

The problem of automatic placement of application
data re-surfaces with every new distributed computing
environment, such as local area networks (LANSs), mo-
bile computing, sensor networks, and single cluster web
sites. In characterizing related work, we first focus on the
mechanisms and policies that were developed for these

other distributed computing environments. We then de-
scribe prior work that focused on placing static content
on CDNs; compared to this prior work, Volley is the first
research system to address placement of dynamic appli-
cation data across geographically distributed datacenters.
We finally describe prior work on more theoretical ap-
proaches to determining an optimal data placement.

5.1 Placement Mechanisms

Systems such as Emerald [20], SOS [37], Globe [38],
and Legion [25] focused on providing location-
independent programming abstractions and migration
mechanisms for moving data and computation between
locations. Systems such as J-Orchestra [42] and Addis-
tant [41] have examined distributed execution of Java ap-
plications through rewriting of byte code, but have left
placement policy decisions to the user or developer. In
contrast, Volley focuses on placement policy, not mech-
anism. Some prior work incorporated both placement
mechanism and policy, e.g., Coign [18], and we charac-
terize its differences with Volley’s placement policy in
the next subsection.

5.2 Placement Policies for Other Distributed
Computing Environments

Prior work on automatic data placement can be
broadly grouped by the distributed computing environ-
ment that it targeted. Placing data in a LAN was tackled
by systems such as Coign [18], IDAP [22], ICOPS [31],
CAGES [17], Abacus [3] and the system of Stewart et
al [39]. Systems such as Spectra [13], Slingshot [40],
MagnetOS [27], Pleaides [23] and Wishbone [33] ex-
plored data placement in a wireless context, either be-
tween mobile clients and more powerful servers, or in ad
hoc and sensor networks. Hilda [44] and Doloto [30]
explored splitting data between web clients and web
servers, but neither assumed there were multiple geo-
graphic locations that could host the web server.

Volley differs from these prior systems in several
ways. First, the scale of the data that Volley must process
is significantly greater. This required designing the Vol-
ley algorithm to work in a scalable data analysis frame-
work such as SCOPE [5] or MapReduce [11]. Second,
Volley must place data across a large number of datacen-
ters with widely varying latencies both between datacen-
ters and clients, and between the datacenters themselves;
this aspect of the problem is not addressed by the algo-
rithms in prior work. Third, Volley must continuously
update its measurements of the client workload, while
some (though not all) of these prior approaches used an
upfront profiling approach.



5.3 Placement Policies for Static Data

Data placement for Content Delivery Networks
(CDNs) has been explored in many pieces of prior
work [21, 19]. These systems have focused on static data
— the HTTP caching header should be honored, but no
other more elaborate synchronization between replicas is
needed. Because of this, CDNs can easily employ decen-
tralized algorithms e.g., each individual server or a small
set of servers can independently make decisions about
what data to cache. In contrast, Volley’s need to deal
with dynamic data would make a decentralized approach
challenging; Volley instead opts to collect request data in
a single datacenter and leverage the SCOPE distributed
execution framework to analyze the request logs within
this single datacenter.

5.4 Optimization Algorithms

Abstractly, Volley seeks to maps objects to locations
S0 as to minimize a cost function. Although there are no
known approximation algorithms for this general prob-
lem, the theory community has developed approximation
algorithms for numerous more specialized settings, such
as sparsest cut [4] and various flavors of facility loca-
tion [6, 8]. To the best of our knowledge, the problem
in Volley does not map to any of these previously stud-
ied specializations. For example, the problem in Volley
differs from facility location in that there is a cost asso-
ciated with placing two objects at different datacenters,
not just costs between clients and objects. This moti-
vates Volley’s choice to use a heuristic approach and to
experimentally validate the quality of the resulting data
placement.

Although Volley offers a significant improvement
over a state-of-the-art heuristic, we do not yet know how
close it comes to an optimal placement; determining such
an optimal placement is challenging because standard
commercial optimization packages simply do not scale
to the data sizes of large cloud services. This leaves open
the tantalizing possibility that further improvements are
possible beyond Volley.

6 Conclusion

Cloud services continue to grow to span large num-
bers of datacenters, making it increasingly urgent to de-
velop automated techniques to place application data
across these datacenters. Based on the analysis of month-
long traces from two large-scale commercial cloud ser-
vices, Microsoft’s Live Messenger and Live Mesh, we
built the Volley system to perform automatic data place-
ment across geographically distributed datacenters. To
scale to the large data volumes of cloud service logs, Vol-
ley is designed to work in the SCOPE [5] scalable data
analysis framework.

We evaluate Volley analytically and on a live system
consisting of a prototype cloud service running on a ge-
ographically distributed testbed of 12 datacenters. Our
evaluation using one of the month-long traces shows that,
compared to a state-of-the-art heuristic, Volley simulta-
neously reduces datacenter capacity skew by over 2, re-
duces inter-datacenter traffic by over 1.8 x, and reduces
75th percentile latency by over 30%. This shows the po-
tential of Volley to simultaneously improve the user ex-
perience and significantly reduce datacenter costs.

While in this paper we have focused on using Volley
to optimize data placement in existing datacenters, ser-
vice operators could also use Volley to explore future
sites for datacenters that would improve performance.
By including candidate locations for datacenters in Vol-
ley’s input, the operator can identify which combination
of additional sites improve latency at modest costs in
greater inter-datacenter traffic. We hope to explore this
more in future work.

Acknowledgments

We greatly appreciate the support of Microsoft’s ECN
team for donating usage of their VMs, and the support of
the Live Mesh and Live Messenger teams in sharing their
data with us. We thank our shepherd, Dejan Kostic, and
the anonymous reviewers for their detailed feedback and
help in improving this paper.

References

[1] A. Adya, J. Dunagan, and A. Wolman. Centrifuge: In-
tegrating Lease Management and Partitioning for Cloud
Services. In NSDI, 2010.

[2] Amazon Web Services. http://aws.amazon.com.

[3] K. Amiri, D. Petrou, G. Ganger, and G. Gibson. Dynamic
Function Placement for Data-intensive Cluster Comput-
ing. In USENIX Annual Technical Conference, 2000.

[4] S. Arora, S. Rao, and U. Vazirani. Expander Flows, Ge-
ometric Embeddings and Graph Partitioning. In STOC,
2004.

[5] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. SCOPE: Easy and efficient par-
allel processing of massive data sets. In VLDB, 2008.

[6] M. Charikar and S. Guha. Improved Combinatorial Algo-
rithms for the Facility Location and k-Median Problems.
In FOCS, 1999.

[71 M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer.
Pinpoint: Problem Determination in Large, Dynamic Sys-
tems. In DSN, 2002.

[8] F. Chudak and D. Williamson. Improved approxima-
tion algorithms for capacitated facility location problems.
Mathematical Programming, 102(2):207-222, 2005.

[9] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi:
A Decentralized Network Coordinate System. In SIG-
COMM, 2004.

[10] Data Center Global Expansion Trend.



(11]

(12]

[13]

[14]

[15]

[16]
(17]

(18]

[19]

[20]

(21]

[22]

(23]

(24]
[25]
[26]
(27]

(28]
[29]
(30]

(31]

(32]

[33]

http://www.datacenterknowledge.com/
archives/2008/03/27/google-data-center-fag/.

J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. OSDI, 2004.

Facebook. http://www.facebook.com.

J. Flinn, S. Park, and M. Satyanarayanan. Balancing Per-
formance, Energy, and Quality in Pervasive Computing.
In ICDCS, 2002.

R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica.
X-Trace: A Pervasive Network Tracing Framework. In
NSDI, 2007.

Global Air travel
http://www.zinnov.com/presentation/
Global_Aviation-Markets-An_Ananlysis.pdf.
Google Apps. http://apps.google.com.

G. Hamlin Jr and J. Foley. Configurable applications
for graphics employing satellites (CAGES). ACM SIG-
GRAPH Computer Graphics, 9(1):9-19, 1975.

G. Hunt and M. Scott. The Coign Automatic Distributed
Partitioning System. In OSDI, 1999.

S. Jamin, C. Jin, A. Kurc, D. Raz, and Y. Shavitt. Con-
strained Mirror Placement on the Internet. In INFOCOM,
2001.

E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-
grained mobility in the Emerald system. ACM Transac-
tions on Computer Systems, 6(1):109-133, 1966.

M. Karlsson and M. Mahalingam. Do We Need Replica
Placement Algorithms in Content Delivery Networks? In
International Workshop on Web Content Caching and
Distribution (WCW), 2002.

D. Kimelman, V. Rajan, T. Roth, M. Wegman, B. Lind-
sey, H. Lindsey, and S. Thomas. Dynamic Application
Partitioning in VisualAge Generator Version 3.0. Lecture
Notes In Computer Science; Vol. 1543, pages 547-548,
1998.

N. Kothari, R. Gummadi, T. Millstein, and R. Govin-
dan. Reliable and Efficient Programming Abstractions
for Wireless Sensor Networks. In PLDI, 2007.

J. Leskovec and E. Horvitz. Planetary-Scale Views on an
Instant-Messaging Network. In WWW, 2008.

M. Lewis and A. Grimshaw. The core Legion object
model. In HPDC, 1996.

LinkedIn. http://linkedin.com.

H. Liu, T. Roeder, K. Walsh, R. Barr, and E. Sirer. Design
and Implementation of a Single System Image Operating
System for Ad Hoc Networks. In MobiSys, 2005.

Live Mesh. http://www.mesh.com.

Live Messenger. http://messenger.live.com.

B. Livshits and E. Kiciman. Doloto: Code Splitting for
Network-bound Web 2.0 Applications. In SIGSOFT FSE,
2008.

J. Michel and A. van Dam. Experience with distributed
processing on a host/satellite graphics system. ACM SIG-
GRAPH Computer Graphics, 10(2):190-195, 1976.
Microsoft Office Online. http://office.microsoft.com/en-
us/office_live/default.aspx.

R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and
S. Madden. Wishbone: Profile-based Partitioning for
Sensornet Applications. In NSDI, 2009.

Trends.

[34]
(35]

[36]

(37]

(38]

[39]

[40]

(41]

[42]

[43]
[44]

[45]

Quova 1P Geo-Location Database.
http://www.quova.com.

Rapid Release Cycles.
http://www.ereleases.com/pr/20070716009.html.

S. Agarwal and J. Lorch. Matchmaking for Online
Games and Other Latency-Sensitive P2P Systems. In
SIGCOMM, 2009.

M. Shapiro, Y. Gourhant, S. Habert, L. Mosseri, and
M. Ruffin. SOS: An object-oriented operating system—
assessment and perspectives. Computing Systems, 1989.
M. Steen, P. Homburg, and A. Tanenbaum. Globe: A
wide-area distributed system. IEEE Concurrency, pages
70-78, 1999.

C. Stewart, K. Shen, S. Dwarkadas, M. Scott, and J. Yin.
Profile-driven component placement for cluster-based on-
line services. IEEE Distributed Systems Online, 5(10):1—
1,2004.

Y. Su and J. Flinn. Slingshot: Deploying Stateful Services
in Wireless Hotspots. In MobiSys, 2005.

M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A byte-
code translator for distributed execution of "legacy” java
software. In ECOOP, pages 236-255. Springer-Verlag,
2001.

E. Tilevich and Y. Smaragdakis. J-orchestra: Automatic
java application partitioning. In ECOOP, pages 178-204.
Springer-Verlag, 2002.

Twitter. http://www.twitter.com.

F. Yang, J. Shanmugasundaram, M. Riedewald, and
J. Gehrke. Hilda: A High-Level Language for Data-
DrivenWeb Applications. /CDE, 2006.

Y. Zhao, Y. Xie, F. Yu, Q. Ke, Y. Yu, Y. Chen, and
E. Gillum. Botgraph: Large Scale Spamming Botnet De-
tection. In NSDI, 2009.



